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Reducibility of the Hilbert Scheme of Smooth Curves and Families of Double

Covers

Youngook Choi, Hristo Iliev and Seonja Kim*

Abstract. Let Id,g,r be the union of irreducible components of the Hilbert scheme

whose general points represent smooth irreducible complex curves of degree d and

genus g in Pr. Severi claimed in [15] that Id,g,r is irreducible if d ≥ g + r. His

statement turned out to be correct for r = 3 and 4, while for r ≥ 6, counterexamples

have been found by using families of m-sheeted covers of rational curves with m ≥ 3.

In this work we show the existence of an additional component of Id,g,r whose general

elements are double covers of curves of positive genus. In addition, we find upper

bounds for the dimension of the possible components of Id,g,r.

1. Introduction

We denote by Id,g,r the union of irreducible components of the Hilbert scheme whose

general points correspond to smooth irreducible non-degenerate complex curves of degree d

and genus g embedded in Pr. It can be decomposed into a union of irreducible components,

see [14, 11-13, 11-14], as

Id,g,r = R1 ∪ · · · ∪Rk ∪ S1 ∪ · · · ∪ Sl

where

(1) the components Ri, i = 1, . . . , k, are called regular and they are characterized by

being generically smooth and having the expected dimension λd,g,r := (r+1)d−(r−
3)(g − 1);
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(2) the components Sj , j = 1, . . . , l, are called superabundant, and they are characterized

by being non-reduced or having dimension greater than λd,g,r.

When the Brill-Noether number ρ(d, g, r) := g− (r+ 1)(g− d+ r) is positive, it is known

that Id,g,r has the unique component dominating the moduli space Mg of smooth curves

of genus g, see [6, p. 70]. It is usually referred to as distinguished component. It is indeed

regular. Severi claimed in [15] that Id,g,r is irreducible if d ≥ g + r. Ein proved the

conjecture for r = 3 and 4, see [4] and [5], while Mezzetti and Sacchiero [12], and Keem [8]

gave examples where the conjecture doesn’t hold for r ≥ 6. We remark that all of these

counterexamples have used curves which are m-sheeted coverings of P1 with m ≥ 3. Ein

also showed in [5] that Id,g,r is irreducible for d > 2r−2
r+2 g + r+8

r+2 and r ≥ 5. Subsequently,

Kim extended in [10] the irreducibility range to d > η3 := 2r−4
r+1 g + r+13

r+1 for r ≥ 8. In her

work she also found that for η4 := 2r−6
r+1 g+ 2r+26

r+1 < d ≤ η3 and r ≥ 15, the scheme Id,g,r is

irreducible if and only if 2g − 2− d is divisible by 3 and the additional components must

parameterize triple coverings.

Our approach has been to look at the morphism Φ determined by the residual of the

line bundle embedding a curve into Pr. Namely, a general point of Id,g,r corresponds to

an embedding C ↪→ Pr of an abstract smooth curve C in Pr. Then we use the morphism

Φ determined by the linear series |ωC ⊗OC(−1)| on C, after possibly removing its base

locus. This allows us to characterize the families of curves giving rise to a component of

Id,g,r in terms of degree of Φ, the geometric genus g(Φ(C)) and h1(Φ(C),OΦ(C)(1)). In

Proposition 3.2 we establish numerical constraints on the degree d implied by the existence

of an additional component of Id,g,r. We focus on the interval

η5 :=
2r − 8

r + 1
g +

3r + 43

r + 1
< d ≤ 2r − 4

r + 1
g +

r + 13

r + 1
=: η3,

where we can see a transitional nature of the geometry of Id,g,r while tracing the decrease

of d from η3. Namely, the results in [10] suggest that for η4 < d ≤ η3 different components

over families of triple covers of curves of genus γ exist for different values of γ. By

Proposition 3.2, for η5 < d ≤ η4, components whose general elements are quadruple

covers of curves of genus γ might possibly exist. Theorems 4.3 and 4.4 show that for

η5 < d <
(
2− 8

r

)
g+ 2 + 8

r < η4, there exist irreducible components parameterizing curves

which are double covers of curves of positive genus. Finally, Example 4.5 shows that there

is a non-distinguished component of the minimal dimension, while by [12] there exist

generically smooth superabundant components parameterizing trigonal curves.

As mentioned already, the main results of this work are contained in Theorems 4.3

and 4.4, where we prove the existence of a non-distinguished component of Id,g,r. In the

next section we recall some preliminary facts and statements, and outline the approach

that we follow. The main result in the third section is Proposition 3.2 in which we find
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necessary numerical conditions for the existence of other components of Id,g,r.

2. Basic notions and preliminary results

We recall some basic notions which will be used in our study of Id,g,r. Consider a family

of genus g ≥ 2 curves

p : C → S

parameterized by a scheme S which is a finite, possibly ramified covering of an open subset

of the moduli spaceMg of genus g curves. Assume that the family admits a section. Then

for each integer d there exist a relative Picard S-scheme Picd(p) and a universal relative line

bundle Ld(p) over C ×S Picd(p), which restricts on the fibers p−1(s) to the usual Poincaré

line bundle on Cs × Picd(p)s for each s ∈ S. For this family, there exist S-schemes Wr
d(p)

and Grd(p), whose closed points appear as

Wr
d(p) =

{
(s, L) | s ∈ S, L ∈ Picd(Cs) such that h0(Cs, L) ≥ r + 1

}
,

Grd(p) =
{

(s, grd) | s ∈ S, grd = (L, V ) with L ∈ Picd(Cs), V ⊂ H0(Cs, L)

such that h0(Cs, L) ≥ r + 1 and dimV = r + 1
}
.

For the precise definitions and other properties of these varieties consult [3, Chapter XXI].

We remark that for every smooth irreducible curve C of genus g, there exists an open

neighborhood D ⊂ Mg of the isomorphism class [C] ∈ Mg of C over which there exists

a family p : C → S admitting a section. More precisely, the variety S is a finite ram-

ified covering ν : S → D, such that for every s ∈ S we have Wr
d(p)s ∼= W r

d (ν(s)) and

Grd(p)s ∼= Grd(ν(s)), where W r
d and Grd are the varieties of line bundles and linear series,

correspondingly, defined for a fixed curve, see [2, Chapter IV] for details.

Since in what follows we are pursuing upper bounds for the dimensions of the schemes

Wr
d(p) and Grd(p) defined for all families p : C → S like above, i.e., admitting a section

and S being a finite ramified covering of an open subset of Mg, we will omit the explicit

reference to the family p : C → S. We will denote them just by Wr
d and Grd implying that

the results hold for any such families p of curves of genus g. When we work with families

of curves of different genus, say γ, we will use notations like Wr
d,γ or Grd,γ to specify the

genus. We will also sometimes defy rigor and call Wr
d and Grd “varieties”, although they

are not, in order to stress their similarities with W r
d and Grd defined for a fixed curve.

The geometry of Wr
d and Grd is closely related to the properties of Id,g,r. An open

set of a component of Id,g,r is a PGLr+1(C)-bundle over an open subset of a component

G ⊂ Grd whose general elements correspond to pairs (C, grd) such that grd is very ample on

C. An irreducible component G ⊂ Grd is generically a Grassmannian fiber bundle with

fiber Grass(r + 1, α + 1) over an irreducible component W ⊂ Wα
d for some α ≥ r. When
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ρ(d, g, r) > 0, it is shown by Brill-Noether theory that Id,g,r has a unique component I0

dominatingMg, see [13] where a more general statement is proved. The component I0 is

referred to as the distinguished component and

dim I0 = λd,g,r := (r + 1)d− (r − 3)(g − 1),

where λd,g,r is called expected dimension of Id,g,r. It is the minimal dimension that a

component of Id,g,r could have. We remark also that I0 is a regular component.

We recall that a linear series grd defined on an algebraic curve X is called birationally

very ample if the morphism defined by its base point free part is birational mapping. As

we will use this notion a number of times in what follows, we remark that it is weaker

than very ampleness.

The following proposition will be used in the proofs of Lemma 3.1 and Proposition 3.2.

Proposition 2.1. [9] Let G ⊂ Grd be an irreducible closed subvariety of Grd, r ≥ 2, whose

general element (C, grd) ∈ G is such that grd is complete, special and birationally very ample

on C. Then

dimG ≤ 3d+ g − 4r − 1.

The next proposition will be used in the proof of Proposition 3.2 to produce one of

our upper bound estimates.

Proposition 2.2. [10] Suppose that a smooth curve of genus g has a birationally very

ample linear series grd with d ≤ 2g/(k − 1) − k + 2 for an integer k ≥ 2. Then r ≤
(d+ k − 1)/k.

We use the following two well-known genus bounds, which we recall for a convenience

of the reader. The first one is known as Castelnuovo genus bound.

Proposition 2.3. [6, p. 87] or [2, p. 116] Let C ↪→ Pr be an integral curve properly

contained in Pr, r ≥ 3. Then for its arithmetic genus pa(C) we have

pa(C) ≤ π(d, r),

where π(d, r) =
(
m
2

)
(r − 1) + mε, with m :=

[
d−1
r−1

]
and ε = d − 1 −m(r − 1). Further,

equality is possible only if C lies on a surface of minimal degree in Pr.

The next statement is often referred to as Castelnuovo-Severi inequality.

Proposition 2.4. [1, p. 21] Let C be a smooth integral curve of genus g, and Dj be a

smooth integral curve of genus gj for j = 1, 2. Suppose that ψj : C → Dj, j = 1, 2, are

morphisms that do not admit a proper factorization, i.e., there do not exist a smooth curve

Γ of genus γ < g and morphisms ϕ0 : C → Γ, ϕj : Γ→ Dj, j = 1, 2, such that ψj = ϕj ◦ϕ0

for j = 1, 2. Then

g ≤ (degψ1 − 1)(degψ2 − 1) + g1 degψ1 + g2 degψ2.
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We work over C and if not explicitly said otherwise, we understand by curve a smooth

integral projective algebraic curve. We denote by L∨ the dual line bundle for a given line

bundle L defined on an algebraic variety X. As usual, ωX will stand for the canonical line

bundle on X. We denote |L| the complete linear series P
(
H0(X,L)

)
. For definitions and

properties of the objects not explicitly introduced in the paper we refer to [2] and [3].

3. Upper bounds

Every irreducible component I ⊂ Id,g,r is generically a fiber bundle over an irreducible

componentW ⊂Wα
d for some α ≥ r, where the general fiber has dimension dim Grass(r+

1, α + 1) + dim Aut(Pr). Thus, an upper bound for the dimension of Wα
d gives an upper

bound for the dimension of I ⊂ Id,g,r. We will use the following claim which provides an

upper bound for the dimension of a variety of line bundles defined for a family of curves.

Lemma 3.1. Let W be an irreducible closed subvariety of W l
e,g with l ≥ 1 such that its

general element (C,L) defines an m-fold covering morphism ϕ := ϕL : C → Γ := ϕL(C) ⊂
Pl with g(Γ) = γ for some positive integers γ and m ≥ 2. Then

dimW ≤

2g − 3− (2m− 1)γ + 3e
m − 4l + 2m if h1(Γ,OΓ(1)) > 0,

2g − 5 + 2m− 2(m− 2)γ if h1(Γ,OΓ(1)) = 0.

Proof. Consider the incidence variety:

T =
{(

(C,L), (Γ̃,M)
)
∈ W ×W l

e/m,γ

∣∣ (C,L) ∈ W,Γ = ϕL(C),M = ι∗OΓ(1),

where ι : Γ̃→ Γ is the normalization of Γ
}
.

Let p1 and p2 be the projections from T to the first factor and the second one respectively.

T ⊂ W ×W l
e/m,γ

W W l
e/m,γ

A
A
A
A
AD

p1






�

p2

From this we get dimW ≤ dim p2(T ) + dim p−1
2 (·), where dim p−1

2 (·) is the dimension of

a fiber of p2 over a point (Γ̃,M) ∈ p2(T ). In addition, dim p−1
2 (Γ̃,M) is at most the

dimension of the family of m-fold covers of Γ̃ since
(

(C,L), (Γ̃,M)
)

is an element of T

only if there is an m-fold covering morphism ϕ : C → Γ̃ and L = ϕ∗M . Thus we have

dim p−1
2 (Γ̃,M) ≤ 2g − 2− 2m(γ − 1).

If h1(Γ,OΓ(1)) > 0, then we apply Proposition 2.1 to get

dimW ≤ 2g − 2− 2m(γ − 1) + 3
e

m
+ γ − 4l − 1 = 2g − 3− (2m− 1)γ +

3e

m
− 4l + 2m.
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If h1(Γ,OΓ(1)) = 0, we use dimW l
e/m,γ = 3γ − 3 + γ to get

dimW ≤ 2g − 2− 2m(γ − 1) + 4γ − 3 = 2g − 5 + 2m− 2(m− 2)γ.

The functions ηm(γ) and ξm(γ) defined as

ηm(γ) :=

(
2− 2m

r + 1

)
g − mr + 2m2 − 3m

r + 1
γ +

(m− 2)r + 2m2 −m− 2

r + 1
,

ξm(γ) :=

(
2− 4m

r + 3

)
g − 4m2 − 2m

r + 3
γ +

(2m− 2)r + 4m2 + 2m− 6

r + 3
,

will play a role in identifying the ranges for d in which different types of components of

Id,g,r occur. For convenience, we denote

ηm := ηm(0) =

(
2− 2m

r + 1

)
g +

(m− 2)r + 2m2 −m− 2

r + 1
,

ξm := ξm(0) =

(
2− 4m

r + 3

)
g +

(2m− 2)r + 4m2 + 2m− 6

r + 3
.

Notice that for fixed positive numbers g and r, both ηm(γ) and ξm(γ) are decreasing

functions of γ. The following proposition shows that ηm(γ) and ξm(γ) give criteria to tell

some moduli properties for the possible components of Id,g,r.

Proposition 3.2. Assume that I is an irreducible component of Id,g,r with r ≥ 6 such

that h1(C,OC(1)) = l + 1 ≥ 2 for a general C ∈ I. Let

b : the degree of the base locus of |ωC ⊗OC(−1)|,

m : the degree of Φ: C → Pl defined by the moving part of |ωC ⊗OC(−1)|,

γ : the geometric genus of Γ := Φ(C).

Then

(1) If m = 1 and d ≥
(

2− 2
k−1

)
g + k − 4 for some integer k ≥ 3, then

d ≤
(

2− 3k

r − 3 + 3k

)
g +

(
2rk − r + 3

r − 3 + 3k
− 2

)
−
(

1− k

r − 3 + 3k

)
b.

(2.1) If m ≥ 2 and h1(Γ,OΓ(1)) > 0, then

(i) d ≤ ξm(γ)−
(

1− 2m
r+3

)
b, and

(ii) dim I ≤ λd,g,r − r+3
2m (d− ξm(γ))−

(
r+3
2m − 1

)
b.

with equality being possible only if l = 2g−2−d−b
2m .

(2.2) If m ≥ 2 and h1(Γ,OΓ(1)) = 0, then



Hilbert Scheme of Smooth Curves and Families of Double Covers 589

(i) m ≥ 3,

(ii) d ≤ ηm(γ)−
(

1− m
r+1

)
b, and

(iii) dim I ≤ λd,g,r − r+1
m (d− ηm(γ))−

(
r+1
m − 1

)
b,

with equality being possible only if l = 2g−2−d−b
m − γ.

Proof. The irreducible component I of Id,g,r is generically an Aut(Pr)-bundle over an

irreducible component G ⊂ Grd,g, which of its turn is fibered over an irreducible closed

subset W ⊂ Wα
d,g with generic fiber being the Grassmannian Grass(r + 1, α + 1), where

α = h0(C,OC(1))− 1 for a general C ∈ I. Therefore,

λd,g,r ≤ dim I ≤ dimW + dim Grass(r + 1, α+ 1) + dim Aut(Pr).

Thus proving the above statements focuses on estimating dimW. Let W̃ ⊂ W l
2g−2−d,g,

l := h1(C,OC(1)) − 1 = g − d + α − 1 ≥ 1, be the residual of W component in the

relative Jacobian of the universal curve. The fact that l ≥ 1 is explained in the proof

of [10, Proposition 3.6]. Let b be the degree of the base locus of |ωC ⊗OC(−1)| for a

general (C,ωC ⊗ OC(−1)) ∈ W̃. Removing the base locus of |ωC ⊗OC(−1)| gives a

rational mapping

W l
2g−2−d,g × Cb ⊃ W̃ × Cb −→W l−b

2g−2−d−b,g

((C,L), (C, p1), . . . , (C, pb)) 7−→ (C,L(−p1 − · · · − pb)),

where Cb denotes the b-fold symmetric product C×S · · ·×S C for a family p : C → S. Hence

there is a component U ⊂ W l
2g−2−d−b,g such that its general element represents a base

point free linear series and

dim W̃ ≤ dimU + b.

Now for a general element (C,L) ∈ U the linear series |L| on C defines a morphism of

degree m (this follows from assumptions in the proposition, the irreducibility of U and the

upper-semicontinuity of the degree of a morphism). In case (1), Proposition 2.1 gives

dimU ≤ 3(2g − 2− d− b) + g − 4l − 1,

therefore

dim I ≤ 3(2g − 2− d− b) + g − 4l − 1 + b+ (r + 1)(α− r) + (r + 1)2 − 1.

The condition d ≥ (2− 2
k−1)g+ k− 4 is equivalent to 2g− 2− d ≤ 2g

k−1 − k+ 2. Applying

Proposition 2.2 to a birationally very ample gl2g−2−d−b, we deduce that l ≤ (2g − 2− d−
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b+ k − 1)/k. Since α = l + d− g + 1 it follows that

dim I ≤ 3(2g − 2− d− b) + g − 4l − 1 + b+ (r + 1)(l + d− g + 2)− 1

= (r + 1)d− (r + 1)(g − 1) + rl + r + l + 3(2g − 2− d− b) + g − 4l − 1 + b

= (r + 1)d− (r − 3)(g − 1)− 3(g − 1) + 3(2g − 2− d− b) + (r − 3)l + b+ r

≤ λd,g,r − 3(g − 1) + 3(2g − 2− d− b) + (r − 3)
2g − 2− d− b+ k − 1

k
+ b+ r

= λd,g,r −
r − 3 + 3k

k
d+

2(r − 3 + 3k)− 3k

k
g − r − 3 + 2k

k
b

+
−2(r − 3 + 3k) + 2rk − r + 3

k
.

In order for I to be a component of Id,g,r we must have

−(r − 3 + 3k)d+ (2(r − 3 + 3k)− 3k)g − (r − 3 + 2k)b− 2(r − 3 + 3k) + 2rk − r + 3 ≥ 0,

which gives precisely the upper bound for d in part (1).

In case (2.1) an upper bound for dim I is obtained from Lemma 3.1, the Riemann-Roch

theorem and Clifford inequality l ≤ (2g − 2 − d − b)/(2m) applied to the linear series on

the curve Γ = Φ(C), namely

dim I ≤
[

3(2g − 2− d− b)
m

− 4l + 2g − 2− (2m− 1)(γ − 1) + b

]
+ (r + 1)(α− r) + (r + 1)2 − 1

=

[
3(2g − 2− d− b)

m
− 4l + 2g − 2− (2m− 1)(γ − 1) + b

]
+ (r + 1)d− (r − 3)(g − 1)− 4(g − 1) + (r + 1)l + r

= λd,g,r +
3(2g − 2− d− b)

m
+ (r − 3)l − 2g + 2 + r − (2m− 1)γ + 2m− 1 + b

≤ λd,g,r +
(r + 3)(2g − 2− d− b)

2m
− 2g − (2m− 1)γ + (2m+ 1 + r) + b

= λd,g,r −
r + 3

2m
d+

(
r + 3

m
− 2

)
g − (2m− 1)γ

+

(
2m+ 1 + r − r + 3

m

)
−
(
r + 3

2m
− 1

)
b.

In case (2.2), the very ampleness of |OC(1)| yields m ≥ 3. Further, an upper bound for

dim I is obtained as follows. Since the line bundles ωC ⊗ OC(−1) are pull-backs of non-

special line bundles on a base curve of genus γ, we have dimU ≤ 2g− 5− (2m− 4)γ+ 2m
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by Lemma 3.1. Hence

dim I ≤ [2g − 5− (2m− 4)γ + 2m+ b] + (r + 1)(α− r) + (r + 1)2 − 1

= [2g − 5− (2m− 4)γ + 2m+ b] + (r + 1)d− (r − 3)(g − 1)

− 4(g − 1) + (r + 1)l + r

= λd,g,r − 2g − 1− (2m− 4)γ + (r + 1)

(
2g − 2− d− b

m
− γ
)

+ 2m+ r + b

= λd,g,r −
r + 1

m
d+

(
2r + 2

m
− 2

)
g − (r + 2m− 3)γ

+
2m2 + rm−m− 2r − 2

m
−
(
r + 1

m
− 1

)
b.

Since dim I ≥ λd,g,r, we conclude immediately the upper bounds for d in both part (2.1)

and part (2.2) of the proposition. Therefore the proof is completed.

4. Irreducible components using families of double coverings

Consider the subset Mg(γ,m) ⊂Mg, g ≥ 3, of points corresponding to curves admitting

a rational map of degree m ≥ 2 to a curve of genus γ. In [11] it was shown thatMg(γ,m)

is constructible of dimension 2g − 2 + (2m − 3)(1 − γ). Let Σg(γ,m) ⊂ Mg(γ,m) be

an irreducible component of maximal dimension dominating Mγ , i.e., dim Σg(γ,m) =

2g−2+(2m−3)(1−γ). In this section, we show the existence of an irreducible component

of Id,g,r, which is different from the distinguished component and projects onto Σg(γ, 2).

In particular, the curves that it parametrizes are embedded in Pr by the residual to the

pull-back of the canonical line bundle of the base curve. For this purpose we prove the

following two lemmas.

The first two statements in this section are about the very ampleness of specific line

bundles arising when dealing with double coverings of curves. In the first lemma we prove

that the line bundle associated to the ramification divisor on the covering curve is very

ample if its genus is sufficiently bigger than the genus of the base.

Lemma 4.1. Let ϕ : X → Y be a double cover of a smooth curve Y of genus gY ≥ 2 by

a smooth curve X of genus gX such that gX > 6gY − 2. Then

(a) h0(X,ϕ∗ωY ) = h0(Y, ωY ) = gY ,

(b) the line bundle ωX ⊗ (ϕ∗ωY )∨ is very ample and determines a very ample linear

series ggX−3gY +2
2gX+2−4gY

= |ωX ⊗ (ϕ∗ωY )∨| on X.

Proof. In its essence, the proof consists of repeated applications of the Castelnuovo-Severi

inequality and the Castelnuovo genus bound.
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Regarding (a): Obviously, h0(X,ϕ∗ωY ) ≥ h0(Y, ωY ) = gY . Suppose that h0(X,ϕ∗ωY )

> gY . Then there exist independent sections s1, s2 ∈ H0(X,ϕ∗ωY ), which are not pull-

backs of sections in H0(X,ωY ). Let ψ be the morphism defined by the base point free

part of the pencil spanned by s1 and s2. By the choices of s1 and s2, the morphism ψ

can not factor through ϕ. This implies that there is no proper factorization involving

the morphisms ψ : X → ψ(X) ∼= P1 and ϕ : X → Y since degϕ = 2. Therefore by the

Castelnuovo-Severi inequality and degψ ≤ 4gY − 4, we have

g ≤ (degψs − 1)(2− 1) + 2gY ≤ 4gY − 5 + 2gY = 6gY − 5,

which is a contradiction with g ≥ 6gY − 4.

Regarding (b): Let L := ωX ⊗ (ϕ∗ωY )∨, which is the line bundle on X defined by

the ramification divisor of the covering. First we check that for an arbitrary point p ∈ X
we have h0(X,L(−p)) = h0(X,L) − 1. Notice that by Riemann-Roch theorem this is

equivalent to h0(X,ϕ∗ωY (p)) = gY . Suppose that to the contrary, there exists p ∈ X such

that h0(X,ϕ∗ωY (p)) = gY + 1. Then the linear series D := |ϕ∗ωY (p)| is base point free

and so defines a morphism

ΨD : X → Γ ⊂ PgY ,

where Γ = ΨD(X). Let δ := degD = 4gY − 3. If ΨD is a birational morphism, we find by

Castelnuovo’s genus bound that

gX ≤ pa(Γ) ≤
(

4

2

)
(gY − 1) = 6gY − 6,

which is indeed a contradiction. Hence n := deg ΨD ≥ 2 and there exists a linear series

ggYδ/n on the desingularization Γ̃ of Γ induced by D. Clifford’s theorem implies that ggYδ/n
must be nonspecial, and also that n = 2 or n = 3. By the Riemann-Roch theorem we get

g(Γ̃) ≤ δ

n
− gY ≤

4gY − 3

n
− gY .

Since the linear series |ϕ∗ωY (p)| is base point free and degϕ∗ωY (p) = 4gY − 3 is odd, the

morphism ΨD can not factor through the degree 2 morphism ϕ. This implies that ΨD and

ϕ do not admit a proper factorization. Thus we deduce by Castelnuovo-Severi inequality

gX ≤ 2gY + n

(
4− n
n

gY −
3

n

)
+ n− 1 = (6− n)gY + n− 4 ≤ 4gY − 2,

which is impossible since gY ≥ 2 and gX > 6gY − 2. Therefore we have h0(X,ϕ∗ωY (p)) =

gY , equivalently, h0(X,L(−p)) = h0(X,L)− 1 for any p ∈ X.

Next we show that for arbitrary point p, q ∈ X we have h0(X,L(−p−q)) = h0(X,L)−2.

Notice that this is equivalent to show that h0(X,ϕ∗ωY (p + q)) = h0(X,ϕ∗ωY ) = gY .

Assume that this is not the case. Then there must exist points p, q ∈ X such that
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h0(X,ϕ∗ωY (p + q)) = gY + 1. Then the equality h0(X,ϕ∗ωY (p)) = gY implies that

D := |ϕ∗ωY (p+ q)| is base point free and defines a morphism ΨD : X → ΨD(X) =: Γ.

If ΨD factors through ϕ, then there is a line bundle M of degree 2gY − 1 on Y such

that ϕ∗ωY (p + q) ' ϕ∗M and h0(X,ϕ∗ωY (p + q)) = h0(Y,M). This cannot occur since

h0(X,ϕ∗ωY (p+ q)) = gY + 1 and h0(Y,M) = gY . Therefore ΨD does not factor through

ϕ. Just as in the previous paragraph, if n := deg ΨD = 1, Castelnuovo’s genus bound

would yield

gX ≤ pa(Γ) ≤
(

4

2

)
(gY − 1) + 4,

which is impossible due to gX > 6gY − 2. Therefore the morphism ΨD is of degree n ≥ 2

and thus there exists a linear series ggY(4gY −2)/n on the desingularization Γ̃ of Γ. By Clifford’s

theorem we must have that ggY(4gY −2)/n is nonspecial, and also n = 2 or n = 3. Since ΨD

and ϕ do not admit a proper factorization, we conclude by Castelnuovo-Severi inequality

that

gX ≤ 2gY + n

(
4− n
n

gY −
2

n

)
+ n− 1 = (6− n)gY + n− 3 < 4gY ,

which can not occur for gX > 6gY − 2 with gY ≥ 2. This completes the proof.

The next lemma gives one more very ample line bundle that is related with the rami-

fication divisor for the double coverings.

Lemma 4.2. Let ϕ : X → Y be a double cover of a smooth curve Y of genus gY ≥ 2 by

a smooth curve X of genus gX such that gX > 6gY − 1. Let p0 ∈ X be arbitrary point.

Then

(a) h0(X,ϕ∗ωY (p0)) = h0(Y, ωY ) = gY ,

(b) the line bundle ωX⊗(ϕ∗ωY )∨(−p0) is very ample and determines a very ample linear

series ggX−3gY +1
2gX+1−4gY

(= |ωX ⊗ (ϕ∗ωY )∨(−p0)|) on X.

Proof. The statement of (a) was in fact established in the proof of Lemma 4.1(b).

Regarding (b): Denote L := ωX ⊗ (ϕ∗ωY )∨ as before. It suffices to show that for arbi-

trary point p1, p2 ∈ X we have h0(X,L(−p0−p1−p2)) = h0(X,L(−p0))−2 = h0(X,L)−3.

Notice that this is equivalent to show that h0(X,ϕ∗ωY (p0 +p1 +p2)) = h0(X,ϕ∗ωY ) = gY .

Remark that by the proof of Lemma 4.1(b) we have h0(X,ϕ∗ωY (p0+p1)) = h0(X,ϕ∗ωY ) =

gY for arbitrary p0, p1 ∈ X and that the base points of |ϕ∗ωY (p0 + p1)| are precisely p0

and p1. Assume now that h0(X,ϕ∗ωY (p0 + p1 + p2)) = gY + 1. Then the complete linear

series D := |ϕ∗ωY (p0 + p1 + p2)| must be base point free, and since degD = 4gY − 1

the morphism ψD that it determines can’t factor through ϕ. Then by Castelnuovo-Severi

inequality

gX ≤ (4gY − 2)(2− 1) + 2gY = 6gY − 2,

which is impossible in view of the condition gX ≥ 6gY − 1 in the lemma.
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Using the lemmas above, we construct in the next two theorems a non-distinguished

component of Id,g,r over Σg(γ, 2) for an odd γ and d within a certain range. We remark

that the reducibility of Id,g,r for d in this range has already been confirmed in [10].

Theorem 4.3. Assume that g, d and r ≥ 21 are positive integers such that ρ(d, g, r) ≥ 0,

2g − 2− d ≡ 0 (mod 4) and

η5 < d ≤ min

{(
2− 8

r

)
g +

(
2 +

8

r

)
, 2g − 28

}
.

If γ := (2g+2−d)/4 is odd, then Id,g,r possesses in addition to its distinguished component

an irreducible component Dd,g,r ⊂ Id,g,r whose general elements C ↪→ Pr are such that

(i) [C] ∈ Σg(γ, 2) is a double cover Φ: C → Γ of a general [Γ] ∈Mγ,

(ii) the embedding C ↪→ Pr is given by a general series grd ⊂
∣∣ωC ⊗ Φ∗(ωΓ)−1

∣∣.
Furthermore,

dimDd,g,r = λd,g,r +
r

4

[(
2− 8

r

)
g + 2 +

8

r
− d
]

= λd,g,r +
r + 3

4
(ξ2(γ)− d),

i.e., dimDd,g,r attains the upper bound in Proposition 3.2(2.1) with b = 0.

Proof. Remark first that the condition ρ(d, g, r) ≥ 0 guarantees the existence of the dis-

tinguished component of Id,g,r. Since d = 2g+ 2− 4γ > η5 ≥ 4
3g+ 3, we have g ≥ 6γ − 1.

Therefore for any double cover Φ: C → Γ of a smooth genus γ curve, the line bun-

dle ωC ⊗ Φ∗(ωΓ)−1 is very ample and h0(C,ωC ⊗ Φ∗(ωΓ)−1) = g − 3γ + 3 according

to Lemma 4.1. Let Dd,g,r be the closure of the irreducible family of curves C ↪→ Pr,
constructed over the irreducible subset Σg(γ, 2) and embedded by a general linear series

grd ⊂
∣∣ωC ⊗ Φ∗(ωΓ)−1

∣∣. Then

dimDd,g,r = dim Σg(γ, 2) + dim Grass(r + 1, g − 3γ + 3) + dim Aut(Pr)

= 2g − 1− γ + (r + 1)(g − 3γ + 3)− 1

= (r + 3)g − (3r + 4)γ + 3r + 1.

Using d = 2g + 2− 4γ, we obtain

dimDd,g,r − λd,g,r = (r + 3)g − (3r + 4)γ + 3r + 1− (r + 1)d+ (r − 3)(g − 1)

= −2g + rγ + 2

=
r

4

[(
2− 8

r

)
g + 2 +

8

r
− d
]
,
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which is equivalent to

(∗) dimDd,g,r = λd,g,r +
r + 3

4
(ξ2(γ)− d).

It remains to show that Dd,g,r is not properly contained in other components of Id,g,r.
For this suppose the opposite, i.e., there is an irreducible component E ⊂ Id,g,r such that

Dd,g,r ( E . Let φ be the morphism defined by the moving part gse of |ωE ⊗OE(−1)| for

a general element E of E . Remark that we have s ≥ 1 since in the Severi’s range the

line bundles embedding the curves of the additional components of Hilbert scheme have

speciality at least 2, see [10] or [7, Theorem C]. Let

n := deg φ.

Notice that n ≥ 2, because if n = 1 then by Proposition 3.2(1), in which we could consider

k = 5 as d ≥ 3
2g+ 1, it would follow that d ≤ (2− 15

r+12)g+ (9r+3
r+12 − 2). This is impossible

since d > η5 = (2− 10
r+1)g+ 3r+43

r+1 and the condition r ≥ 21. Thus φ : E → φ(E) =: T ⊂ Ps

is a multiple covering of an integral curve T . By Proposition 3.2, if h1(T,OT (1)) > 0 then

n = 2 since ξ3 < η5, and if h1(T,OT (1)) = 0 then n = 3 or n = 4 because η5 < d. We will

show that none of these cases is possible.

Suppose first that n = 2. Then for the general element E ↪→ Pr of E we get that E is a

double cover of a curve of fixed genus, say τ . By the equality (∗) and Proposition 3.2(2.1)

it follows that

dimDd,g,r < dim E ≤ dimDd,g,r +
r + 3

4
(ξ2(τ)− ξ2(γ)).

Since ξm(t) is a decreasing function in t, it follows that τ < γ. Consider the natural

projection map µ : E →Mg. Then a general element of E projects to a general element of

µ(E) and also µ(Dd,g,r) ⊂ µ(E). Therefore for a general [E] ∈ µ(E) the inequality τ < γ

gives

gon(E) ≤ 2

[
τ + 3

2

]
< 2

[
γ + 3

2

]
= γ + 3

since γ is odd. Here, the gonality gon(C) of a smooth curve C is defined by

gon(C) := min
{
n | there is a surjective morphism to P1 of degree n

}
.

Using the Castelnuovo-Severi inequality it is easy to see that for a general [C] ∈ µ(Dd,g,r) ≡
Σg(γ, 2) we have gon(C) = γ + 3, and thus gon(E) < gon(C). But this contradicts to the

lower semi-continuity property of the gonality of a curve.

It remains to consider the case when h1(T,OT (1)) = 0 and 3 ≤ n ≤ 4. If a general

element E ↪→ Pr of E is a n-sheeted cover of a curve of genus τ , we obtain from µ(Dd,g,r) ⊂
µ(E) that

2g − 1− γ = dimµ(Dd,g,r) ≤ dimµ(E) ≤ 2g − 2− (2n− 3)(τ − 1).
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On the other hand, the lower semi-continuity of gonality gives that γ + 3 ≤ n(τ + 3)/2.

Combining these two inequalities, we obtain (2n − 3)(τ − 1) + 1 ≤ γ ≤ n(τ + 3)/2 − 3,

which implies

τ ≤ 7

3
,

hence τ ≤ 2. As 3 ≤ n ≤ 4, this would imply γ ≤ 2(τ + 3) − 3 ≤ 7, which is impossible

due to the assumption d = 2g + 2− 4γ ≤ 2g − 27. This completes the proof.

The next theorem is obtained in a similar way.

Theorem 4.4. Assume that g, d and r ≥ 21 are positive integers such that ρ(d, g, r) ≥ 0,

2g − 2− d ≡ 1 (mod 4) and

η5 < d ≤ min

{(
2− 8

r

)
g +

(
1 +

12

r

)
, 2g − 28

}
.

If γ := (2g+1−d)/4 is odd, then Id,g,r possesses in addition to its distinguished component

an irreducible component D′d,g,r ⊂ Id,g,r whose general elements C ↪→ Pr are such that

(i) [C] ∈ Σg(γ, 2) is double cover Φ: C → Γ of a general [Γ] ∈Mγ,

(ii) the embedding C ↪→ Pr is given by a general linear series grd ⊂
∣∣ωC ⊗ Φ∗(ωΓ)−1(−p)

∣∣,
where p ∈ C is an arbitrary point.

Further,

dimD′d,g,r = λd,g,r +
r

4

[(
2− 8

r

)
g + 1 +

12

r
− d
]

= λd,g,r +
r + 3

4
(ξ2(γ)− d)−

(
r + 3

4
− 1

)
,

i.e., dimD′d,g,r attains the upper bound in Proposition 3.2(2.1) with b = 1.

Proof. The proof goes exactly the same way as the proof of Theorem 4.3. The inequality

η5 < d = 2g + 1 − 4γ together with r ≥ 21 implies g > 6γ + 2. This allows us to

define D′d,g,r as the closure of the irreducible family of curves C ↪→ Pr, constructed over

the irreducible subset Σg(γ, 2) of double covers Φ: C → Γ and embedded by a general

grd ⊂
∣∣ωC ⊗ Φ∗(ωΓ)−1(−p)

∣∣ where p ∈ C. Note that
∣∣ωC ⊗ Φ∗(ωΓ)−1(−p)

∣∣ is very ample

due to Lemma 4.2. Since p ∈ C can be arbitrary, we get

dimD′d,g,r = dim Σg(γ, 2) + 1 + dim Grass(r + 1, g − 3γ + 2) + dim Aut(Pr)

= (r + 3)g − (3r + 4)γ + 2r + 1.
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Using d = 2g + 1− 4γ, we obtain

dimD′d,g,r − λd,g,r = (r + 3)g − (3r + 4)γ + 2r + 1− (r + 1)d+ (r − 3)(g − 1)

= −2g + rγ + 3

=
r

4

[(
2− 8

r

)
g + 1 +

12

r
− d
]

=
r + 3

4
(ξ2(γ)− d)−

(
r + 3

4
− 1

)
.

The remaining part is the same as the proof of Theorem 4.3.

Theorems 4.3 and 4.4 suggest the construction of the component of Id,g,r having exactly

the expected dimension and the construction of superabundant components. We exhibit

them in the next examples.

Example 4.5. Let γ ≥ 9 be an odd integer.

(1) If g is an integer such that 2(g − 1) is divisible by γ and 2(g − 1)/γ ≥ 21, then

I2g+2−4γ,g,2(g−1)/γ possesses a non-distinguished component D2g+2−4γ,g,2(g−1)/γ as

in Theorem 4.3, of the expected dimension λ2g+2−4γ,g,2(g−1)/γ .

(2) If g is an integer such that 2g − 1 is divisible by γ and (2g − 1)/γ ≥ 21, then

I2g+1−4γ,g,(2g−1)/γ possesses a non-distinguished component D′2g+1−4γ,g,(2g−1)/γ as

in Theorem 4.4 of the expected dimension λ2g+1−4γ,g,(2g−1)/γ .

Proof. The proof amounts just to checking numerical conditions. We check briefly those

related to (1). Notice that for d = 2g + 2 − 4γ and r = 2(g − 1)/γ, we have d > g + r,

from where ρ(2g+2−4γ, g, 2(g−1)/γ) > 0 follows immediately. Hence I2g+2−4γ,g,2(g−1)/γ

possesses a distinguished component. Further, the right part of the inequality for d in

Theorem 4.3 follows directly by d = 2g + 2 − 4γ, r = 2(g − 1)/γ and γ ≥ 9, while the

left inequality η5 < d = 2g + 2 − 4γ can be shown since the condition γ = 2(g − 1)/r

implies η5 = 2r−8
r+1 g + 3r+43

r+1 = 2g + 2 − 5r
r+1γ + r+31

r+1 . Finally, a direct substitution gives

dimD2g+2−4γ,g,(2g−2)/γ − λ2g+2−4γ,g,(2g−2)/γ = 0. The check of claim (2) is similar.

Example 4.6. If we take g = 10γ ≥ 130, d = 16γ + 2 and r = 21, it is easy to see that

the numerical conditions of Theorem 4.3 are satisfied and for the family of double covers

as in the theorem Φ: C → Γ, the line bundles L = ωC ⊗ (Φ∗ωΓ)−1 are very ample of

degree d = 16γ + 2, and h0(C,L) = 7γ + 3. Thus we obtain an irreducible component

D16γ+2,10γ,21 of I16γ+2,10γ,21 such that

dimD16γ+2,10γ,21 − λ16γ+2,10γ,21 =
r + 3

4
(ξ2(γ)− d)

= 6

(
50

3
γ − γ

2
+

7

3
− 16γ − 2

)
= γ + 2.
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At the end we remark that it seems interesting, to us at least, to answer the following

two questions as they are related to understanding the geometry of Id,g,r while tracing the

decrease of d from 2r−4
r+1 g + r+13

r+1 , at least in the Severi range d ≥ g + r.

Question 4.7. (1) Are the conclusions of Theorems 4.3 and 4.4 valid without the as-

sumption γ odd?

(2) Are the components D2g+2−4γ,g,2(g−1)/γ and D′2g+1−4γ,g,(2g−1)/γ obtained in Exam-

ple 4.5 reduced or non-reduced, in other words, should they be classified as being

regular or superabundant?
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