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Blow up Solutions to a System of Higher-order Kirchhoff-type Equations

with Positive Initial Energy

Amir Peyravi

Abstract. In this paper we investigate blow up property of solutions for a system of

nonlinear higher order Kirchhoff equations with nonlinear dissipations and positive

initial energy. Some estimates for lower bound of the blow up time are also given.

This improves and extends the blow up results in [16] by Liu and Wang (2006) and

Gao et al. [7] (2011).

1. Introduction

In this paper we are concerned with the following system of higher order Kirchhoff type

equations with damping

(1.1)

utt +M(‖Dm1u‖22 + ‖Dm2v‖22)(−∆)m1u+ a1 |ut|q−2 ut = f1(u, v) in ΩT ,

vtt +M(‖Dm1u‖22 + ‖Dm2v‖22)(−∆)m2v + a2 |vt|r−2 vt = f2(u, v) in ΩT ,

and initial-boundary conditions

(1.2)



u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

v(x, 0) = v0(x), vt(x, 0) = v1(x) in Ω,

∂iu
∂νi

= 0, i = 0, 1, . . . ,m1 − 1 on ΓT ,

∂iv
∂νi

= 0, i = 0, 1, . . . ,m2 − 1 on ΓT ,

where Ω is a bounded domain in RN (N ≥ 1) with smooth boundary ∂Ω, T is a positive

constant, ν represents the unit outward normal on the boundary, ΩT = Ω× (0, T ), ΓT =

∂Ω × (0, T ), mi ≥ 1 (i = 1, 2) are positive integers, q, r ≥ 2, ai > 0 (i = 1, 2) are

positive constants, M is a locally Lipschitz function which satisfies in some conditions (to

be specified later). The functions f1, f2 : R2 → R are given by

f1(u, v) = a |u+ v|2(p−1) (u+ v) + b |u|p−2 u |v|p ,

f2(u, v) = a |u+ v|2(p−1) (u+ v) + b |v|p−2 v |u|p ,
(1.3)
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which satisfy

uf1(u, v) + vf2(u, v) = 2pF (u, v), ∀ (u, v) ∈ R2,

where a, b > 0, p > 1 and

F (u, v) =
a

2p
|u+ v|2p +

b

p
|uv|p .

One can easily verify that ∂uF = f1 and ∂vF = f2.

Consider a problem of a single wave equation of the form

(1.4)

utt +M(‖Dm‖22)(−∆)mu+ δ |ut|q−2 ut = µ |u|p−2 u, t ≥ 0, x ∈ Ω,

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω,

∂iu

∂νi
(x, t) = 0, i = 0, 1, . . . ,m− 1, t ≥ 0, x ∈ ∂Ω,

where δ, µ > 0, p > 2, q ≥ 2 and m ≥ 1. When M = 1 and m = 1, (1.4) has been

investigated by many authors. In [12] Levine showed the nonexistence of solutions in

presence the linear damping case (q = 2). Gorgiev and Todorva [8] extended this result

to nonlinear damping case (p > q > 2) where initial energy is negative. Ikehata in

[10] considered (1.4) when q = 2 and obtained blow up result with small positive initial

energy in some sense. Later, Levin and Todorva [14] proved that the solutions can not

exist globally if p > q ≥ 2 and the initial energy is positive. In connecting with global

nonexistence and blow up of solutions we refer to the studies [3, 13, 20, 26, 30] and the

references cited in this works. In the case M = 1 and m = 2 the problem (1.4) deals whit

Petrovsky wave equations. In this regard we may also recall the works by Komornik [11],

Guesmia [9], Wu and Tsai [29], Messaoudi [18], Chen and Zhou [6] and the references

therein.

For the case M 6= 1 the equation in (1.4) converts to a Kirchhoff type. Matsuyama

and Ikehata in [17] considered (1.4) with m = 1 when M is a C1-class function for s ≥ 0

and M(s) ≥ m0 > 0. They obtained a global solvability in the class H2 ×H1
0 and energy

decay. In the same time, Ono [21] obtained the global existence and decay properties of

solutions when q = 2 with

(1.5) M(s) = a+ bsγ , a ≥ 0, b ≥ 0, a+ b > 0, γ ≥ 1,

for degenerate (a = 0) and non-degenerate (a > 0) equations. In the immediate work by

Ono [22] we can see global existence, decay and blow up of solutions for the nonlinear

damping case q > 2 and a > 0. In this regard, we may also mention to some other works

by Benaissa and Messaoudi [4, 5] and Ono [23].

When m > 1, Li [15] considered (1.4) with M(s) = sγ , γ > 0 and proved that the

solution exists globally if p ≤ q while if p > max {q, 2γ}, then for any initial data with
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negative initial energy, the solution blows up at finite time. Later Messaoudi and Houari

in [19] improved this result and showed that under some considerations on initial data

solutions also blow up in finite time with positive initial energy. Recently, Gao et. al [7]

improved some results in the literature [6, 15, 18] and obtained local existence and blow

up of solutions where M is a locally Lipschitz function satisfying some conditions. More

recently, for M(s) = s2γ , γ > 0, Ye in [31] by constructing stable set in Hm
0 showed that

the solutions exists globally in time if p ≤ q and proved the global nonexistence under

some consideration on initial data when p > 2(γ + 1).

In connecting with the systems of wave equations of Kirchhoff type Park and Bae [24,

25] investigated the existence of solutions for (1.1)–(1.2) with m1 = m2 = 1 in degenerate

case M(s) = sγ , γ > 1 and non-degenerate case (1.5). Later, with γ = 1 in (1.5),

Liu [16] obtained global existence for nonlinear damping terms and proved blow up results

in linear damping case (q = r = 2) for some class of sources. In an other work, when

m1 = m2 = 1 and nonlinear damping terms in (1.1) are replaced with strong damping

terms, Wu in [27] proved that the local solution blows up in finite time by applying concave

method. Very recently, Ye [32] considered the problem (1.1)–(1.2) and proved decay and

global existence of solutions in Hm1
0 ×Hm2

0 where M is a locally Lipschitz function such

as M(s) = a + bsγ with the source terms defined in (1.3). However, blow up properties

has been not considered. Our main aim in this paper is to investigate blow up properties

for the solutions of (1.1)–(1.2). More precisely, for a locally Lipschitz function M , we

prove that the L2 norm of solutions (‖u‖22 + ‖v‖22) blows up at a finite time T ? > 0. This

extends and improves some results in the literature such as the one in [7] in which the blow

up result obtained only for a single higher order Kirchhoff type wave equation and the

nonexistence results in [16] for q, r ≥ 2, m1,m2 ≥ 1 and more general M . Some estimates

for lower bounds of the blow up time are also given.

This paper is organized as follows: In Section 2 we give some preliminary materials

needed throughout our proofs. In Section 3 we prove a local existence result (Theorem 2.3).

In Section 4 we state and prove our main result on the blow up of solutions. In Section 5

we obtain lower bounds for the blow up time.

2. Preliminaries

In this section we present some notations, assumptions and lemmas needed for our work.

First of all we state the following Sobolev-Poincaré inequality which will be used frequently

throughout our proofs.

Lemma 2.1. (Sobolev-Poincaré inequality [1]) Let 2 ≤ s ≤ 2N/(N − 2k) if N > 2k and

2 ≤ s < +∞ if N ≤ 2k. Then there exists a constant B depending only on Ω, N , k and s
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such that

‖u‖s ≤ B
∥∥∥(−∆)k/2u

∥∥∥
2

holds for all u ∈ Hk
0 (Ω).

In order to obtain our results we consider the following assumptions on the prob-

lem (1.1)–(1.2):

(H1) M ∈ C1([0,+∞),R) is a locally Lipschitz function satisfying

(2.1) M(τ) ≥ m0, M(τ) ≥ τM(τ), ∀ τ ∈ R+,

where m0 is a positive constant and M(τ) =
∫ τ

0 M(s) ds.

(H2) q, r ≥ 2, mi ≥ 1 (i = 1, 2) and

1 < p < +∞, N ≤ 2 min {m1,m2} ,

1 < p ≤ min

{
N

2(N − 2m1)
,

N

2(N − 2m2)

}
, N > 2 max {m1,m2} .

(H3) u0 ∈ Hm1
0 (Ω) ∩H2m1(Ω), v0 ∈ Hm2

0 (Ω) ∩H2m2(Ω), u1, v1 ∈ L2(Ω).

(H4) There exist two positive constants c0 and c1 such that

(2.2) c0(|u|2p + |v|2p) ≤ 2pF (u, v) ≤ c1(|u|2p + |v|2p).

Next, same as in [32], we define the following functionals on Hm1
0 (Ω)×Hm2

0 (Ω):

E(t) = E(u, v) =
1

2
(‖ut‖22 + ‖vt‖22) + J(u, v),(2.3)

J(t) = J(u, v) =
1

2
M(‖Dm1u‖22 + ‖Dm2v‖22)−

∫
Ω
F (u, v) dx,

K(t) = K(u, v) =M(‖Dm1u‖22 + ‖Dm2v‖22)− 2p

∫
Ω
F (u, v) dx.(2.4)

Lemma 2.2. Let (u, v) be a solution of (1.1)–(1.2) and (H3) holds. Then E(t) is a

non-increasing function for t > 0 and

(2.5) E(t)− E(0) = −a1

∫ t

0

∫
Ω
|ut(s)|q dxds− a2

∫ t

0

∫
Ω
|vt(s)|r dxds.

Proof. Multiplying the first equation in (1.1) by ut and the second one by vt, integrating

over Ω and using the initial-boundary conditions (1.2) we obtain (2.5).

Local existence result associated to (1.1)–(1.2) can be established by combining the

arguments in [2,7,8,18,21,22]. However, we give a proof of the following result in Section 3.
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Theorem 2.3. Suppose that the assumptions (H1)–(H4) hold. Then there exists a unique

local solution (u, v) of (1.1)–(1.2) in the class

u ∈ C([0, T ), Hm1
0 (Ω)), v ∈ C([0, T ), Hm2

0 (Ω)),

ut ∈ C([0, T ), L2(Ω)) ∩ Lq(Ω× [0, T )), vt ∈ C([0, T ), L2(Ω)) ∩ Lr(Ω× [0, T ))

for some T > 0.

Consider the space

WT =
{

(u, v) : u ∈ C([0, T ), Hm1
0 (Ω) ∩H2m1(Ω)),

v ∈ C([0, T ), Hm2
0 (Ω) ∩H2m2(Ω)),

ut ∈ C([0, T ), L2(Ω)) ∩ Lq(Ω× [0, T )),

vt ∈ C([0, T ), L2(Ω)) ∩ Lr(Ω× [0, T ))
}
,

with the norm

‖(u, v)‖2WT
= max

0≤t≤T

(
‖ut‖2 + ‖vt‖2 + ‖Dm1u‖22 + ‖Dm2v‖22

)
+ ‖ut‖2Lq(Ω×[0,T )) + ‖vt‖2Lr(Ω×[0,T )) .

Definition 2.4. Let the assumptions (H1)–(H4) hold, (u, v) be a solution of (1.1)–(1.2)

and

T ? = sup {T > 0 : (u, v) ∈ WT exists on [0, T )} .

If T ? = +∞ then we say that the solution of (1.1)–(1.2) exists globally and if T ? < +∞
we say that the solutions blow up at the finite time T ? in the sense

‖ut‖22 + ‖vt‖22 + ‖Dm1u‖22 + ‖Dm2v‖22 → +∞ as t→ T ?
−
.

Remark 2.5. In the case T ? = +∞ and under the hypotheses (H1)–(H4) the problem (1.1)–

(1.2) has been investigated in [32].

3. Local existence

First, note that in what follows Ci are various positive constants which may be different

at different occurrences. To prove the Theorem 2.3 we first state the following lemma

which can be obtained by exploiting the Faedo-Galerkin method and using the similar

arguments as in [1, 28]:
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Lemma 3.1. Suppose that (u0, u1) ∈ H2m(Ω)∩Hm
0 (Ω)×L2(Ω), then there exists a unique

solution u of 
utt +M(t)(−∆)mu+ aQr(ut) = f(x, t), (x, t) ∈ Ω× [0, T ],

u(0) = u0, ut(0) = u1, x ∈ Ω,

u(x, t) = 0, x ∈ ∂Ω, t > 0,

satisfying

u ∈ C([0, T ], H2m(Ω) ∩Hm
0 (Ω)) and ut ∈ C([0, T ], L2(Ω)) ∩ Lr(Ω× [0, T ]),

where a > 0, m ≥ 1, M is a positive locally Lipschitz function, Qr(z) = |z|r−2 z (r > 2)

and f ∈ H1([0, T ], L2(Ω)).

Similar as in [22,27], for R > 0 and T > 0 we define

XT,R =
{

(u, v) ∈ WT : e(u, v) ≤ R2, u, v satisfy the initial conditions in (1.2)
}
,

where

e(u, v) = ‖ut‖22 + ‖vt‖22 + ‖Dm1ut‖22 + ‖Dm2vt‖22
+ ‖Dm1u‖22 + ‖Dm2v‖22 + ‖(−∆)m1u‖22 + ‖(−∆)m2v‖22 .

Then, XT,R is a complete metric space with the distance

d(w1, w2)

= sup
0≤t≤T

(
‖(u1 − v1)t‖22 + ‖Dm1(u1 − v1)‖22 + ‖(u2 − v2)t‖22 + ‖Dm2(u2 − v2)‖22

)1/2
,

where w1 = (u1, u2), w2 = (v1, v2) ∈ XT,R. Next, for (û, v̂) ∈ XT,R we consider the

following system

(3.1)

utt +M(‖Dm1 û‖22 + ‖Dm2 v̂‖22)(−∆)m1u+ a1Qq(ut) = f1(û, v̂),

vtt +M(‖Dm1 û‖22 + ‖Dm2 v̂‖22)(−∆)m2v + a2Qr(vt) = f2(û, v̂),

with initial and boundary conditions (1.2). By Lemma 3.1 this problem has a unique

solution (u, v). We define a nonlinear mapping Ψ in the following way: For (û, v̂) ∈ XT,R,

(u, v) = Ψ(û, v̂) is the unique solution of the problem (1.1)–(1.2). We show that there

exists T > 0 and R > 0 such that Ψ maps XT,R into itself and Ψ is a contraction mapping

in XT,R with respect to the metric d(· , ·).
For simplicity in computations we let a1 = a2 = 1. Multiplying the first equation in

(3.1) by ut, the second by vt, integrating over Ω and summing up the results with together
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we obtain

d

dt

(
‖ut‖22 + ‖vt‖22 +M(‖Dm1 û‖22 + ‖Dm2 v̂‖22)(‖Dm1u‖22 + ‖Dm2v‖22)

)
+ 2 〈ut, Qq(ut)〉+ 2 〈vt, Qr(vt)〉

= 2 〈ut, f1(û, v̂)〉+ 2 〈vt, f2(û, v̂)〉

+ 2 (〈Dm1 û, Dm1 ût〉+ 〈Dm2 v̂, Dm2 v̂t〉)M ′(‖Dm1 û‖22 + ‖Dm2 v̂‖22)

× (‖Dm1u‖22 + ‖Dm2v‖22).

(3.2)

For the first term on the right-hand side of (3.2), by using Hölder’s inequality, (H2),

Lemma 2.1 and using the same way followed in [2] we have∫
Ω
utf1(û, v̂) dx ≤ C1

(
‖û‖4p−2

4p−2 + ‖v̂‖4p−2
4p−2 + ‖û‖2p−2

4p−4 ‖v̂‖
2p
4p

)1/2
‖ut‖2

≤ C2

(
‖Dm1 û‖2p−1

2 + ‖Dm2 v̂‖2p−1
2 + ‖Dm1 û‖p−1

2 ‖Dm2 v̂‖p2
)
‖ut‖2

≤ 3C2R
2p−1 ‖ut‖2 .

(3.3)

Similarly,

(3.4)

∫
Ω
vtf2(û, v̂) dx ≤ 3C3R

2p−1 ‖vt‖2 .

Also, by using Young’s inequality we have

〈Dm1 û, Dm1 ût〉+ 〈Dm2 v̂, Dm2 v̂t〉 ≤ ‖Dm1 û‖2 ‖D
m1 ût‖2 + ‖Dm2 v̂‖2 ‖D

m2 v̂t‖2
≤ 2R2.

(3.5)

Letting M ′0 = sup0≤s≤R2 |M ′(s)|, using (H1) and (3.2)–(3.5), by integrating over (0, t) we

get

‖ut‖22 + ‖vt‖22 + ‖Dm1u‖22 + ‖Dm2v‖22

+ 2m̂0

∫ t

0
(〈ut(s), Qq(ut(s))〉+ 〈vt(s), Qr(vt(s))〉) ds

≤ L1 + 12C4m̂0R
2p−1

∫ t

0
(‖ut(s)‖2 + ‖vt(s)‖2) ds

+ 4R2m̂0M
′
0

∫ t

0
(‖Dm1u(s)‖22 + ‖Dm2v(s)‖22) ds,

(3.6)

where m̂0 = (min {1,m0})−1, C4 = max {C2, C3} and

L1 = m̂0

(
‖u1‖22 + ‖v1‖22 +M(‖Dm1 û0‖22 + ‖Dm2 v̂0‖22) ‖Dm1u0‖22 + ‖Dm2v0‖22

)
.

Multiplying first equation in (3.1) by (−∆)m1ut, the second by (−∆)m2vt, integrating over
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Ω and summing up the results we gain

d

dt

(
‖Dm1ut‖22 + ‖Dm2vt‖22 +M(‖Dm1 û‖22 + ‖Dm2 v̂‖22)(‖(−∆)m1u‖22 + ‖(−∆)m2v‖22)

)
+ 2 〈Qq(ut), (−∆)m1ut〉+ 2 〈Qr(vt), (−∆)m2vt〉

= 2 〈f1(û, v̂), (−∆)m1ut〉+ 2 〈f2(û, v̂), (−∆)m2vt〉

+ 2 (〈Dm1 û, Dm1 ût〉+ 〈Dm2 v̂, Dm2 v̂t〉)M ′(‖Dm1 û‖22 + ‖Dm2 v̂‖22)

× (‖(−∆)m1u‖22 + ‖(−∆)m2v‖22).

Integrating over (0, t), using (3.5) and (H1) we obtain

‖Dm1ut‖22 + ‖Dm2vt‖22 +M(‖Dm1 û‖22 + ‖Dm2 v̂‖22)(‖(−∆)m1u‖22 + ‖(−∆)m2v‖22)

+ 2

∫ t

0
〈Qq(ut(s)), (−∆)m1ut(s)〉 ds+ 2

∫ t

0
〈Qr(vt(s)), (−∆)m2vt(s)〉 ds

≤ L2 + 2

∫ t

0
〈f1(û(s), v̂(s)), (−∆)m1ut(s)〉 ds+ 2

∫ t

0
〈f2(û(s), v̂(s)), (−∆)m2vt(s)〉 ds

+ 4R2M ′0

∫ t

0
(‖(−∆)m1u(s)‖22 + ‖(−∆)m2v(s)‖22) ds,

(3.7)

where

L2 = ‖Dm1u1‖22 + ‖Dm2v1‖22
+M(‖Dm1 û0‖22 + ‖Dm2 v̂0‖22)(‖(−∆)m1u0‖22 + ‖(−∆)m2v0‖22).

For the second term on the right-hand side of (3.7), using integration by parts, we have∫ t

0

∫
Ω
f1(û(s), v̂(s))(−∆)m1ut(s) dxds

=

∫
Ω
f1(û, v̂)(−∆)m1u dx−

∫
Ω
f1(û0, v̂0)(−∆)m1u0 dx

−
∫ t

0

∫
Ω

(
∂f1

∂u
(û(s), v̂(s))ût(s) +

∂f1

∂v
(û(s), v̂(s))v̂t(s)

)
(−∆)m1u(s) dxds

= I1 + I2 + I3.

(3.8)

By Young’s inequality and Hölder’s inequality, we then get

I1 ≤ ε ‖(−∆)m1u‖22 +
1

4ε
‖f1(û, v̂)‖22 ,(3.9)

I2 ≤ ‖f1(û0, v̂0)‖2 ‖(−∆)m1u0‖2 ,(3.10)

I3 ≤
∫ t

0

(∥∥∥∥∂f1

∂u
(û(s), v̂(s))ût(s)

∥∥∥∥
2

+

∥∥∥∥∂f1

∂v
(û(s), v̂(s))v̂t(s)

∥∥∥∥
2

)
‖(−∆)m1u(s)‖2 ds.(3.11)
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To estimate the terms in (3.11), without lose of generality we suppose that m1 ≥ m2.

Then, by (H2) and Lemma 2.1 we have∥∥∥∥∂f1

∂u
(û, v̂)ût

∥∥∥∥
2

≤ C5

[∫
Ω

(
|û+ v̂|4(p−1) + |û|2(p−2) |v̂|2p

)
(ût)

2 dx

]1/2

≤ C6

[∫
Ω

(
|û|4(p−1) + |v̂|4(p−1) + |û|4(p−2) + |v̂|4p

)
(ût)

2 dx

]1/2

≤ C6

[(
‖û‖4(p−1)

4(p−1)N/m1
+ ‖û‖4(p−2)

4(p−2)N/m1

)
‖ût‖22N/(N−m1)

+
(
‖v̂‖4(p−1)

4(p−1)N/m2
+ ‖v̂‖4p4pN/m2

)
‖ût‖22N/(N−m2)

]1/2

≤ C7

(
‖Dm1 û‖2(p−1)

2 + ‖Dm1 û‖2(p−2)
2 + ‖Dm2 v̂‖2(p−1)

2 + ‖Dm1 û‖2p2
)
‖Dm1 ût‖2

≤ C7

(
R2(p−2) + 2R2(p−1) +R2p

)
R,

(3.12)

where we have used 2N/(N −m2) ≤ 2N/(N −m1). We also have∥∥∥∥∂f1

∂v
(û, v̂)v̂t

∥∥∥∥
2

≤ C8

[∫
Ω

(
|û+ v̂|4(p−1) + |û|2(p−1) |v̂|2(p−1)

)
(v̂t)

2 dx

]1/2

≤ C9

[∫
Ω

(
|û|4(p−1) + |v̂|4(p−1)

)
(v̂t)

2 dx

]1/2

≤ C9

(
‖û‖4(p−1)

4(p−1)N/m2
+ ‖v̂‖4(p−1)

4(p−1)N/m2

)1/2
‖v̂t‖2N/(N−m2)

≤ C10

(
‖Dm2 û‖2(p−1)

2 + ‖Dm2 v̂‖2(p−1)
2

)
‖Dm2 v̂t‖2 .

(3.13)

For the first term on the right-hand side of the last inequality in (3.13) we have

‖Dm2 û‖22 =

∫
Ω
û(−∆)m2 û dx ≤ ‖û‖2 ‖(−∆)m2 û‖2

≤ B ‖Dm1 û‖2 ‖(−∆)m2 û‖2 ≤ B̂R
2,

(3.14)

where B̂ depends on B and Ω. Therefore, by (3.13) and (3.14) we get

(3.15)

∥∥∥∥∂f1

∂v
(û, v̂)v̂t

∥∥∥∥
2

≤ C11R
2(p−1)R.

Thus, by (3.12) and (3.15) we get

(3.16) I3 ≤ C12C(R)

∫ t

0
‖(−∆)m1u(s)‖2 ds,

where C(R) = (R2(p−2) +R2(p−1) +R2p)R. By similar way followed in (3.8)–(3.13), using
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again (H2) and considering (3.14), we can see∫ t

0

∫
Ω
f2(û(s), v̂(s))(−∆)m2vt(s) dxds

≤ ε ‖(−∆)m2v‖22 +
1

4ε
‖f2(û, v̂)‖22 + ‖f2(û0, v̂0)‖2 ‖(−∆)m2v0‖2

+ C13C(R)

∫ t

0
‖(−∆)m2v(s)‖2 ds.

(3.17)

Therefore, by (3.7)–(3.10), (3.16) and (3.17), using similar argument as in [7] for nonlinear
damping terms and taking (3.3) into account, for ε = m0/2, we get

e(u, v) ≤ L1 + m̌0L2 + L(R)

+
(
12C4m̂0R

2p−1 + 2(C12 + C13)m̌0C(R)
) ∫ t

0
e1/2(u(s), v(s)) ds

+ 4R2m̂0M
′
0

∫ t

0
e(u(s), v(s)) ds,

(3.18)

where m̌0 = (min {1,m0/2})−1 and

L(R) =
9m̌0(C2

2 + C2
3 )R2(2p−1)

ε
+ 2 ‖f1(û0, v̂0)‖2 ‖(−∆)m1u0‖2

+ 2 ‖f2(û0, v̂0)‖2 ‖(−∆)m2v0‖2 .

Then, by (3.18) we get

(3.19) e(u, v) ≤ ξ(u0, v0, û0, v̂0, u1, v1, R)2e4R2m̂0M ′0T , ∀ t ∈ (0, T ],

where

ξ(u0, v0, û0, v̂0, u1, v1, R) =
√
L1 + m̌0L2 + L(R)

+
12C4m̂0R

2p−1 + 2(C12 + C13)m̌0C(R)

4R2m̂0M ′0
.

If T and R satisfy ξ(u0, v0, û0, v̂0, u1, v1, R)2e4R2m̂0M ′0T ≤ R2, then we have e(u, v) ≤
R2. Thus, the solution (u, v) satisfies the regularities described in WT . Specifically, by

Lemma 3.1, (3.6) and (3.19) it follows that ut ∈ C([0, T ], L2(Ω)) ∩ Lq(Ω × [0, T ]) and

vt ∈ C([0, T ], L2(Ω))∩Lr(Ω× [0, T ]). Hence, Ψ maps XT,R into itself. Next, we show that

Ψ is a contraction mapping with respect to d(· , ·).
Assume that (û1, v̂1), (û2, v̂2) ∈ XT,R. Let (u1, v1) and (u2, v2) be two solutions of

(3.1)–(1.2) in XT,R. Suppose that w = (w1, w2), where w1 = u1 − u2, w2 = v1 − v2. We

then have

(w1)tt +M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22)(−∆)m1w1

+
[
M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22)−M(‖Dm1 û2‖22 + ‖Dm2 v̂2‖22)

]
(−∆)m1u2

+Qq((u1)t)−Qq((u2)t)

= f1(û1, v̂1)− f1(û2, v̂2)

(3.20)
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and

(w2)tt +M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22)(−∆)m2w2

+
[
M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22)−M(‖Dm1 û2‖22 + ‖Dm2 v̂2‖22)

]
(−∆)m2v2

+Qr((v1)t)−Qr((v2)t)

= f2(û1, v̂1)− f2(û2, v̂2),

(3.21)

with the initial conditions

(3.22) w1(0) = (w1)t(0) = 0, w2(0) = (w2)t(0) = 0.

Multiplying (3.20) by (w1)t and then integrating over Ω we get

1

2

d

dt

(
‖(w1)t‖22 +M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22) ‖Dm1w1‖22

)
+ 〈Qq((u1)t)−Qq((u2)t), (w1)t〉

=
[
M(‖Dm1 û2‖22 + ‖Dm2 v̂2‖22)−M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22)

]
〈(−∆)m1u2, (w1)t〉

+
1

2

d

dt
M(‖Dm1 û1‖22 + ‖Dm2 v̂1‖22) ‖Dm1w1‖22 + 〈f1(û1, v̂1)− f1(û2, v̂2), (w1)t〉

= J1 + J2 + J3.

(3.23)

We have

J1 ≤ L [(‖Dm1 û2‖2 − ‖D
m1 û1‖2)(‖Dm1 û2‖2 + ‖Dm1 û1‖2)

+(‖Dm2 v̂2‖2 − ‖D
m2 v̂1‖2)(‖Dm2 v̂2‖2 + ‖Dm2 v̂1‖2)] ‖(−∆)m1u2‖2 ‖(w1)t‖2

≤ 4RL(‖Dm1 û1 −Dm1 û2‖2 + ‖Dm2 v̂1 −Dm2 v̂2‖2) ‖(−∆)m1u2‖2 ‖(w1)t‖2
≤ 4R2Lẽ1/2(û1 − û2, v̂1 − v̂2)ẽ1/2(w1, w2),

(3.24)

where L is the Lipschits constant of M in [0, R] and

ẽ(z1, z2) = ‖(z1)t‖22 + ‖(z2)t‖22 + ‖Dm1z1‖22 + ‖Dm2z2‖22 .

Using (3.5) we have

(3.25) J2 ≤ 2R2M ′0ẽ(w1, w2).

To estimate J3 first, from the relations (1.9) and (1.10) in [2], we have

|f1(û1, v̂1)− f1(û2, v̂2)|

≤ C14(|û1 − û2|+ |v̂1 − v̂2|)
(
|û1|2(p−1) + |v̂1|2(p−1) + |û2|2(p−1) + |v̂2|2(p−1)

)
+ C15

[
|û1 − û2| |v̂1|p (|û1|p−1 + |û2|p−1) + |v̂1 − v̂2| |û2|p (|v̂1|p−1 + |v̂2|p−1)

]
.

(3.26)
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Then, as a typical estimate, we have∫
Ω
|û1 − û2| |û1|2(p−1) |(w1)t| dx

≤ ‖û1 − û2‖2N/(N−m1) ‖û1‖2(p−1)
4(p−1)N/m1

‖(w1)t‖2
≤ B2p−1 ‖Dm1(û1 − û2)‖2 ‖D

m1 û1‖2(p−1)
2 ‖(w1)t‖2

≤ C16R
2(p−1)ẽ1/2(û1 − û2, v̂1 − v̂2)ẽ1/2(w1, w2).

(3.27)

Recalling m1 ≥ m2 and taking (3.14) into account we can obtain the same estimates as in

(3.27) for other similar terms in (3.26). From (H2), (3.14), for the following typical term,

we get ∫
Ω
|û1 − û2| |v̂1|p |û1|p−1 |(w1)t| dx

≤ ‖û1 − û2‖2N/(N−m2) ‖v̂1‖p4pN/m2
‖û1‖p−1

4(p−1)N/m2
‖(w1)t‖2

≤ B ‖Dm2(û1 − û2)‖2B
p ‖Dm2 v̂1‖p2B

p−1 ‖Dm2 û1‖p−1
2 ‖(w1)t‖2

≤ 2BB̂R ‖Dm1(û1 − û2)‖2 (BpRp)(B3(p−1)/2Rp−1) ‖(w1)t‖2
≤ C17R

2pẽ1/2(û1 − û2, v̂1 − v̂2)ẽ1/2(w1, w2).

(3.28)

Following the same steps in (3.28), it is easy to see∫
Ω
|v̂1 − v̂2| |v̂1|p |û1|p−1 |(w1)t| dx ≤ C18R

2p−1ẽ1/2(û1 − û2, v̂1 − v̂2)ẽ1/2(w1, w2).

Therefore,

(3.29) J3 ≤ C19C̃(R)ẽ1/2(û1 − û2, v̂1 − v̂2)ẽ1/2(w1, w2),

where C̃(R) = R2(p−1) + R2p−1 + R2p. Thus, by (3.24), (3.25), (3.29) and using the fact

that

(Qq((u1)t)−Qq((u2)t))((u1)t − (u2)t) ≥ 0,

from (3.23), (H1) and (3.22), we get

‖(w1)t‖22 + ‖Dm1w1‖22

≤ C20R
2M ′

0

∫ t

0

ẽ(w1(s), w2(s)) ds

+ C21

(
4R2L+ C̃(R)

)∫ t

0

ẽ1/2(û1(s)− û2(s), v̂1(s)− v̂2(s))ẽ1/2(w1(s), w2(s)) ds.

(3.30)

Analogously, by the same way followed in (3.23)–(3.30), from (3.21) we obtain

‖(w2)t‖22 + ‖Dm2w2‖22

≤ C22R
2M ′

0

∫ t

0

ẽ(w1(s), w2(s)) ds

+ C23

(
4R2L+ C̃(R)

)∫ t

0

ẽ1/2(û1(s)− û2(s), v̂1(s)− v̂2(s))ẽ1/2(w1(s), w2(s)) ds.

(3.31)
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Finally, by (3.30), (3.31) and applying Gronwall’s inequality, we find

ẽ(w1, w2) ≤ C24

(M ′0)2

(
L+

C̃(R)

R2

)2

eC25M ′0R
2T sup

0≤t≤T
ẽ1/2(û1 − û2, v̂1 − v̂2),

which gives us

d((u1, v1), (u2, v2)) ≤ K(T,R)d((û1, v̂1), (û2, v̂2)),

where K(T,R) = (
√
C24/M

′
0)(L + C̃(R)/R2)eC25M ′0R

2T/2. Now, we choose R sufficient

large and T sufficient small so that

K(T,R) < 1 and ξ(u0, v0, û0, v̂0, u1, v1, R)2e4R2m̂0M ′0T ≤ R2.

Thus, the map Ψ is contraction. Therefore, applying the Banach fixed point theorem

completes the proof of Theorem 2.3.

4. Blow up

In this section, we study the blow up of the solutions to the system (1.1)–(1.2). First we

introduce the following:

(4.1) B1 =
m0

2c1
B−2p, α1 = B

1/(2p−2)
1 , E1 =

m0

2

(
1− 1

p

)
α2

1.

Our main result reads in the following theorem.

Theorem 4.1. Suppose that the assumptions (H1)–(H4) hold and p > 1
2 max {q, r}. As-

sume further that

(4.2) (‖Dm1u0‖22 + ‖Dm2v0‖22)1/2 > α1, E(0) < E1.

Then any solution of (1.1)–(1.2) can not exist for all time.

To prove above theorem we need the following lemma.

Lemma 4.2. Suppose that assumptions (H1)–(H4) hold. Let (u, v) be a solution of (1.1)–

(1.2). Moreover, assume that E(0) < E1 and (‖Dm1u0‖22 + ‖Dm2v0‖22)1/2 > α1. Then

there exists a constant α2 > α1 such that

(4.3) (‖Dm1u‖22 + ‖Dm2v‖22)1/2 > α2

and

(4.4)
1

B
2p

√
p

c1

(∫
Ω
F (u(t), v(t)) dx

)1/(2p)

≥ α2, ∀ t ≥ 0.
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Proof. By the assumptions (H1), (H2), (H4), Lemma 2.1 and (2.3) we have

E(t) ≥ 1

2
M(‖Dm1u‖22 + ‖Dm2v‖22)−

∫
Ω
F (u, v) dx

≥ m0

2
(‖Dm1u‖22 + ‖Dm2v‖22)− c1

2p
(‖u‖2p2p + ‖v‖2p2p)

≥ m0

2
(α(t))2 − c1

p
B2p(α(t))2p =: G(α(t)),

(4.5)

where α(t) = (‖Dm1u‖22 +‖Dm2v‖22)1/2 and G(α) = m0
2 α

2− c1
p B

2pα2p. It is not difficult to

see that G is strictly increasing in (0, α1), strictly decreasing in (α1,+∞) and G(α)→ −∞
as α→ +∞. By a simple computation we can also see

G(α1) = E1.

There exists α2 > α1 such thatG(α2) = E(0). This is possible since E(0) < E1. Therefore,

by (4.5) we have

G(α(0)) ≤ E(0) = G(α2).

Thus α(0) ≥ α2. To show (4.3) we suppose that there exists t0 > 0 such that α(t0) ≤ α2

and by continuity of α(·) we can choose t0 such that α1 < α(t0). Since G is decreasing on

(α1,+∞) we have G(α(t0)) ≥ G(α2) = E(0) and by (4.5) we know that G(α(t0)) ≤ E(t0)

which yields E(t0) ≥ E(0) and this contradicts (2.5). Hence (4.3) holds.

To establish (4.4), we use (H1), (2.3) and (2.5) to obtain

E(0) +
1

2p
(a ‖u(t) + v(t)‖2p2p + 2b ‖u(t)v(t)‖pp) ≥

m2
0

2
(α(t))2.

Then, from (4.3) we yield∫
Ω
F (u(t), v(t)) dx ≥ m2

0

2
α2

2 −G(α2) =
c1

p
B2pα2p

2 .

Therefore, (4.4) follows. This completes the proof of Lemma 4.2.

Proof of Theorem 4.1. We set

L(t) =

∫
Ω

(u2 + v2) dx,

then

L′(t) = 2

∫
Ω

(uut + vvt) dx

and

L′′(t) = 2(‖ut‖22 + ‖vt‖22) + 4p

∫
Ω
F (u, v) dx

− 2M(‖Dm1u‖22 + ‖Dm2v‖22)(‖Dm1u‖22 + ‖Dm2v‖22)

− 2a1

∫
Ω
uut |ut|q−2 dx− 2a2

∫
Ω
vvt |vt|r−2 dx.

(4.6)
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Using Hölder’s inequality and the left inequality in (2.2) we get∣∣∣∣∫
Ω
uut |ut|q−2 dx

∣∣∣∣ ≤ ‖u‖q ‖ut‖q−1
q ≤ |Ω|(2p−q)/(2pq) ‖u‖2p ‖ut‖

q−1
q

≤ |Ω|(2p−q)/(2pq)
(

2p

c0

)1/(2p)(∫
Ω
F (u, v) dx

)1/(2p)

‖ut‖q−1
q .

(4.7)

Then, by (4.4), the inequality (4.7) turns into

(4.8)

∣∣∣∣∫
Ω
uut |ut|q−2 dx

∣∣∣∣ ≤ k1

(∫
Ω
F (u, v) dx

)1/q

‖ut‖q−1
q .

Similarly,

(4.9)

∣∣∣∣∫
Ω
vvt |vt|r−2 dx

∣∣∣∣ ≤ k2

(∫
Ω
F (u, v) dx

)1/r

‖ut‖r−1
r ,

where

ki = |Ω|(2p−κi)/(2pκi)
(

2p

c0

)1/(2p)(c1

p
α2p

2 B
2p

)1/(2p)−1/κi

, κ1 = q, κ2 = r, i = 1, 2.

By applying Young’s inequality to (4.8) and (4.9) we have

(4.10)

∣∣∣∣∫
Ω
uut |ut|q−2 dx

∣∣∣∣ ≤ k1

{
εq1
q

∫
Ω
F (u, v) dx+ ε

−q/(q−1)
1

(
q − 1

q

)∫
Ω
|ut|q dx

}
and

(4.11)

∣∣∣∣∫
Ω
vvt |vt|r−2 dx

∣∣∣∣ ≤ k2

{
εr2
r

∫
Ω
F (u, v) dx+ ε

−r/(r−1)
2

(
r − 1

r

)∫
Ω
|vt|r dx

}
,

where ε1, ε2 > 0 will be chosen later. Then, by (H1), (2.4), (4.10) and (4.11), the equal-

ity (4.6) turns into following inequality

L′′(t) ≥ 2(‖ut‖22 + ‖vt‖22)− 2K(t)− 2

(
a1k1

εq1
q

+ a2k2
εr2
r

)∫
Ω
F (u, v) dx

− 2a1k1

(
q − 1

q

)
ε
−q/(q−1)
1 ‖ut‖qq − 2a2k2

(
r − 1

r

)
ε
−r/(r−1)
2 ‖vt‖rr .

(4.12)

By the definition of E(t) we have

−2K(t) ≥ −2K(t) + 2σ(E(t)− E(0))

= σ(‖ut‖22 + ‖vt‖22) + (σ − 2)M(‖Dm1u‖22 + ‖Dm2v‖22)

+ 2(2p− σ)

∫
Ω
F (u, v) dx− 2σE(0),

(4.13)
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where σ is a positive constant to be specified later. Therefore, by (4.12) and (4.13) we

arrive at

L′′(t) ≥ (σ + 2)(‖ut‖22 + ‖vt‖22) + (σ − 2)M(‖Dm1u‖22 + ‖Dm2v‖22)

+ 2

[
(2p− σ)−

(
a1k1

εq1
q

+ a2k2
εr2
r

)]∫
Ω
F (u, v) dx− 2σE(0)

− 2a1k1

(
q − 1

q

)
ε
−q/(q−1)
1 ‖ut‖qq − 2a2k2

(
r − 1

r

)
ε
−r/(r−1)
2 ‖vt‖rr .

(4.14)

Since E(0) < E1 we can choose σ such that

2pE1

p(E1 − E(0)) + E(0)
< σ < 2p.

Then, by Lemma 4.2, (2.1), (4.1) and (4.3) we have

(σ − 2)M(‖Dm1u‖22 + ‖Dm2v‖22)− 2σE(0) ≥ (σ − 2)m0α
2
1 − 2σE(0)

= 2

(
pE1

p− 1
− E(0)

)
σ − 4pE1

p− 1
> 0.

We now fix ε1 and ε2 such that

µ := 2p− σ −
(
a1k1

εq1
q

+ a2k2
εr2
r

)
> 0.

Integrating (4.14) over (0, t) we get

L′(t) > 2µ

∫ t

0

∫
Ω
F (u(s), v(s)) dxds

− C(ε1, q)

∫ t

0
‖ut(s)‖qq ds− C(ε2, r)

∫ t

0
‖vt(s)‖rr ds+ L′(0),

(4.15)

where C(εi, s) = 2aiki(
s−1
s )ε

−s/(s−1)
i , i = 1, 2. Taking (4.4) and (2.5) into account and

using the fact that E(0)− E(t) < E1, the inequality (4.15) takes the form

(4.16) L′(t) > 2µ

(
c1

p
B2pα2

2

)
t− E1

(
C(ε1, q)

a1
+
C(ε2, r)

a2

)
+ L′(0).

Finally, by integrating (4.16) from 0 to t we find

(4.17) L(t) > µ

(
c1

p
B2pα2

2

)
t2 +

{
L′(0)− E1

(
C(ε1, q)

a1
+
C(ε2, r)

a2

)}
t+ L(0),

which shows that ‖u(t)‖22 + ‖v(t)‖22 has quadratic growth for t ≥ 0. On the other hand by

using Hölder’s inequality we have

‖u(t)‖2 ≤ ‖u0‖2 +

∫ t

0
‖ut(s)‖2 ds

≤ ‖u0‖2 + C

∫ t

0
‖ut(s)‖q ds ≤ ‖u0‖2 + C

(
E1

a1

)1/q

t(q−1)/q,

(4.18)
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where C is some positive constant. Similarly,

(4.19) ‖v(t)‖2 ≤ ‖v0‖2 + C

(
E1

a2

)1/r

t(r−1)/r.

By (4.18) and (4.19) we obtain

L(t) ≤ 2(‖u0‖22 + ‖v0‖22) + 2C2

[(
E1

a1

)2/q

t2(q−1)/q +

(
E1

a2

)2/r

t2(r−1)/r

]
,

which contradicts (4.17). Hence, the solution (u(t), v(t)) of (1.1)–(1.2) can not be extended

to the whole interval [0,+∞). This completes the proof of Theorem 4.1.

Remark 4.3. By Theorem 4.1 we showed that the L2 norm of solution ‖(u, v)‖22 := ‖u‖22 +

‖v‖22 blows up in a finite time T ? > 0. Therefore, by Lemma 2.1

(4.20) ‖Dm1u‖22 + ‖Dm2v‖22 → +∞ as t→ T ?
−
.

5. Lower bounds for the blow up time

In this section we obtain lower bounds for the blow up time. To prove main results we

need the following assumption instead of (H2):

(H2)′ q, r ≥ 2, mi ≥ 1 (i = 1, 2) and

1 < p < +∞, N ≤ 2 min {m1,m2} ,

1 < p ≤ min

{
N −m1

2(N − 2m1)
,

N −m2

2(N − 2m2)

}
, N > 2 max {m1,m2} .

Remark 5.1. Under the hypotheses (H1) and (H2)′–(H4) the results of Theorem 2.3 still

hold because N −mi < N , i = 1, 2.

Our main results are given in two following theorems:

Theorem 5.2. Suppose (H1), (H2)′–(H4) and (4.2) hold. Assume further that p >
1
2 max {q, r}. Then the finite blow-up time T ? satisfies the following estimate:

(5.1) T ? >

∫ +∞

Θ(0)

m2p−1
0 dζ

m2p−1
0 (E(0) + ζ) + 24(p−1)(γ1 + γ2) ((E(0))2p−1 + ζ2p−1)

,

where Θ(0) =
∫

Ω F (u(0), v(0)) dx and the positive constants γi (i = 1, 2) are specified in

(5.3).
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Theorem 5.3. Suppose that the assumptions of Theorem 5.2 hold. Then the finite blow-up

time T ? satisfies the following estimate:

(5.2) T ? >
1

2p
log

[
1 +

(
(Φ(0))−2p

γ1 + γ2

)
m2p−1

0

]
,

where the positive constants γi (i = 1, 2) are specified in (5.3) and

Φ(0) = ‖u1‖22 + ‖v1‖22 +M(‖Dm1u0‖22 + ‖Dm2v0‖22).

To prove the above theorems, we first prove the following lemma (in the proof Ci,

i = 1, . . . , 5 are some positive constants):

Lemma 5.4. Assume that (H2)′ hold. Then, there exist tow positive constants γ1 and γ2

such that

(5.3)

∫
Ω
|fi(u, v)|2 dx ≤ γi

(∫
Ω

(|Dm1u|2 + |Dm2v|2) dx

)2p−1

, i = 1, 2.

Proof. Obviously, we have

|f1(u, v)| ≤ C1(|u+ v|2p−1 + |u|p−1 |v|p)

≤ C2(|u|2p−1 + |v|2p−1 + |u|p−1 |v|p).

By Young’s inequality we obtain

|u|p−1 |v|p ≤ C3 |u|2p−1 + C4 |v|2p−1 .

Therefore,

(5.4)

∫
Ω
|f1(u, v)|2 dx ≤ C4

∫
Ω

(|u|4p−2 + |v|4p−2) dx.

Using (H2)′ and the embedding Hmi
0 (Ω) ↪→ L4p−2(Ω) (i = 1, 2) from (5.4) we get∫

Ω
|f1(u, v)|2 dx ≤ C4B

4p−2(‖Dm1u‖4p−2
2 + ‖Dm2v‖4p−2

2 )

≤ C5(‖Dm1u‖22 + ‖Dm2v‖22)2p−1.

Therefore (5.3) follows. The same way can be followed to obtain similar inequality for

f2.

Proof of Theorem 5.2. Theorem 4.1 guarantees the existence of T ?. We define

Θ(t) =

∫
Ω
F (u(t), v(t)) dx.
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Then, by using Young’s inequality and Lemma 5.4 we have

Θ′(t) =

∫
Ω

(utf1 + vtf2) dx

≤ 1

2

∫
Ω

(u2
t + v2

t ) dx+
1

2

∫
Ω

(f2
1 + f2

2 ) dx

≤ 1

2

∫
Ω

(u2
t + v2

t ) dx+
1

2
(γ1 + γ2)(‖Dm1u‖22 + ‖Dm2v‖22)2p−1.

(5.5)

By (2.1), (2.3) and Lemma 2.2 we obtain∫
Ω

(u2
t + v2

t ) dx+m0(‖Dm1u‖22 + ‖Dm2v‖22) ≤ 2E(t) + 2

∫
Ω
F (u, v) dx

≤ 2E(0) + 2

∫
Ω
F (u, v) dx.

(5.6)

Consequently, by (5.5) and (5.6) we get

Θ′(t) ≤ E(0) + Θ(t) + 22p−2m1−2p
0 (γ1 + γ2)[E(0) + Θ(t)]2p−1

≤ E(0) + Θ(t) + 24(p−1)m1−2p
0 (γ1 + γ2)[(E(0))2p−1 + (Θ(t))2p−1].

(5.7)

Integrating (5.7) over (0, t) we get

(5.8) t >

∫ Θ(t)

Θ(0)

m2p−1
0 dζ

m2p−1
0 (E(0) + ζ) + 24(p−1)(γ1 + γ2)((E(0))2p−1 + ζ2p−1)

.

From (4.20) and (5.6) we see that Θ(t)→ +∞ as t→ T ?
−

. Hence, (5.1) follows by letting

t→ T ?
−

in (5.8). Thus, the proof of Theorem 5.2 is complete.

Proof of Theorem 5.3. We set

Φ(t) =

∫
Ω

(u2
t + v2

t ) dx+M(‖Dm1u‖22 + ‖Dm2v‖22).

We have

Φ′(t) = −2a1 ‖ut‖qq − 2a2 ‖vt‖rr + 2

∫
Ω

(utf1 + vtf2) dx.

Using Young’s inequality, Lemma 5.4 and (H1) we obtain

Φ′(t) ≤
∫

Ω
(u2
t + v2

t ) dx+

∫
Ω

(f2
1 + f2

2 ) dx

≤
∫

Ω
(u2
t + v2

t ) dx+ (γ1 + γ2)(‖Dm1u‖22 + ‖Dm2v‖22)2p−1

≤
∫

Ω
(u2
t + v2

t ) dx+m1−2p
0 (γ1 + γ2)[M(‖Dm1u‖22 + ‖Dm2v‖22)]2p−1

≤ Φ(t) +m1−2p
0 (γ1 + γ2)(Φ(t))2p−1.

(5.9)
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Integrating (5.9) over (0, t) we get

(Φ(t))2(1−p) ≥ −m1−2p
0 (γ1 + γ2)

+ [(Φ(0))2(1−p) +m1−2p
0 (γ1 + γ2)] exp(2(1− p)t).

(5.10)

By (4.20) and (2.1) we can easily see that if t→ T ?
−

then Φ(t)→ +∞. Hence, (5.2) holds

by letting t→ T ?
−

in (5.10).

Remark 5.5. Theorem 4.1 guarantees the existence of T ? in Theorems 5.2 and 5.3.

Remark 5.6. By (2.3) we have

Φ(t) = 2E(t) + 2Θ(t) ≤ 2E(0) + 2Θ(t).

Hence, the estimate (5.2) is also valid for Θ.
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