AN ELLIPTIC PROBLEM WITH CRITICAL EXPONENT
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We give the existence result and the vanishing order of the solution in 0 for the follow-
ing equation: —Au(x) + (u/|x1*)u(x) = Au(x) + u**~'(x), where x € By, u >0, and the
potential y/|x|? — A is positive in Bj.

1. Introduction

In this paper, we consider the following problem:

—Au(x)+ ﬁu(x) =u(x)+u® "(x), xe€B,

u(x) =0, xe€By, (1.1)
u(x) =0, x€0B,

where B; = {x € RV | |x| < 1} is the unit ball in RN (N > 3), A, u >0, 2* := 2N/(N - 2).
When p < 0, this problem has been considered by many authors recently (cf. [5, 6, 7,
8]). But when g > 0, this problem has not been considered as far as we know. In fact,
the existence of nontrivial solution for (1.1) when g >0 is an open problem which was
imposed in [7]. In this paper, we get the following results.

TaEOREM 1.1. IfN =3 and3/4<A <porif N = 4and0 <A <y, then for (1.1) there exists
a nontrivial radially symmetric solution.

Remark 1.2. Condition 0 < A < y shows that the potential u/|x|?> — A is positive in Bj.
Thus the Brézis-Nirenberg method (cf. [1]) cannot be used.

Tueorem 1.3. If u >0 and u € H(B,) is a solution of (1.1), then there are C;,C, > 0 and

0 >0 such that Cy|x|* = u(x) = Cy|x|% for x € Bs, where a = (1/2)(/(N —2)% +4u? —
(N=-2))>0.

Remark 1.4. One can easily deduce that if u € H}(B,) is a solution of (1.1), then u €
C?(B;\ {0}) and u >01in B; \ {0}. Theorem 1.3 shows that u(8) = 0. It is greatly different
from the case of ¢ < 0 (see [6]).
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2. Proof of Theorem 1.1

LEmMA 2.1. Every radially symmetric nonnegative solution u of the equation

_Aquﬁu(x):uz*’l(x), ue D (RY), 2.1

can be represented by u(x) = pN=22U(px) for some positive number p, where

—(N=2)/2
Ulx) = — 0l — (2.2)
(1+ |x|41/(N—2))(N iz

T =,/((N =2)/2)>+u, and Cy is a constant.

Proof. Lett = —In|xl|, 8 = x/|x|, and v(t,0) := e~ (N=2/2ty(e7*9). Then by [3], we know
that v satisfies the equation

—vy— Ngv+T2v =11 inRxSNL (2.3)

Since u is radially symmetric, v depends only on ¢ and satisfies —vy + 72v = v* "1, v >0
in R. By [3], we know that the only positive solutions of the equation are translation of

2%\ /(25 -1) . _ ~2/(2*-2)
v(t) = (122 ) (cosh(2 5 z‘rt)) . (2.4)

Thus, every radially symmetric nonnegative solution u of (2.1) can be represented by
u(x) = pN=2"2U(px) for some positive number p. O

Define @2(RN) := {u € D2(RN) | u is radially symmetric} and H},(B)) := {u €
H}(By) | uis radially symmetric}. Let

Jrv [V ul? + p fon (12/1x12)

Sy = inf )2/2*

(2.5)
UEDF (RN), u0 (Jgw lul?*

It follows from Lemma 2.1 that S, = (fan VU2 + g [ (U?/[x12))/(frn U* )2 Let £ =
{ue H&r(Bl) | llull,+ = 1}. For u € 2, define

2
Siu(u) = JB IVulzwL &’7 —AJB 2. (2.6)

LEMMA 2.2. IfN =3 and3/4 <A <porif N > 4and0 <) <y, then S, := inf,e5 S ,(u) <
Su-
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Proof. Let 1 € C§°(RN) be a cut function which satisfies 0 < #(x) < 1, |[Vy| <2 in RV,
7(x)=1in By, and n(x)=0in RN \ By. Let U, (x) := p™=2/2U (px) and u, (x) = () U (x).
By (2.2), we know that when |x| is big enough, there are constants C;,C, > 0 such that

C1 C2
|U(x)| < X[V [VU(x)| < Pk (2.7)
since
2 2
Vu =J 2| Vu +J WV 2+2Ju- -Vu, -V
[, 17wl = [ 219 [ a2 w9y vg
5 1/2 NE
< Vu +4J u2+4<J u2> (J Vu )
4[31~ P| Bi\Bi) ’ Bi\Bi) ’ B1\Bl/z| p|
(2.8)

4
:J |VU|2+J |VU|2+—2J U?
RN RN\B, P JB,\B,»

4 1/2 1/2
oy o) (0, v0r)
P \JB,\B,; Bp\By2

By (2.7), when N =3 and 3/4 <A < por when N > 4 and 0 < A < , for p big enough,

J U? sj G dx — G
By\B,2 By\Bua |x|27tN-2 pZT—z’ o)
2.9
C +o0 C C
J |VU|2SI 22Ndx:I 221d7’=74,
RN\B, RN\B, |x|?T* p T e
C
J W””'zsj IVUP+—2 (2.10)
B, RN P T
u? 2 ) *
[ M A W
| ’ ] P (2.11)

[o45
B P pr

When N =3and3/4 <A <porwhenN = 4and0 <A < y, we have 27 > 2. Thus by (2.10)
and (2.11), we get

u Cg 1
S,—psS ——+o<—), as p — oo, (2.12)
[ P S V) A

It proves the lemma. U

Proof of Theorem 1.1. By Lemma 2.2 and [10, Theorem 8.8], we deduce that S, can be

achieved by some 0 < u € Hj,(B;), then S;’;/(z*_z)u is a nontrivial radially symmetric
solution of (1.1). O
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3. Proof of Theorem 1.3

Let E be the space which is the completion of Ci’(B;) under the norm |ullg =
(fBl |X|2‘X|vu|2dx)1/2.

LemMA 3.1 (see [2]). Forallue CF(RN) (N = 3),

2p
(J le’bplulpdx> sCa,;,I x| ~20| V| 2dx, (3.1)
RN RN

where —c0o <a< (N—-2)/2,a<b<a+1,and p=2N/(N—-2+2(b—a)).
Choosing a = —a, p = 2 and 2%, respectively, in (3.1), we get the following lemma.

LEMMA 3.2. There is a constant C > 0 such that, for any u € Cy’ (RN),

2/2%
(f |x\2*“|u|2*dx) scj |2V ul2dx,
RY RY (3.2)

J \x|2“*2|u|zdxscj |2V ul 2dx.
RN RN

Proof of Theorem 1.3. 1f v € H}(By) is a solution of (1.1), then by the standard regularity
theory, one can easily deduce that v € C?(B; \ {0}). Let u(x) = |x| *v(x) (this kind of
transform has been used in [9]). Direct calculation shows that, for any x € B; \ {0},

—div (|x|2*Vu) = x> %> 7+ A x> (3.3)

Since v € E, then by Lemma 3.1 we know that v is a weak solution of (3.3), that is, for any
C € C(C;o (Bl)>

J IxIZ“VuV(:J lez*"‘uz**l(+J |x]2*ul. (3.4)
By By B

For t > 2, k >0, define

rt/2, 0<r<k,
hr) = e (1= )k ek -2

and ¢(r) = [y |h'(s)|ds. It is easy to verify that there exists a constant C > 0 independent
of k such that

t2
90| = 10

|¢(r) = h(r)l ()| < C[h(r)K' (r)], (3.7)

|h(r)|?, (3.6)

where C; = (t—2)/2(t—1) < 1.
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LetO<r,<r <1landy e Cy(B(6,r)) satisfying0 <y <1, =11in B(6,72), 7 =0 in
RN\ B(0,r1), and | Vx| < 2/(r; — ). Notice that #2¢(u) € E, then

J lx|2*VuV (n*¢(u)) =J lez“qz(h'(u))ZIVu|2+2J lx|2*n¢(u)VuVy
By By B,
(3.8)
- J lx|%%1? | V (h(u)) |2 +ZJ lx|**n(u) VuVa.
B, B,

Since |V (nh(u)) > = 1?1V (h(w))|* + h*(w) |V y|? + 2nh(u) V (h(u)) V7, by (3.7), we have
| evuv Orgo) = [ 11 k) |7 = | xen ) p
B, B, B,
—ZJ lezanh(u)h'(u)Van+2j lx|**n¢(u) VuVy
B By
> | |V Gho) |- [ xR v

(3.9)
=2 Il 900 - MGk @) |1V

zj |x|2“|v<nh(u>)|2—j X282 () |V
B, B
—2Ctj lx|** | nh(u)V (h(u)) V7.
B,
Since
JB %12 | nh(u)V (h(u)) V7| =JB IxI2*[ (V (nh(w)) = k() V) V| | h(u) |
sj 1x12%| h()V (4h(u)) V1| +J 1x12% | h(w) ||V 2
B, B,
<3 | r@Igar ] | e ano)|?

+jB x| h(w) |21V 12,
1 (3.10)

and by (3.9), we deduce that
L X2V Y (1))
> | PV oh) P | el
B, B,

1 1
—zct(gj |x|2“h2(u>|vn|2+—j |x|2“|V(nh(u))|2+j |x|2“|h<u>|2|vn|2)
Bl 2 Bl Bl
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ot
T2t-1)

Ct
2(t—1)

J |x|2“|V(;7h(u))|2—(1+3Ct)j X122 () |V 2
B, B,

=

. 2/2%*
(J X127 yh(u)| ) —(1+3ct)J PRI B
B, B,
(3.11)

By (3.6), we have

J |x|2*au2*—1}12¢(u)+j |x|2“u172</>(u)
B By

12 g %_ 2 12 o 2
< sy |, R o e B | |

2 - . (2%-2)/2* - 2/2%
< qiony U)o (], o)

t? 2 2
G- JBI |x|%* | nh(u)|".

Notice that u is a solution of (3.3), by (3.11) and (3.12) we have

. 2 2/2%*
(jB X2 ph(u)| )

t . . (2% -2)/2% . - 2/2%
SE(J'#leI [ul ) (JBllxl | nh(u) | ) (3.13)

2(143C)(t=1)
* Ct

(3.12)

+

2a7,2 2 LJ' 2a 2
|, eI+ S | el o

Choose r; small enough such that (£/2C)(, 4 |22 |2")2"=2/2" < 1/2. Notice that 2(1 +
3C)(t—1)/t <8 (since0< C; < 1and ¢ >2)and |Vy| < 2/(r; —r2), from (3.13) we have

. 2\ 7 64 t
(J 2% () | ) (% J KR, (3.14)
B(6ir2) Clri—n)" C)Json
Choosing 2(N — 2a)/(N — 2+ 2a) >ty > 2 and letting k — oo in (3.14), we get
2/2%*
(J |x\2*“|u|2*t°/2> < (642+t0)J |2 |0, (3.15)
B(6,r) C(ri—n)" C/)Json

By Lemma 3.1, we know that ([5 [x|>*|u|®)¥® < [p |x[?¥|Vu|? < co. Combining (3.15),
we get that

J-B |x|2*a|u|2*t0/2 < 0, (3.16)
1
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Since

2/2%

Ll X%V v ($(u)) = jBl x|V (h(w)) | = (L |x|z*a|h<u>|2*) :

j 22 () +J PEO
B, B,

<LJ 2l 2 )|+ [
_4(t_1) B, 4(1’—1) B,
£ 2al 125 10/2 ARt - N\
sm(JBl loe|= % ul ) (JBI lx|* % h(u) | ) (3.17)
t* 20 2
+4(t_1)JBl|x| | () |

2 . . 2(2%=2)/2%t . 2/q
S—(J |x‘2 a|u|2 t0/2> (J |x|2 a|h(u)|4>
4(t_ 1) By By
/.

t2 (2 ) /), 1/!,]’ 5 q Zq
+ x "‘**0‘”) (J x12 | h(u ) ,

where g =2 - 2*%ty/((tp —2)2* +4) and 2/q+ 1/q" = 1, we can deduce that if € > 0 small
enough and t € (2,2 +€), then (2a — 2*a/q)q’ > —2. Thus ([, |x|?*~2"¥D4 )10’ < co,
Let C' = ([, |x|>"®[u|? 0/2)2Q7 =220 4 ([, |x|(24=2"9/0)4" )0’ then by (3.17), we have

( Ll %1 h(u) |2*)W < %( Ll %1 h(u) |q)2/q. (3.18)

Letting k — oo, we get

C't?
4(t—1)

1t
lulare/200a < ( ) [l ge/2,2% > (3.19)

where |11 20q 1= ([5, %12 *|ul) VL.
Choose t; = (2*/g)", n = 1,2,.... Then by (3.19) we have

ﬁ CP 1/t;
ltl2xt,/2,00a < (71 ) [1l2%/2,0% 4 (3.20)
T \4(-1) *

Letting n — oo, we deduce that u € L*(By). Thus there is C;, > 0 such that v(x) < Cy|x|“.
Since div(|x|?*Vu) < 0, by [4, Lemma 4.2], we have u(x) > C”" > 0 for x € Bs. So, there
is C; > 0 such that u(x) = C;|x|* for x € Bs. O
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