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Suppose X is a real q-uniformly smooth Banach space and F,K : X → X with
D(K)= F(X)= X are accretive maps. Under various continuity assumptions on
F and K such that 0= u+KFu has a solution, iterative methods which converge
strongly to such a solution are constructed. No invertibility assumption is im-
posed on K and the operators K and F need not be defined on compact subsets
of X . Our method of proof is of independent interest.

1. Introduction

Let X be a real normed linear space with dual X∗. For 1 < q <∞, we denote by
Jq, the generalized duality mapping from X to 2X

∗
defined by

Jq(x) := { f ∗ ∈ X∗ :
〈
x, f ∗

〉= ‖x‖∥∥ f ∗∥∥, ∥∥ f ∗∥∥= ‖x‖q−1}, (1.1)

where 〈·,·〉 denotes the generalized duality pairing. If q = 2, Jq = J2 and is de-
noted by J . If X∗ is strictly convex, then Jq is single-valued (see, e.g., [32]). A
multivalued map A with domain D(A) in a normed linear space X is said to be
accretive if for every x, y ∈D(A), there exists jq(x− y)∈ Jq(x− y) such that

〈
ξ −η, jq(x− y)

〉≥ 0 for each ξ ∈ Ax, η ∈Ay. (1.2)

If X is a Hilbert space, accretive operators are also called monotone. The accretive
mappings were introduced independently in 1967 by Browder [6] and Kato [24].
Interest in such mappings stems mainly from their firm connection with equa-
tions of evolution. It is known (see, e.g., [33]) that many physically significant
problems can be modelled by initial-value problems of the form

x′(t) +Ax(t)= 0, x(0)= x0, (1.3)
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where A is an accretive operator in an appropriate Banach space. Typical exam-
ples, where such evolution equations occur, can be found in the heat, wave or
Schrödinger equations. If in (1.3), x(t) is independent of t, then (1.3) reduces to

Au= 0, (1.4)

whose solutions correspond to the equilibrium points of system (1.3). Conse-
quently, considerable research efforts have been devoted, especially within the
past twenty years or so, to methods of finding approximate solutions (when they
exist) of (1.4), and hence,

u+Au= 0. (1.5)

One important generalization of (1.5) is the so-called equation of Hammerstein
type (see, e.g., [22]) where a nonlinear integral equation of Hammerstein type is
one of the form

u(x) +
∫
Ω
κ(x, y) f

(
y,u(y)

)
dy = h(x), (1.6)

where dy is a σ-finite measure on the measure space Ω. The real kernel κ is de-
fined on Ω×Ω, f is a real-valued function defined on Ω×
 and is, in general,
nonlinear, and h is a given function on Ω. Now if we define an operator K by

Kv(x) :=
∫
Ω
κ(x, y)v(y)dy, x ∈Ω, (1.7)

and the so-called superposition or Nemytskii operator by Fu(y) := f (y,u(y)),
then the integral equation (1.6) can be put in operator theoretic form as follows:

u+KFu= 0, (1.8)

where, without loss of generality, we have taken h ≡ 0. Now it is obvious that
equation u+Au = 0 is a very special case of (1.8) in which K = I (the identity
operator on X) and A := F. Interest in (1.8) stems mainly from the fact that
several problems arising in differential equations, for instance, elliptic bound-
ary value problems whose linear parts possess Greens functions can, as a rule, be
transformed into form (1.8) (see, e.g., [27, Chapter IV]). Equations of Hammer-
stein type play a crucial role in the theory of optimal control systems (see, e.g.,
[21]). Several existence and uniqueness theorems have been proved for equa-
tions of the Hammerstein type (see, e.g., [3, 5, 7, 8, 19, 10]).

For the iterative approximation of solutions of (1.4) and (1.5), the monotonic-
ity/accretivity of A is crucial. The Mann iteration scheme (see, e.g., [26]) and the
Ishikawa iteration scheme (see, e.g., [23]) have successfully been employed (see,
e.g., [1, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 25, 27, 28, 29, 30,
31, 32, 33, 34]). Attempts to apply these methods to (1.8) have not provided
satisfactory results. In particular, the recursion formulas obtained involved K−1
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(see, e.g., [12, 15, 28]) and this is not convenient in applications. Part of the dif-
ficulty is the fact that the composition of two monotone operators need not be
monotone. In the special case in which the operators are defined on subsetsD of
X which are compact (or more generally, angle-bounded), Brézis and Browder
[2] have proved the strong convergence of a suitably defined Galerkin approxi-
mation to a solution of (1.8) (see also [4]).

It is our purpose in this paper to introduce a new method that contains an
auxiliary operator, defined in an appropriate real Banach space in terms of K
and F, which under certain conditions, is accretive whenever K and F are, and
whose zeros are solutions of (1.8). Moreover, the operators K and F need not be
defined on compact or angle-bounded subset of X . Furthermore, our method
which does not involve K−1 provides an explicit algorithm for the computation
of solutions of (1.8).

2. Preliminaries

LetX be a real normed linear space of dimension≥ 2. The modulus of smoothness
of X is defined by

ρX(τ) := sup
{‖x+ y‖+‖x− y‖

2
− 1 : ‖x‖ = 1, ‖y‖ = τ

}
, τ > 0. (2.1)

If there exist a constant c > 0 and a real number 1 < q <∞, such that ρX(τ)≤ cτq,
then X is said to be q-uniformly smooth. Typical examples of such spaces are the
Lebesgue Lp, the sequence �p , and the Sobolev Wm

p spaces for 1 < p <∞ where

Lp
(
or lp

)
or Wm

p =

2-uniformly smooth if 2≤ p <∞;

p-uniformly smooth if 1 < p < 2.
(2.2)

A Banach space X is called uniformly smooth if limτ→0 ρX(τ)/τ = 0. A multival-
ued map A is said to be m-accretive if it is accretive and R(I + λA) (range of
(I + λA)) = X , for all λ > 0, where I is the identity mapping. A is said to be φ-
strongly accretive if for every x, y ∈D(A), there exist jq(x− y)∈ Jq(x− y) and a
strictly increasing function φ : [0,∞)→ [0,∞), φ(0)= 0 such that

〈
ξ −η, jq(x− y)

〉≥ φ(‖x− y‖)‖x− y‖q−1, (2.3)

for each ξ ∈Ax, η ∈Ay, and it is strongly accretive if for each x, y ∈D(A), there
exist jq(x− y)∈ Jq(x− y) and a constant k ∈ (0,1) such that

〈
ξ −η, jq(x− y)

〉≥ k‖x− y‖q for each ξ ∈ Ax, η ∈Ay. (2.4)

Let CB(X) be a family of all nonempty closed bounded subsets of X . A multival-
ued mapping A : X → CB(X) is said to be uniformly continuous if for every given
ε > 0, there exists a δ > 0 such that for any given x, y ∈ X with ‖x− y‖ < δ, we
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have H(Ax,Ay) < ε where H is the Hausdorff metric on CB(X), that is, for any
given D,F ∈ CB(X),

H(D,F) :=max

{
sup
x∈D

inf
y∈F

d(x, y), inf
x∈D

sup
y∈F

d(x, y)

}
. (2.5)

In the sequel, we will need the following results.

Theorem 2.1 [32]. Let q > 1 and X be a real Banach space. Then the following are
equivalent:

(1) X is q-uniformly smooth;
(2) there exists a constant dq > 0 such that for all x, y ∈ X

‖x+ y‖q ≤ ‖x‖q + q
〈
y, jq(x)

〉
+dq‖y‖q; (2.6)

(3) there exists a constant cq > 0 such that for all x, y ∈ X and λ∈ [0,1]

∥∥(1− λ)x+ λy
∥∥q ≥ (1− λ)‖x‖q + λ‖y‖q−wq(λ)cq‖x− y‖q, (2.7)

where wq(λ)= λq(1− λ) + λ(1− λ)q.

Theorem 2.2 [17]. Let X be a real uniformly smooth Banach space. Let A : X → X
be a bounded φ-strongly accretive map. Assume 0 = Ax has a solution x∗ ∈ X .
Then, there exists a real number γ0 > 0 such that if the real sequence {αn} ⊂ [0,γ0]
satisfies the following conditions: (i) limαn = 0; (ii)

∑
αn =∞, then for arbitrary

x0 ∈ X the sequence {xn}, defined by

xn+1 := xn−αnAxn, n≥ 0, (2.8)

converges strongly to x∗, the unique solution of Ax = 0.

Theorem 2.3 [11]. Let X be an arbitrary real Banach space. Let A : X → X be
a Lipschitz and strongly accretive map with Lipschitz constant L > 0 and strong
accretivity constant λ ∈ (0,1). Assume that Ax = 0 has a solution x∗ ∈ X . Define
Aε : X → X by Aεx := x − εAx for x ∈ X where ε := 1/2{λ/(1 + L(3 + L− λ))}.
For arbitrary x0 ∈ X , define the Picard sequence {xn} in X by xn+1 = Aεxn, n≥ 0.
Then, {xn} converges strongly to x∗ with ‖xn+1 − x∗‖ ≤ δn‖x1 − x∗‖ where δ :=
(1− 1/2λε)∈ (0,1). Moreover, x∗ is unique.

3. Main results

Lemma 3.1. For q > 1, let X be a real q-uniformly smooth Banach space. Let E :=
X ×X with norm

‖z‖E := (‖u‖qX +‖v‖qX
)1/q

, (3.1)

for arbitrary z = [u,v] ∈ E. Let E∗ := X∗ ×X∗ denote the dual space of E. For
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arbitrary x = [x1,x2] ∈ E, define the map jEq : E → E∗ by jEq (x) = jEq [x1,x2] :=
[ jXq (x1), jXq (x2)], so that for arbitrary z1 = [u1,v1], z2 = [u2,v2] in E the duality
pairing 〈·,·〉 is given by

〈
z1, j

E
q

(
z2
)〉= 〈u1, j

X
q

(
u2
)〉

+
〈
v1, j

X
q

(
v2
)〉
. (3.2)

Then,

(a) E is q-uniformly smooth;
(b) jEq is a single-valued duality mapping on E.

Proof. (a) Let x = [x1,x2], y = [y1, y2] be arbitrary elements of E. It suffices to
show that x and y satisfy condition (2) of Theorem 2.1. We compute as follows:

‖x+ y‖qE =
∥∥[x1 + y1,x2 + y2

]∥∥q
E =

∥∥x1 + y1
∥∥q
X +

∥∥x2 + y2
∥∥q
X

≤ ∥∥x1
∥∥q
X +

∥∥x2
∥∥q
X +dq

(∥∥y1
∥∥q
X +

∥∥y2
∥∥q
X

)
+ q
{〈
y1, j

X
q

(
x1
)〉

+
〈
y2, j

X
q

(
x2
)〉} (3.3)

for some constants dq > 0 (using (2) of Theorem 2.1 since X is q-uniformly
smooth). It follows that

‖x+ y‖qE ≤ ‖x‖qE + q
〈
y, jEq (x)

〉
+dq‖y‖qE. (3.4)

So, the result follows from Theorem 2.1. Since E is q-uniformly smooth, it is
smooth and so any duality mapping on E is single-valued.

(b) For arbitrary x = [x1,x2] ∈ E, let jEq (x) = jEq [x1,x2] = ψq. Then ψq =
[ jXq (x1), jXq (x2)] in E∗. Observe that for p > 1 such that 1/p+ 1/q = 1,

∥∥ψq∥∥E∗ = (∥∥[ jXq (x1
)
, jXq

(
x2
)]∥∥)1/p = (∥∥ jq(x1

)∥∥p
X∗ +

∥∥ jq(x2
)∥∥p

X∗
)1/p

=
(∥∥x1

∥∥(q−1)p
X +

∥∥x2
∥∥(q−1)p
X

)1/p = (∥∥x1
∥∥q
X +

∥∥x2
∥∥q
X

)(q−1)/q

= ‖x‖q−1
X .

(3.5)

Hence, ‖ψq‖E∗ = ‖x‖q−1
E . Furthermore,

〈
x,ψq

〉= 〈[x1,x2
]
,
[
jXq
(
x1
)
, jXq

(
x2
)]〉= 〈x1, j

X
q

(
x1
)〉

+
〈
x2, j

X
q

(
x2
)〉

= ∥∥x1
∥∥q
X +

∥∥x2
∥∥q
X =

(∥∥x1
∥∥q
X +

∥∥x2
∥∥q
X

)1/q(∥∥x1
∥∥q
X +

∥∥x2
∥∥q
X

)(q−1)/q

= ‖x‖E · ‖ψ‖q−1
E∗ .

(3.6)

Hence, jEq is a single-valued duality mapping on E. �

Lemma 3.2. Let X be a real q-uniformly smooth Banach space. Let F,K : X → X be
maps with D(K)= F(X)= X such that the following conditions hold:
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(i) for each u1,u2 ∈D(F), there exists a strictly increasing function φ1 : [0,∞)
→ [0,∞), φ1(0)= 0 such that

〈
Fu1−Fu2, jq

(
u1−u2

)〉≥ φ1
(∥∥u1−u2

∥∥)∥∥u1−u2
∥∥q−1

; (3.7)

(ii) for each u1,u2 ∈D(K), there exists a strictly increasing function φ2 : [0,∞)
→ [0,∞), φ2(0)= 0 such that

〈
Ku1−Ku2, jq

(
u1−u2

)〉≥ φ2
(∥∥u1−u2

∥∥)∥∥u1−u2
∥∥q−1

; (3.8)

(iii) φi(t) ≥ (d + ri)t for all t ∈ [0,∞) and for some ri > 0, i = 1,2 where d :=
q−1(1 + dq − c−12q−1); c =max{1, cq} and dq, cq are the constants appear-
ing in inequalities (2.6) and (2.7), respectively.

Let E := X ×X with norm ‖z‖qE = ‖u‖qX +‖v‖qX for z = (u,v)∈ E and define a
map T : E→ 2E by Tz := T(u,v)= (Fu− v,u+Kv). Then for each z1, z2 ∈ E, there
exists a strictly increasing function φ : [0,∞)→ [0,∞) with φ(0)= 0 such that

〈
Tz1−Tz2, j

E
q

(
z1− z2

)〉≥ φ(∥∥z1− z2
∥∥)∥∥z1− z2

∥∥q−1
. (3.9)

Proof. Define φ : [0,∞)→ [0,∞) by φ(t) :=min{r1, r2}t for each t ∈ [0,∞). Ob-
serve that φ is a strictly increasing function with φ(0)= 0. Furthermore, for q >
1, z1 = (u1,v1) and z2 = (u2,v2) arbitrary elements in E, we have 〈z1, jEq (z2)〉 =
〈u1, jq(u2)〉+ 〈v1, jq(v2)〉. Thus, we have the following estimates:

〈
Tz1−Tz2, j

E
q

(
z1− z2

)〉
= 〈Fu1−Fu2−

(
v1− v2

)
, jq
(
u1−u2

)〉
+
〈
Kv1−Kv2 +

(
u1−u2

)
, jq
(
v1− v2

)〉
= 〈Fu1−Fu2, jq

(
u1−u2

)〉− 〈v1− v2, jq
(
u1−u2

)〉
+
〈
Kv1−Kv2, jq

(
v1− v2

)〉
+
〈
u1−u2, jq

(
v1− v2

)〉
≥ φ1

(∥∥u1−u2
∥∥)∥∥u1−u2

∥∥q−1
+φ2

(∥∥v1− v2
∥∥)∥∥v1− v2

∥∥q−1

− 〈v1− v2, jq
(
u1−u2

)〉
+
〈
u1−u2, jq

(
v1− v2

)〉
.

(3.10)

Since X is real q-uniformly smooth, inequality (2.7) holds for each x, y ∈ X .
Setting λ= 1/2 in this inequality yields the following estimate:

‖x+ y‖q +‖x− y‖q ≥ c−12q−1(‖x‖q +‖y‖q), (3.11)

where c =max{1, cq}. Furthermore, from inequality (2.6), replacing y by−y, we
obtain the following inequality:

−〈y, jq(x)
〉≥ q−1(‖x− y‖q−‖x‖q−dq‖y‖q

)
. (3.12)
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Using (3.10), (3.12), (2.6), and (3.11), we obtain the following estimates:

〈
Tz1−Tz2, j

E
q

(
z1− z2

)〉
≥ φ1

(∥∥u1−u2
∥∥)∥∥u1−u2

∥∥q−1
+φ2

(∥∥v1− v2
∥∥)∥∥v1− v2

∥∥q−1

+ q−1
(∥∥v1− v2−

(
u1−u2

)∥∥q−∥∥u1−u2
∥∥q−dq∥∥v1− v2

∥∥q)
+ q−1

(∥∥v1− v2 +
(
u1−u2

)∥∥q−∥∥v1− v2
∥∥q−dq∥∥u1−u2

∥∥q)
≥ φ1

(∥∥u1−u2
∥∥)∥∥u1−u2

∥∥q−1
+φ2

(∥∥v1− v2
∥∥)∥∥v1− v2

∥∥q−1

+ q−1c−12q−1
(∥∥u1−u2

∥∥q +
∥∥v1− v2

∥∥q)
− q−1

{(
1 +dq

)∥∥u1−u2
∥∥q +

(
1 +dq

)∥∥v1− v2
∥∥q}

≥ {φ1
(∥∥u1−u2

∥∥)−d∥∥u1−u2
∥∥}∥∥u1−u2

∥∥q−1

+
{
φ2
(∥∥v1− v2

∥∥)−d∥∥v1− v2
∥∥}∥∥v1− v2

∥∥q−1

≥min
{
r1, r2

}{∥∥u1−u2
∥∥q +

∥∥v1− v2
∥∥q}

=min
{
r1, r2

}∥∥z1− z2
∥∥ ·∥∥z1− z2

∥∥q−1

= φ(∥∥z1− z2
∥∥)∥∥z1− z2

∥∥q−1
,

(3.13)

completing the proof of Lemma 3.2. �

Corollary 3.3. Let X be a real q-uniformly smooth Banach space. Let F,K : X →
X be maps with D(K)= F(X)= X such that the following conditions hold:

(i) for each u1,u2 ∈D(F), there exists α > 0 such that

〈
Fu1−Fu2, jq

(
u1−u2

)〉≥ α∥∥u1−u2
∥∥q; (3.14)

(ii) for each u1,u2 ∈D(K), there exists β > 0 such that

〈
Ku1−Ku2, jq

(
u1−u2

)〉≥ β∥∥u1−u2
∥∥q; (3.15)

(iii) α,β > d := q−1(1 + dq − c−12q−1) and γ :=min{α− d,β− d} where c and
dq are as in (3.11) and (2.6), respectively.

Let E and T be defined as in Lemma 3.2. Then, for z1, z2 ∈ E, we have that

〈
Tz1−Tz2, j

E
q

(
z1− z2

)〉≥ γ∥∥z1− z2
∥∥q. (3.16)

Proof. Let α, β, and γ be real constants satisfying (iii), then following precisely
the method of proof of Lemma 3.2, we get the required result. �

Corollary 3.4. Let X =H be a real Hilbert space. Let F,K :H →H be maps with
D(K) = F(X) = X such that conditions (i) and (ii) of Corollary 3.3 are satisfied.
Let α,β > 0, E, and T be defined as in Corollary 3.3. Then, for z1, z2 ∈ E, we have
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that

〈
Tz1−Tz2, j

E
q

(
z1− z2

)〉≥ γ∥∥z1− z2
∥∥q, (3.17)

where γ :=min{α,β}.
Proof. Since, for Hilbert spaces, the duality mapping jEq is the identity map, q =
2, dq = 1, c = 1, the result follows from Corollary 3.3. �

3.1. Convergence theorems for Lipschitz maps

Remark 3.5. If K and F are Lipschitzian maps with positive constants LK and
LF , respectively, then T is Lipschitzian map with constant L := (dmax{LqF + 1,
L
q
K + 1})1/q for some constant d > 0. Indeed, if z1 = (u1,v1), z2 = (u2,v2) in E,

then we have that∥∥Tz1−Tz2
∥∥q = ∥∥(Fu1−Fu2

)− (v1− v2
)∥∥q +

∥∥u1−u2 +Kv1−Kv2
∥∥q

≤ [LF∥∥u1−u2
∥∥+

∥∥v1− v2
∥∥]q +

[∥∥u1−u2
∥∥+LK

∥∥v1− v2
∥∥]q

≤ d
[
L
q
F

∥∥u1−u2
∥∥q +

∥∥v1− v2
∥∥q +

∥∥u1−u2
∥∥q +L

q
K

∥∥v1− v2
∥∥q]

for some d > 0

≤ dmax
{
L
q
F + 1,L

q
K + 1

}[∥∥u1−u2
∥∥q +

∥∥v1− v2
∥∥q]

= dmax
{
L
q
F + 1,L

q
K + 1

}∥∥z1− z2
∥∥q.

(3.18)

Thus, ‖Tz1−Tz2‖ ≤ L‖z1− z2‖.
Consequently, we have the following theorem.

Theorem 3.6. LetX be real q-uniformly smooth Banach space. Let F,K : X → X be
Lipschitzian maps with positive constants LK and LF , respectively such thatD(K)=
F(X)= X with the following conditions:

(i) there exists α > 0 such that

〈
Fu1−Fu2, jq

(
u1−u2

)〉≥ α∥∥u1−u2
∥∥q, ∀u1,u2 ∈D(F); (3.19)

(ii) there exists β > 0 such that

〈
Ku1−Ku2, jq

(
u1−u2

)〉≥ β∥∥u1−u2
∥∥q, ∀u1,u2 ∈D(K); (3.20)

(iii) α,β > d := q−1(1 +dq− c−12q−1) and γ :=min{α−d,β−d}.
Assume that u+KFu= 0 has solution u∗, let E := X ×X be with norm ‖z‖qE =

‖u‖qX + ‖v‖qX for z = (u,v)∈ E, and define the map T : E→ E by Tz := T(u,v)=
(Fu − v,Kv + u). Let L be Lipschitz constant of T and ε := (1/2)(γ/(1 +
L(3 + L− γ))). Define the map Aε : E→ E by Aεz := z− εTz for each z ∈ E. For
arbitrary z0 ∈ E, define the Picard sequence {zn} in E by zn+1 := Aεzn, n≥ 0. Then
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{zn} converges strongly to z∗ = [u∗,v∗], the unique solution of the equation Tz = 0
with ‖zn+1 − z∗‖ ≤ δn‖z1 − z∗‖ where v∗ = Fu∗ and u∗ is the solution of the
equation u+KFu= 0 and δ := (1− (1/2)γε)∈ (0,1).

Proof. Observe that u∗ is a solution of u+KFu= 0 if and only if z∗ = [u∗,v∗] is
a solution of Tz = 0 for v∗ = Fu∗. Hence, Tz = 0 has a solution z∗ = [u∗,v∗] in
E. Since T is Lipschitz, and by Corollary 3.3, it is strongly accretive with constant
γ (which, without loss of generality we may assume, is in (0, 1)). The conclusion
follows from Theorem 2.3. �

Remark 3.7. Since Lp spaces, 1 < p <∞, are q-uniformly smooth spaces where
q =min{2, p}, then cq = dq ≥ 1 and is given by

cq = dq =



1 + bq−1

(1 + b)q−1 , if 1 < p < 2,

p− 1, if 2≤ p <∞,
(3.21)

where b is the unique solution of the equation (q− 2)tq−1 + (q− 1)tq−2− 1= 0,
0 < t < 1 (see, e.g., [32]).

As a consequence of Theorem 3.6 and Remark 3.7, we have the following
corollaries.

Corollary 3.8. Suppose X = Lp(1 < p <∞). Let F,K : X → X be Lipschitzian
maps with positive constants LK and LF , respectively, and D(K)= F(X)= X with
conditions (i) and (ii) of Theorem 3.6. Suppose α,β > d and γ :=min{α− d,β−
d} where

d :=




1
2

(
p− 2

p− 1

)
, if 2≤ p <∞,

q−1

(
1 +

1 + bq−1

(1 + b)q−1 −
(1 + b)q−1

1 + bq−1 2q−1

)
, if 1 < p < 2.

(3.22)

Assume that u+KFu= 0 has solution u∗ and set E and T as in Theorem 3.6. Let
L, ε, Aε, and {zn} be defined as in Theorem 3.6. Then {zn} converges strongly to
z∗ = [u∗,v∗] with ‖zn+1 − z∗‖ ≤ δn‖z1 − z∗‖ where δ := (1− (1/2)γε) ∈ (0,1),
v∗ = Fu∗ and u∗ is the unique solution of u+KFu= 0.

Corollary 3.9. Let X =H be a real Hilbert space. Let F and K be as in Corollary
3.8. Suppose α,β > 0 and γ :=min{α,β}. Assume that u+KFu = 0 has solution
u∗ and set E and T as in Corollary 3.8. Let L, ε, Aε, and {zn} be defined as in
Corollary 3.8. Then {zn} converges strongly to z∗ = [u∗,v∗] with ‖zn+1 − z∗‖ ≤
δn‖z1 − z∗‖ where δ := (1− (1/2)γε) ∈ (0,1), v∗ = Fu∗ and u∗ is the unique
solution of u+KFu= 0.

Proof. The proof follows from Corollary 3.8 with p = 2. �
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3.2. Convergence theorems for bounded maps

Theorem 3.10. LetX be a real q-uniformly smooth Banach space. Let F,K : X → X
with D(K)= F(X)= X be bounded maps such that the following conditions hold:

(i) for each u1,u2 ∈ X , there exists a strictly increasing function φ1 : [0,∞)→
[0,∞), φ1(0)= 0 such that

〈
Fu1−Fu2, jq

(
u1−u2

)〉≥ φ1
(∥∥u1−u2

∥∥)∥∥u1−u2
∥∥q−1

; (3.23)

(ii) for each u1,u2 ∈ X , there exists a strictly increasing function φ2 : [0,∞)→
[0,∞), φ2(0)= 0 such that

〈
Ku1−Ku2, jq

(
u1−u2

)〉≥ φ2
(∥∥u1−u2

∥∥)∥∥u1−u2
∥∥q−1

; (3.24)

(iii) φi(t)≥ (d + ri)t for all t ∈ [0,∞) and i= 1,2 for some ri > 0 and d is as in
Lemma 3.2.

Assume that 0 = u+KFu has solution u∗ in X . Let E := X ×X be with norm
‖z‖qE = ‖u‖qX + ‖v‖qX for z = (u,v) ∈ E and define the map T : E → E by Tz :=
T(u,v)= (Fu− v,u+Kv). Then there exists a real number γ0 > 0 such that, if the
real sequence {αn} ⊂ [0,γ0] satisfies the following conditions: (i) limn→∞αn = 0;
(ii)

∑
αn =∞, then for arbitrary z0 ∈ E, the sequence {zn} defined by

zn+1 := zn−αnTzn, n≥ 0, (3.25)

converges strongly to z∗ = [u∗,v∗] where v∗ = Fu∗ and u∗ is the unique solution
of 0= u+KFu.

Proof. Observe that sinceK and F are bounded maps, we have that T is bounded
map. Observe also that u∗ is the solution of 0= u+KFu in X if and only if z∗ =
[u∗,v∗] is a solution of 0 = Tz in E for v∗ = Fu∗. Thus, we obtain that N(T)
(null space of T) �= ∅. Also by Lemma 3.2, T is φ-strongly accretive. Therefore,
the conclusion follows from Theorem 2.2. �

Following the method of proof of Theorem 3.10 and making use of Corollary
3.3, we obtain the following theorem.

Theorem 3.11. LetX be a real q-uniformly smooth Banach space. Let F,K : X → X
with D(K)= F(X)= X be bounded maps such that the following conditions hold:

(i) for each u1,u2 ∈D(F), there exists α > 0 such that

〈
Fu1−Fu2, jq

(
u1−u2

)〉≥ α∥∥u1−u2
∥∥q; (3.26)

(ii) for each u1,u2 ∈D(K), there exists β > 0 such that

〈
Ku1−Ku2, jq

(
u1−u2

)〉≥ β∥∥u1−u2
∥∥q; (3.27)



C. E. Chidume and H. Zegeye 363

(iii) α,β > d := q−1(1 +dq− c−12q−1) where c and dq are as in (3.11) and (2.6),
respectively.

Assume that 0 = u+KFu has solution u∗. Let E, T , and {zn} be defined as in
Theorem 3.10. Then, the conclusion of Theorem 3.10 holds.

Corollary 3.12. Let X = Lp(1 < p <∞). Let F,K : X → X with D(K)= F(X)=
X be bounded maps such that (i) and (ii) of Theorem 3.11 hold and α,β > d where
d is as in Corollary 3.8. Assume that 0 = u+KFu has solution u∗. Let E, T , and
{zn} be defined as in Theorem 3.11. Then the conclusion of Theorem 3.11 holds.

Proof. The proof follows from Theorem 3.11 with Remark 3.7. �

Corollary 3.13. Let X =H be real Hilbert space. Let F and K be as in Corollary
3.12 and α,β > 0. Assume that 0= u+KFu has solution u∗. Let E, T , and {zn} be
defined as in Corollary 3.12. Then the conclusion of Corollary 3.12 holds.

Proof. The proof follows from Corollary 3.12 with p = 2. �

3.3. Explicit algorithms. The method of our proofs provides the following ex-
plicit algorithms for computing the solution of the equation 0= u+KFu in the
space X .

(a) For Lipschitz operators (Theorem 3.6 and Corollaries 3.8, 3.9) with initial
values u0,v0 ∈ X , define the sequences {un} and {vn} in X as follows:

un+1 = un− ε
(
F
(
un
)− vn);

vn+1 = vn− ε
(
K
(
vn
)

+un
)
.

(3.28)

Then un→ u∗ inX , the unique solution u∗ of 0= u+KFuwith v∗ = Fu∗ where
ε is as defined in Theorem 3.6.

(b) For bounded operators (Theorems 3.10, 3.11 and Corollaries 3.12, 3.13)
with initial values u0,v0 ∈ X , define the sequences {un} and {vn} in X as follows:

un+1 = un−αn
(
Fun− vn

)
;

vn+1 = vn−αn
(
Kvn +un

)
.

(3.29)

Then un→ u∗ inX , the unique solution u∗ of 0= u+KFuwith v∗ = Fu∗ where
αn is as defined in Theorem 3.10.
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