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We investigate two types of first-order, two-point boundary value problems (BVPs). Firstly, we study BVPs that involve nonlinear
difference equations (the “discrete” BVP); and secondly, we study BVPs involving nonlinear ordinary differential equations (the
“continuous” BVP). We formulate some sufficient conditions under which the discrete BVP will admit solutions. For this, our
choice of methods involves a monotone iterative technique and the method of successive approximations (a.k.a. Picard iterations)
in the absence of Lipschitz conditions. Our existence results for the discrete BVP are of a constructive nature and are of independent
interest in their own right. We then turn our attention to applying our existence results for the discrete BVP to the continuous BVP.
We form new existence results for solutions to the continuous BVP with our methods involving linear interpolation of the data
from the discrete BVP, combined with a priori bounds and the convergence Arzela-Ascoli theorem.Thus, our use of discrete BVPs
to yield results for the continuous BVP may be considered as a discrete approach to continuous BVPs.

1. Introduction

In this paper we investigate two types of first-order, two-point
boundary value problems (BVPs).

Firstly, we study BVPs that involve nonlinear difference
equations (the following “discrete” BVP). Let 𝑓 : [0, 1] × 𝐷 ⊆
[0, 1] × R → R be continuous and consider the discrete
boundary value problem

Δ𝑥
𝑖

ℎ
= 𝑓 (𝑡

𝑖
, 𝑥
𝑖
) , 𝑖 = 0, 1, . . . , 𝑛 − 1; (1)

𝑢𝑥
0
+ V𝑥
𝑛
= 𝑤, 𝑢 + V ̸= 0, (2)

where 0 < ℎ = 1/𝑛 < 1; the grid points are denoted by 𝑡
𝑖
= 𝑖ℎ

for 𝑖 = 0, . . . , 𝑛; Δ𝑥
𝑖
fl 𝑥
𝑖+1
− 𝑥
𝑖
for 𝑖 = 0, . . . , 𝑛 − 1; and 𝑢, V,

and 𝑤 are constants.
Secondly, we study BVPs involving nonlinear ordinary

differential equations (the following “continuous” BVP):

𝑥󸀠 = 𝑓 (𝑡, 𝑥) , 𝑡 ∈ [0, 1] ; (3)
𝑢𝑥 (0) + V𝑥 (1) = 𝑤, 𝑢 + V ̸= 0, (4)

where 󸀠 fl 𝑑/𝑑𝑡.

Problem (1) and (2) may be considered as a discrete
analogue of (3) and (4).

The study of discrete BVP (1) and (2) is significant for two
main reasons, as these types of equations

(a) naturally arise when modelling phenomena, for
example, in oscillation and control theory [1, p. 1],

(b) are of importance in the approximation of solutions
to ordinary differential equations.

In this paper we discuss the existence and approximation
of solutions of both sets of BVPs: (1) and (2); (3) and (4).

We formulate some sufficient conditions under which
the discrete BVP (1) and (2) will admit solutions. For
this, our choice of methods involves monotone iterative
techniques and the method of successive approximations
(a.k.a. Picard iterations). The classical method of successive
approximations is powerful and constructive in nature and
thus it is surprising to find that it has been significantly
underutilized in the environment of discrete BVPs of the
first order. Our existence results for the discrete BVP are of
a constructive nature and, furthermore, some of our results
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bound solutions independently of the step size. These results
are of independent interest of the continuous BVP (3) and (4).

We then turn our attention to applying our existence
results for the discrete BVP (1) and (2) to the continuous
BVP (3) and (4). We form new existence results for solutions
to the continuous BVP with our methods involving linear
interpolation of the data from the discrete BVP, combined
with a priori bounds and the convergence Arzela-Ascoli
theorem.Thus, our use of discrete BVPs to yield results for the
continuous BVP may be considered as a discrete approach to
continuous BVPs.

Several other authors have studied the existence of solu-
tions to (1) and (2) via the method of lower and upper
solutions [2, 3], [4, Sec. 2]; and by employing a priori bounds
on solutions and Brouwer degree [5]. Mohamed et al. [6]
have recently studied variations of (1) and (2) via discrete
approaches.

Several authors have used the discrete approach to con-
tinuous BVPs for second-order problems, such as [7–11]. In
particular, in [9–11] the boundary conditions were separated;
however, in this work our boundary conditions under con-
sideration are not separated. In addition, we employ different
assumptions and different methods. For example, we use the
idea of a monotonic and bounded sequence herein, rather
than the maximum principles of [9] or the growth conditions
and a priori bounds of [10, 11].

Our ideas complement those of [2, 3, 5] and [4, Sec. 2]
and appear to be of a more constructive nature as solutions to
(1) and (2) obtained by the theorems hereinmay be computed
(or approximated) via an iterative process. Our results herein
improve some of the results in [6] and our techniques and
methods contrast with theirs; for example, we do not rely on
Lipschitz conditions in our theorems.

Our results are innovative for two main reasons: (i) they
are new for the discrete BVP; (ii) they form new connections
to the continuous BVP. Furthermore, we believe that the
discrete approach to continuous BVPs that we present open
up several lines of inquiry for first-order BVPs.

A solution to the discrete BVP (1) and (2) is a vector 𝑥̃ fl
(𝑥
0
, . . . , 𝑥

𝑛
) ∈ R𝑛+1 having components 𝑥

𝑖
that

(a) satisfy (𝑡
𝑖
, 𝑥
𝑖
) ∈ [0, 1] × 𝐷 for 𝑖 = 0, . . . , 𝑛,

(b) satisfy (1) for 𝑖 = 0, . . . , 𝑛 − 1 and also satisfy (2).

A solution to the continuous BVP (3) and (4) is differen-
tiable function 𝑥 = 𝑥(𝑡) that

(a) satisfies (𝑡, 𝑥(𝑡)) ∈ [0, 1] × 𝐷 for 𝑡 ∈ [0, 1],
(b) satisfies (3) for 𝑡 ∈ [0, 1] and also satisfies (4).

We now present a simple result showing the equivalence
between (1) and (2) and a particular summation equation that
will be used throughout this work.

Lemma 1. The discrete BVP (1) and (2) and the summation
equation

𝑥
𝑖
= ℎ
𝑛−1

∑
𝑗=0

𝐺(𝑡
𝑖
, 𝑡
𝑗
) 𝑓 (𝑡
𝑗
, 𝑥
𝑗
) +

𝑤

𝑢 + V
, 𝑖 = 0, . . . , 𝑛; (5)

are equivalent, with

𝐺(𝑡
𝑖
, 𝑡
𝑗
) fl

{{
{{
{

𝑢

𝑢 + V
, 𝑓𝑜𝑟 0 ≤ 𝑗 ≤ 𝑖 − 1,

−
V

𝑢 + V
, 𝑓𝑜𝑟 𝑖 ≤ 𝑗 ≤ 𝑛 − 1.

(6)

Proof. For completeness we provide a proof. Let 𝑥̃ be a
solution to (1) and (2). If we sum (1) from 0 to 𝑖 − 1 then we
obtain

𝑥
𝑖
= ℎ
𝑖−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
𝑗
) + 𝑥
0
, 𝑖 = 0, . . . , 𝑛; (7)

and so for 𝑖 = 𝑛 we obtain

𝑥
𝑛
= ℎ
𝑛−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
𝑗
) + 𝑥
0
. (8)

Using boundary conditions (2) we can eliminate 𝑥
𝑛
in (8) to

obtain

𝑥
0
=

𝑤

𝑢 + V
−

V
𝑢 + V

ℎ
𝑛−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
𝑗
) . (9)

Thus, substitution of (9) into (7) yields

𝑥
𝑖
= ℎ
𝑖−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
𝑗
) −

V
𝑢 + V

ℎ
𝑛−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝑥
𝑗
) +

𝑤

𝑢 + V
,

𝑖 = 0, . . . , 𝑛,

(10)

which can then be recast into form (5) by splitting the second
term to sum from 𝑗 = 0 to 𝑖 − 1 and from 𝑗 = 𝑖 to 𝑛 − 1.

Now let 𝑥̃ be a solution to (10). It can be directly verified
that (1) and (2) hold.

2. Monotone Sequential Approach

In this section we formulate some existence results for
solutions to (1) and (2) by generating a monotone and
bounded sequence of vectors whose limit will be a solution
to (1) and (2).

Throughout this section the domain [0, 1] × 𝐷 of 𝑓 will
be the rectangle

𝑅
𝑏
fl {(𝑡, 𝑝) ∈ [0, 1] ×R :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 −

𝑤

𝑢 + V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑏} (11)

for some positive number 𝑏.
Since 𝑓 is continuous on the compact set 𝑅

𝑏
we may

define a number𝑀 ≥ 0 such that

𝑀 ≥ max
(𝑡,𝑝)∈𝑅𝑏

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑝)
󵄨󵄨󵄨󵄨 . (12)

The main result of this section is the following.
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Theorem 2. Let 𝑓 : 𝑅
𝑏
→ R be continuous and let

𝑀

|𝑢 + V|
max {|𝑢| , |V|} ≤ 𝑏; (13)

𝑢

𝑢 + V
> 0,

−
V

𝑢 + V
> 0.

(14)

If

𝑓 (𝑡, 𝑦) ≤ 𝑓 (𝑡, 𝑧) , ∀𝑦 ≤ 𝑧, (𝑦, 𝑧) ∈ 𝑅2
𝑏
; (15)

𝑓(𝑡,
𝑤

𝑢 + V
) ≥ 0, ∀𝑡 ∈ [0, 1] , (16)

then problem (1) and (2) has at least one solution 𝑥̃ ∈ R𝑛+1 for
each ℎ ∈ (0, 1) such that (𝑡

𝑖
, 𝑥
𝑖
) ∈ 𝑅
𝑏
for 𝑖 = 0, . . . , 𝑛.

Proof. Consider summation equation (5) that, by Lemma 1,
is equivalent to (1) and (2) and define the sequence of vectors
𝜙̃
(𝑘)

fl (𝜙(𝑘)
0
, . . . , 𝜙(𝑘)

𝑛
) for 𝑘 = 0, 1, 2, . . . recursively by

𝜙(0)
𝑖
=

𝑤

𝑢 + V
, 𝑖 = 0, . . . , 𝑛; (17)

𝜙(𝑘+1)
𝑖

= ℎ
𝑛−1

∑
𝑗=0

𝐺(𝑡
𝑖
, 𝑡
𝑗
) 𝑓 (𝑡
𝑗
, 𝜙(𝑘)
𝑗
) +

𝑤

𝑢 + V
,

𝑖 = 0, . . . , 𝑛.

(18)

Firstly we show that our sequence of vectors 𝜙̃
(𝑘)

is well
defined for 𝑘 = 0, 1, . . . by showing that each |𝜙(𝑘)

𝑖
− 𝑤/(𝑢 +

V)| ≤ 𝑏 for 𝑖 = 0, . . . , 𝑛 and so (𝑡
𝑖
, 𝜙(𝑘)
𝑖
) ∈ 𝑅

𝑏
for each

𝑖 = 0, . . . , 𝑛 and 𝑘 = 0, 1, . . .. We use proof by induction.
From the definition of 𝜙(0)

𝑖
it is easy to see that |𝜙(0)

𝑖
−

𝑤/(𝑢 + V)| ≤ 𝑏 for 𝑖 = 0, . . . , 𝑛. Now assume for some 𝑘
1
≥ 0

we have |𝜙(𝑘1)
𝑖

− 𝑤/(𝑢 + V)| ≤ 𝑏 for 𝑖 = 0, . . . , 𝑛. From (18) we
have for 𝑖 = 0, . . . , 𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙
(𝑘1+1)

𝑖
−

𝑤

𝑢 + V

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ ℎ
𝑛−1

∑
𝑗=0

󵄨󵄨󵄨󵄨󵄨𝐺 (𝑡𝑖, 𝑡𝑗)
󵄨󵄨󵄨󵄨󵄨
󵄨󵄨󵄨󵄨󵄨𝑓 (𝑡𝑗, 𝜙

(𝑘1)

𝑗
)
󵄨󵄨󵄨󵄨󵄨

≤
𝑀ℎ

|𝑢 + V|
[

[

𝑖−1

∑
𝑗=0

|𝑢| +
𝑛−1

∑
𝑗=𝑖

|V|]

]

=
𝑀ℎ

|𝑢 + V|
[|𝑢| 𝑖 + |V| (𝑛 − 𝑖)]

≤
𝑀ℎ𝑛

|𝑢 + V|
max {|𝑢| , |V|}

=
𝑀

|𝑢 + V|
max {|𝑢| , |V|} ≤ 𝑏

(19)

from (13). Thus, by induction, we have (𝑡
𝑖
, 𝜙(𝑘)
𝑖
) ∈ 𝑅
𝑏
for each

𝑖 = 0, . . . , 𝑛 and 𝑘 = 0, 1, . . . and so our sequence of vectors
𝜙̃
(𝑘)

is well defined for each 𝑘 = 0, 1, . . ..

Furthermore, the above has shown that the sequence of
vectors 𝜙̃

(𝑘)

is uniformly bounded for 𝑘 = 0, 1, . . ..
We now show that 𝜙̃

(𝑘+1)

≥ 𝜙̃
(𝑘)

for 𝑘 = 0, 1, . . ., where the
inequality holds in a componentwise fashion. Once again, we
use induction. For 𝑖 = 0, . . . , 𝑛 consider

𝜙(1)
𝑖
= ℎ
𝑖−1

∑
𝑗=0

(
𝑢

𝑢 + V
)𝑓(𝑡

𝑗
,
𝑤

𝑢 + V
)

+ ℎ
𝑛−1

∑
𝑗=𝑖

(
−V
𝑢 + V

)𝑓(𝑡
𝑗
,
𝑤

𝑢 + V
) +

𝑤

𝑢 + V

≥
𝑤

𝑢 + V
= 𝜙(0)
𝑖
,

(20)

where we have used (14) and (16). Thus, 𝜙̃
(1)

≥ 𝜙̃
(0)

.
Now assume that 𝜙̃

(𝑘1)

≥ 𝜙̃
(𝑘1−1) for some 𝑘

1
≥ 1; that is,

assume 𝜙(𝑘1)
𝑖

≥ 𝜙
(𝑘1−1)

𝑖
for 𝑖 = 0, . . . , 𝑛. For each 𝑖 = 0, . . . , 𝑛

we have

𝜙
(𝑘1+1)

𝑖
= ℎ
𝑖−1

∑
𝑗=0

(
𝑢

𝑢 + V
)𝑓 (𝑡

𝑗
, 𝜙
(𝑘1)

𝑗
)

+ ℎ
𝑛−1

∑
𝑗=𝑖

(
−V
𝑢 + V

)𝑓 (𝑡
𝑗
, 𝜙
(𝑘1)

𝑗
) +

𝑤

𝑢 + V

≥ ℎ
𝑖−1

∑
𝑗=0

(
𝑢

𝑢 + V
)𝑓 (𝑡

𝑗
, 𝜙
(𝑘1−1)

𝑗
)

+ ℎ
𝑛−1

∑
𝑗=𝑖

(
−V
𝑢 + V

)𝑓 (𝑡
𝑗
, 𝜙
(𝑘1−1)

𝑗
) +

𝑤

𝑢 + V

= 𝜙
(𝑘1)

𝑖
,

(21)

where we have used assumptions (14) and (15). Thus, 𝜙̃
(𝑘+1)

≥

𝜙̃
(𝑘)

for 𝑘 = 0, 1, . . ..
From the above we conclude that 𝜙̃

(𝑘)

is a uniformly
bounded and nondecreasing sequence of vectors and somust
converge to a vector 𝜙̃; that is,

lim
𝑘→∞

𝜙̃
(𝑘)

= 𝜙̃ (22)

for some 𝜙̃ ∈ R𝑛+1.
We finally show that the above 𝜙̃ = (𝜙

0
, . . . , 𝜙

𝑛
) ∈ R𝑛+1 is

actually a solution to (1) and (2). Since each |𝜙(𝑘)
𝑖
−𝑤/(𝑢+V)| ≤

𝑏wemust have each |𝜙
𝑖
−𝑤/(𝑢+V)| ≤ 𝑏 and so (𝑡

𝑖
, 𝜙
𝑖
) ∈ 𝑅
𝑏
for

𝑖 = 0, . . . , 𝑛. Furthermore, the continuity of 𝑓 on 𝑅
𝑏
ensures

that
𝑓 (𝑡
𝑖
, 𝜙(𝑘)
𝑖
) 󳨀→ 𝑓 (𝑡

𝑖
, 𝜙
𝑖
) , as 𝑘 󳨀→ ∞ (23)

for each 𝑖 = 0, . . . , 𝑛.
If we now take limits in (18) as 𝑘 → ∞ then we obtain

𝜙
𝑖
= ℎ
𝑛−1

∑
𝑗=0

𝐺(𝑡
𝑖
, 𝑡
𝑗
) 𝑓 (𝑡
𝑗
, 𝜙
𝑗
) +

𝑤

𝑢 + V
, 𝑖 = 0, . . . , 𝑛, (24)

so that our limit vector 𝜙̃ is a solution to (1) and (2).
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Table 1

𝑖 0 1 2 3 4
𝜖(2)
𝑖

0.00206246 0.00244859 0.00262248 0.00264573 0.00259853
𝜖(4)
𝑖

0.0000898399 0.000100995 0.000108355 0.000112198 0.000113191
𝜖(6)
𝑖

3.5115 × 10−6 3.9453 × 10−6 4.2343 × 10−6 4.3843 × 10−6 4.4242 × 10−6

𝜖(8)
𝑖

1.3681 × 10−7 1.5372 × 10−7 1.6497 × 10−7 1.7082 × 10−7 1.7238 × 10−7

𝜖(10)
𝑖

5.3299 × 10−9 5.9883 × 10−9 6.4269 × 10−9 6.6545 × 10−9 6.7152 × 10−9

𝜖(12)
𝑖

2.0764 × 10−10 2.3329 × 10−10 2.5037 × 10−10 2.5924 × 10−10 2.6161 × 10−10

Example 3. Consider the following discrete BVP:

Δ𝑥
𝑖

ℎ
=
1

10
[(𝑥
𝑖
)
1/3

+ 𝑡
𝑖
] , 𝑖 = 0, . . . , 𝑛 − 1; (25)

𝑥
0
−
1

2
𝑥
𝑛
= 0, (26)

so that we have a special case of (1) and (2) with

𝑓 (𝑡, 𝑦) =
1

10
[𝑦1/3 + 𝑡] ;

𝑢 = 1;

V = −
1

2
;

𝑤 = 0.

(27)

We claim that problem (25) and (26) has at least one solution
𝑥̃ such that |𝑥

𝑖
| ≤ 1 for 𝑖 = 0, . . . , 𝑛.

Proof. We show that all of the conditions of Theorem 2 hold.
Firstly, we see that the inequalities in (14) hold. If we choose
𝑏 = 1 to form 𝑅

𝑏
then 𝑀 = 1/5 and so (13) holds.

Furthermore, 𝑓 is nondecreasing in the second variable
and so (15) is satisfied. Finally, (16) holds. Thus, all of the
conditions of Theorem 2 hold and the result follows.

Remark 4. In Example 3 above, letting 𝑛 = 4, pick 𝜙(0)
𝑖

= 0

for 𝑖 = 0, . . . , 4 and construct the approximating iterates 𝜙(𝑘)
𝑖

as in (18). The numbers in Table 1 signify the error

𝜖(𝑘)
𝑖

fl
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝜙(𝑘)
𝑖
−
ℎ

10
[(𝜙(𝑘)
𝑖
)
1/3

+ 𝑖ℎ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(28)

that results upon substituting the generated 𝜙(𝑘)
𝑖

into (25).
We notice that the error in terms of𝜙(𝑘)

𝑖
at each 𝑖 decreases

for this example as 𝜙(𝑘)
𝑖

converge upward to a solution in the
rectangle, so that 𝜙(12)

𝑖
, for example, is a good approximation

to a solution 𝑥
𝑖
of (25). The actual values of 𝜙(12)

𝑖
≈ 𝑥
𝑖
are

given by

𝜙(12)
0

= 0.0849743,

𝜙(12)
1

= 0.0959653,

𝜙(12)
2

= 0.113661,

𝜙(12)
3

= 0.138271,

𝜙(12)
4

= 0.169949.

(29)

Note that by construction, 𝜙(𝑘)
𝑖

satisfies boundary condition
(26); namely,

𝜙(𝑘)
0
−
1

2
𝜙(𝑘)
𝑛
= 0, for each 𝑘 ∈ N. (30)

The following result is a modification of the ideas in
Theorem 2 and its proof.

Theorem 5. Let 𝑓 : 𝑅
𝑏
→ R be continuous and let

𝑀[1 −
V

𝑢 + V
] ≤ 𝑏; (31)

−
V

𝑢 + V
> 0. (32)

If

𝑓 (𝑡, 𝑦) ≤ 𝑓 (𝑡, 𝑧) , ∀𝑦 ≤ 𝑧, (𝑦, 𝑧) ∈ 𝑅2
𝑏
;

𝑓 (𝑡,
𝑤

𝑢 + V
) ≥ 0; ∀𝑡 ∈ [0, 1] ,

(33)

then problem (1) and (2) has at least one solution 𝑥̃ ∈ R𝑛+1

such that (𝑡
𝑖
, 𝑥
𝑖
) ∈ 𝑅
𝑏
for 𝑖 = 0, . . . , 𝑛.

Proof. The proof is very similar to that of Theorem 2 and so
is only outlined.

Consider the sequence of successive approximations
defined by

𝜙(0)
𝑖
=

𝑤

𝑢 + V
, 𝑖 = 0, . . . , 𝑛;

𝜙(𝑘+1)
𝑖

= ℎ
𝑖−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝜙(𝑘)
𝑗
) −

V
𝑢 + V

ℎ
𝑛−1

∑
𝑗=0

𝑓 (𝑡
𝑗
, 𝜙(𝑘)
𝑗
)

+
𝑤

𝑢 + V
, 𝑖 = 0, . . . , 𝑛;

(34)
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for 𝑘 = 0, 1, 2, . . .. The continuity of 𝑓 and (31) ensure
that the successive approximations are well defined and
uniformly bounded. The assumptions (32)-(33) ensure that
the successive approximations are a nondecreasing sequence
with the convergence and existence following in the sameway
as in the proof of Theorem 2.

Remark 6. Note that (31) is a stronger assumption than (13),
while (32) is weaker than (14).

There are a number of interesting variations of Theorems
2 and 5 that we now discuss.

Remark 7. The proofs of Theorems 2 and 5 essentially rest
on generating a bounded, nondecreasing sequence of vectors.
The statement of each theorem can be suitably modified so as
to produce a bounded, nonincreasing sequence of vectors that
converge to a solution of (1) and (2). All that is required is to
reverse the differential inequalities in, for example, (15) and
(16).

Remark 8. For simplicity, the initial approximation 𝜙̃
0
in the

proofs ofTheorems 2 and 5was chosen to be a constant vector
with components 𝑤/(𝑢 + V). With suitable modifications on
(16) we may use any vector 𝜙̃

0
as our initial approximation

provided (𝑡
𝑖
, 𝜙(0)
𝑖
) ∈ 𝑅

𝑏
for 𝑖 = 0, . . . , 𝑛. For BVPs that

have more than one solution, different choices in our initial
approximation 𝜙̃

0
can lead to the generation of distinct limit

functions 𝜙̃. That is, through various choices of 𝜙̃
0
we can

observe convergence of 𝜙̃
(𝑘)

to various solutions of (1) and (2).

3. A Discrete Approach to
Differential Equations

In this section we form a relationship between solutions to
the discrete BVP (1) and (2) and solutions to the continuous
BVP (3) and (4).We generate a sequence of functions that are
based on the solutions to (1) and (2) guaranteed to exist from
earlier sections and present some conditions under which
they will converge to a function as ℎ → 0, with the function
being a solution to (3) and (4). Thus, our approach uses the
discrete problem to generate new existence results for the
continuous problem in a constructive manner.

Our first general convergence result is in the spirit of [7,
Lemma 2.4], where Gaines applies the ideas to second-order
BVPs. Our result involves a bound on the solutions to (1) and
(2), with the bound being independent of ℎ.

We require the following notation. Denote the sequence
𝑛
𝑚
→∞ as𝑚 →∞; let 0 < ℎ

𝑚
= 1/𝑛

𝑚
< 1; and let 𝑡𝑚

𝑖
= 𝑖ℎ
𝑚

for 𝑖 = 0, . . . , 𝑛. If problem (1) and (2) has a solution for ℎ = ℎ
𝑚

and𝑚 ≥ 𝑚
0
that we denote by

𝑥̃𝑚 fl (𝑥𝑚
0
, . . . , 𝑥𝑚

𝑛
) (35)

then we construct the following sequence of continuous
functions from (35) via linear interpolation to form

𝑥𝑚 (𝑡) fl 𝑥𝑚
𝑖
+
(𝑥𝑚
𝑖+1
− 𝑥𝑚
𝑖
)

ℎ
𝑚

(𝑡 − 𝑡𝑚
𝑖
) , 𝑡𝑚
𝑖
≤ 𝑡 ≤ 𝑡𝑚

𝑖+1
, (36)

for 𝑚 ≥ 𝑚
0
and 𝑡 ∈ [0, 1]. Note that 𝑥𝑚(𝑡𝑚

𝑖
) = 𝑥𝑚

𝑖
for 𝑖 =

0, . . . , 𝑛.

Lemma 9. Let 𝑓 : [0, 1] × 𝐷 ⊆ [0, 1] ×R→ R be continuous
and let𝑅 ≥ 0 be a constant. If problem (1) and (2) has a solution
for ℎ ≤ ℎ

𝑚
and𝑚 ≥ 𝑚

0
that we denote by 𝑥̃𝑚 with

max
𝑖=0,...,𝑛

󵄨󵄨󵄨󵄨𝑥
𝑚

𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑅, 𝑚 ≥ 𝑚
0
, (37)

then problem (3) and (4) has a solution 𝑥 = 𝑥(𝑡) that is the
limit of a subsequence of (36).

Proof. For 𝑚 ≥ 𝑚
0
consider the sequence of functions 𝑥𝑚(𝑡)

for 𝑡 ∈ [0, 1] in (36). We show that the sequence of functions
𝑥𝑚 is uniformly bounded and equicontinuous on [0, 1]. For
𝑡 ∈ [𝑡𝑚
𝑖
, 𝑡𝑚
𝑖+1
] and𝑚 ≥ 𝑚

0
we have

󵄨󵄨󵄨󵄨𝑥
𝑚
(𝑡)
󵄨󵄨󵄨󵄨 ≤

󵄨󵄨󵄨󵄨𝑥
𝑚

𝑖

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥𝑚
𝑖+1
− 𝑥𝑚
𝑖
)

ℎ
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝑡 − 𝑡
𝑚

𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑅 +𝑀1, (38)

where
𝑀
1
≥ max
𝑡∈[0,1],|𝑝|≤𝑅

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑝)
󵄨󵄨󵄨󵄨 . (39)

Thus, 𝑥𝑚 is uniformly bounded on [0, 1].
For 𝛽, 𝛾 ∈ [0, 1] and given 𝜀 > 0, consider

󵄨󵄨󵄨󵄨𝑥
𝑚 (𝛽) − 𝑥𝑚 (𝛾)

󵄨󵄨󵄨󵄨 ≤
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑥𝑚
𝑖+1
− 𝑥𝑚
𝑖
)

ℎ
𝑚

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝛽 − 𝛾
󵄨󵄨󵄨󵄨

≤ 𝑀
1

󵄨󵄨󵄨󵄨𝛽 − 𝛾
󵄨󵄨󵄨󵄨 < 𝜀

(40)

whenever |𝛽 − 𝛾| < 𝛿(𝜀) fl 𝜀/𝑀
1
. Thus, 𝑥𝑚 is equicontinuous

on [0, 1].
The convergence Arzela-Ascoli theorem [12, p. 527] guar-

antees that the sequence of continuous functions 𝑥𝑚 = 𝑥𝑚(𝑡)
has a subsequence 𝑥𝑘(𝑚)(𝑡) that converges uniformly to a
continuous function 𝑥 = 𝑥(𝑡) for 𝑡 ∈ [0, 1]. That is,

max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨󵄨𝑥
𝑘(𝑚)

(𝑡) − 𝑥 (𝑡)
󵄨󵄨󵄨󵄨󵄨 󳨀→ 0, as 𝑚 󳨀→ ∞. (41)

The continuity of 𝑓 ensures that the above limit function
will be a solution to (3) and (4).

The next theorem, in the spirit of [7, Theorem 2.5], will
require the following notation. If problem (1) and (2) has a
solution 𝑥̃ for 0 < ℎ ≤ ℎ

0
then we define the continuous

function 𝑥(𝑡, 𝑥̃) by

𝑥 (𝑡, 𝑥̃) fl 𝑥
𝑖
+
(𝑥
𝑖+1
− 𝑥
𝑖
)

ℎ
(𝑡 − 𝑡
𝑖
) , 𝑡
𝑖
≤ 𝑡 ≤ 𝑡

𝑖+1
. (42)

Theorem 10. Let𝑓 : [0, 1]×𝐷 ⊆ [0, 1]×R→ R be continuous
and let 𝑅 ≥ 0 be a constant. Assume problem (1) and (2) has a
solution for ℎ ≤ ℎ

0
that we denote by 𝑥̃ with

max
𝑖=0,...,𝑛

󵄨󵄨󵄨󵄨𝑥𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑅. (43)

Given 𝜀 > 0 there exists 𝛿 = 𝛿(𝜀) such that if ℎ ≤ 𝛿 then
problem (3) and (4) has a solution 𝑥 = 𝑥(𝑡) with

max
𝑡∈[0,1]

|𝑥 (𝑡, 𝑥̃) − 𝑥 (𝑡)| ≤ 𝜀. (44)
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Proof. Suppose, for some 𝜀 > 0, there is a sequence ℎ
𝑚
such

that ℎ
𝑚
→ 0 as 𝑚 → ∞ and for ℎ = ℎ

𝑚
= 1/𝑛

𝑚
problem (1)

and (2) has a solution 𝑥̃𝑚 with every solution 𝑥 = 𝑥(𝑡) to (3)
and (4) satisfying

max
𝑡∈[0,1]

|𝑥 (𝑡, 𝑥̃) − 𝑥 (𝑡)| > 𝜀. (45)

By assumption, for 𝑚 sufficiently large, there is 𝑅 ≥ 0 such
that the solution 𝑥̃𝑚 to (1) and (2) satisfies

max
𝑖=0,...,𝑛

󵄨󵄨󵄨󵄨𝑥
𝑚

𝑖

󵄨󵄨󵄨󵄨 ≤ 𝑅. (46)

Thus, the conditions of Lemma 9 are satisfied and so we
obtain a subsequence 𝑥𝑘(𝑚)(𝑡) of 𝑥𝑚(𝑡) that converges uni-
formly on [0, 1] to a solution 𝑥 of (3) and (4). Thus, (45)
cannot hold.

We now relate the above abstract results to the ideas from
earlier sections.

Theorem 11. Let the conditions of Theorem 2 hold. Given any
𝜀 > 0 there is 𝛿 = 𝛿(𝜀) such that if ℎ ≤ 𝛿 then problem (3) and
(4) has a solution 𝑥 that satisfies (44).

Proof. We show that the conditions of Theorem 10 are satis-
fied for 𝑅

𝑏
= [0, 1] × 𝐷. Assumption (13) ensures that the

solution 𝑥̃ to (1) and (2) guaranteed to exist by Theorem 2
satisfies |𝑥

𝑖
| ≤ 𝑏 for 𝑖 = 0, . . . , 𝑛 and so (43) holds with 𝑅 = 𝑏.

Thus, all of the conditions of Theorem 10 hold and the
result follows.

Remark 12. Similar results to that of Theorem 11 hold under
the assumptions of Theorem 5 or Remark 7.
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[8] I. Rachůnková and C. C. Tisdell, “Existence of non-spurious
solutions to discrete Dirichlet problems with lower and upper
solutions,” Nonlinear Analysis: Theory, Methods and Applica-
tions, vol. 67, no. 4, pp. 1236–1245, 2007.

[9] H. B.Thompson andC. Tisdell, “Systems of difference equations
associated with boundary value problems for second order
systems of ordinary differential equations,” Journal of Mathe-
matical Analysis and Applications, vol. 248, no. 2, pp. 333–347,
2000.

[10] H. B. Thompson and C. Tisdell, “Boundary value problems
for systems of difference equations associated with systems of
second-order ordinary differential equations,” Applied Mathe-
matics Letters, vol. 15, no. 6, pp. 761–766, 2002.

[11] H. B. Thompson and C. C. Tisdell, “The nonexistence of spuri-
ous solutions to discrete, two-point boundary value problems,”
Applied Mathematics Letters, vol. 16, no. 1, pp. 79–84, 2003.

[12] W. T. Reid,Ordinary Differential Equations, JohnWiley & Sons,
New York, NY, USA, 1971.


