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We prove two results concerning the existence of solutions for functional differential inclusions that are governed by sweeping
processes, with noncompact valued perturbations in Banach spaces. Indeed, we have two goals. The first is to give a technique
that allows considering sweeping processes with noncompact valued perturbations and associated with a multivalued function
depending on time. The second is to give a technique to overcome the arising problem from the nonlinearity of the normalized
mappings, when we deal with sweeping processes with noncompact valued perturbations and associated with a multivalued
function depending on time and state.

1. Introduction

In his leading paper, Moreau [1] proposed and studied the
following differential inclusion governed by sweeping process
of first order:

−𝑢

󸀠

(𝑡) ∈ 𝑁

𝐺(𝑡)
(𝑢 (𝑡)) a.e. on 𝐼 = [0, 𝑇] ,

𝑢 (0) = 𝑢

0
,

(1)

where 𝐺 is a multifunction from the interval 𝐼 = [0, 𝑇] to
the family of nonempty closed convex subsets of a Hilbert
space 𝐻 and 𝑁

𝐺(𝑡)
(𝑢(𝑡)) is the normal cone of the subset

𝐺(𝑡) at the point 𝑢(𝑡). Problem (1) corresponds to several
importantmechanical problems. Formore details concerning
the applications of (1), we refer to [1].

Since then, important improvements have been devel-
oped by several authors. For some existence results of solu-
tions for sweeping processes in Hilbert or Banach spaces, we
refer to [2–10].

Let 𝐸 be a Banach space, 𝑟 a positive real number,
𝐶

𝑟
= 𝐶

𝐸
([−𝑟, 0]) the Banach space of continuous functions

from [−𝑟, 0] to 𝐸 endowed with the uniform norm ‖𝑢‖

∞
=

Sup{‖𝑢(𝑡)‖ : 𝑡 ∈ [−𝑟, 0]}, 𝐶 a multifunction from 𝐼 to
the family of nonempty closed convex subsets of 𝐸, 𝐹 a

multifunction defined on 𝐼 × 𝐶
𝑟
and with nonempty closed

values in the topological dual space, 𝐸∗, of 𝐸, and Γ a
multifunction from 𝐼 × 𝐸

∗ to the family of nonempty closed
convex subsets of 𝐸. Let 𝐽 : 𝐸 → 𝐸

∗ and 𝐽∗ : 𝐸

∗
→ 𝐸

be the normalized duality mappings and for each 𝑡 ∈ 𝐼,
𝜏(𝑡) : 𝐶

𝐸
([−𝑟, 𝑡]) → 𝐶

𝑟
and (𝜏(𝑡)𝑔)(𝑠) = 𝑔(𝑠+ 𝑡), ∀𝑠 ∈ [−𝑟, 0].

Let Ψ ∈ 𝐶
𝑟
be given.

In this paper, we prove two existence results. In the first
result (Theorem 15), we prove, in 𝑝-uniformly convex and 𝑞-
uniformly smooth Banach space, the existence of solutions
for the following sweeping process with noncompact valued
perturbation and with delay:

𝑢 (𝑡) = Ψ (𝑡) , for 𝑡 ∈ [−𝑟, 0] ;

𝑢 (𝑡) = Ψ (0) + ∫

𝑡

0

𝑢

󸀠

(𝑠) 𝑑𝑠, for 𝑡 ∈ 𝐼,

𝑢 (𝑡) ∈ 𝐶 (𝑡) , for 𝑡 ∈ 𝐼,

𝑢

∗

(𝑡) = 𝐽 (𝑢 (𝑡)) , for 𝑡 ∈ 𝐼,

(𝑢

∗
)

󸀠

(𝑡) ∈ −𝑁

𝐶(𝑡)
(𝑢 (𝑡)) + 𝐹 (𝑡, 𝜏 (𝑡) 𝑢) ,

a.e. for 𝑡 ∈ 𝐼.

(2)
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In the second result (Theorem 16), we prove, in 𝑝-
uniformly convex and 𝑞-uniformly smooth Banach spaces,
the existence of solutions for the following sweeping process
with a noncompact valued perturbation and with delay:

𝑢 (𝑡) = Ψ (𝑡) , for 𝑡 ∈ [−𝑟, 0] ;

𝑢 (𝑡) = Ψ (0) + ∫

𝑡

0

𝑢

󸀠

(𝑠) 𝑑𝑠, for 𝑡 ∈ 𝐼,

𝑢

∗

(𝑡) = 𝐽

∗

(𝑢 (𝑡)) , for 𝑡 ∈ 𝐼,

𝑢 (𝑡) ∈ Γ (𝑡, 𝑢

∗

(𝑡)) , for 𝑡 ∈ 𝐼,

(𝑢

∗
)

󸀠

(𝑡) ∈ −𝑁

Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡)) + 𝐹 (𝑡, 𝜏 (𝑡) 𝑢) ,

a.e. for 𝑡 ∈ 𝐼.

(3)

We prove the existence of solutions for (3) without
imposing that the values of Γ are contained in a fixed convex
compact subset; instead, we suppose that Γ satisfies a condi-
tion in terms of the Hausdorff measure of noncompactness.

It is important to note that when the sweeping process
is associated with a multifunction depending on time and
state, the nonlinearity of the normalized duality mappings
causes a difficulty when we deal with sweeping process with
a perturbation; see, for example, the remark which has been
given by Bounkhel andCastaing [6]. For this reasonwe define
the multifunction Γ on 𝐼 × 𝐸∗

.

In order to explain the mathematical motivation for this
work, we mention some recent results in this domain.

Aitalioubrahim [2] considered (2) when 𝑋 is a Hilbert
space and the value of 𝐶 is nonempty compact and not
necessarily convex.

In Theorem (4.3) in [5], Bounkhel and Al-Yusof estab-
lished the existence of solutions for (2), in a separable, 𝑝-
uniformly convex (𝑝 > 1) and 𝑞-uniformly smooth (𝑞 > 1)
Banach space without delay and when 𝐽(𝐶(𝑡)) ⊆ 𝐺, for any
𝑡 ∈ 𝐼, for some convex compact set 𝐺 ⊆ 𝐸

∗; 𝐹 is upper
semicontinuous with convex compact values and𝐹(𝑡, 𝑥) ⊆ 𝑍,
∀(𝑡, 𝑥) ∈ 𝐼 × 𝐸, for some convex compact subset 𝑍 ⊂ 𝐸∗.

In Theorem (4.5) in [6], Bounkhel and Castaing consid-
ered (3) in a separable, 𝑝-uniformly convex (𝑝 ≥ 2) and 𝑞-
uniformly smooth Banach space, 𝑞 ∈ (1, 2], and when 𝐹 = 0
and Γ is defined from 𝐼 × 𝐸 to the family of nonempty closed
convex subsets of 𝐸 and satisfies a condition in terms of the
Hausdorff measure of noncompactness.

Castaing et al. [10] considered a second-order sweeping
process without delay in a separable Hilbert space 𝐻 in the
case when𝐾 is a Lipschitzmultifunction defined on 𝐼×𝐻 and
taking closed 𝜌-proxy regular (𝜌 > 0) values in𝐻; and 𝐹 is a
convexweakly compact valued scalary upper semicontinuous
defined on 𝐼 × 𝐻 × 𝐻.

Ibrahim and AL-Adsani [7] considered a second order
sweeping process with delay in a separable 𝑝-uniformly con-
vex and 𝑞-uniformly smooth Banach space 𝑋 and the values
of perturbation 𝐹 are nonempty convex weakly compact.

Noel and Thibault [8] established the existence of solu-
tions for nonconvex sweeping processes with a moving set
depending on the state in Hilbert spaces.

For other contributions on differential inclusions, see
Gomaa [11].

We note that if 𝐸 is a Hilbert space, then 𝐽 is equal
to the identity mapping, 𝐸 is 2-uniformly convex and 2-
uniformly smooth Banach space. Therefore, our technique
allows discussing some sweeping process problems with
noncompact perturbation in Hilbert spaces or in Banach
spaces, whether the moving set depends on time or on time
and state.

The paper is organized as follows. Section 2 is devoted to
some definitions and notations needed later. In Section 3, we
prove the existence of solutions for (2). In Section 4, we give
existence of solutions for (3).

2. Preliminaries and Notations

Let 𝑃
𝑐
(𝐸) = {𝐴 ⊆ 𝐸 : 𝐴 is nonempty closed}, 𝑃

𝑐𝑐
(𝐸) = {𝐴 ⊆

𝐸 : 𝐴 is nonempty closed convex}, and 𝑃
𝑐𝑘
(𝐸) = {𝐴 ⊆ 𝐸 : 𝐴

is nonempty, convex and compact}. Let 𝐵 = {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 1}
and 𝐵

∗
= {𝑧 ∈ 𝐸

∗
: ‖𝑧‖ ≤ 1}.

Definition 1 (see Def. 2.4.1 [12]). The multivalued mappings

𝐽 : 𝐸 󳨀→ 2

𝐸
∗

,

𝐽 (𝑥) = {𝑦 ∈ 𝐸

∗
: ⟨𝑥, 𝑦⟩ = ‖𝑥‖

2
=

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩

2

} ,

𝐽

∗
: 𝐸

∗
󳨀→ 2

𝐸
,

𝐽

∗
(𝑦) = {𝑥 ∈ 𝑋 : ⟨𝑦, 𝑥⟩ = ‖𝑥‖

2
=

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩

2

}

(4)

are called the normalized duality mappings.

In the following Lemma, we recall some properties of 𝐽
and 𝐽∗.

Lemma 2 (see [12], Prop. 2.4.5, 2.4.12, and 2.4.15). We have
the following:

(1) If 𝐸 is a Hilbert space, then 𝐽(𝑥) = {𝑥}, for all 𝑥 ∈ 𝐻.
(2) For each 𝑥 ∈ 𝐸, 𝐽(𝑥) is nonempty closed convex and

bounded subset of 𝐸∗.
(3) 𝐽(𝜆𝑥) = 𝜆𝐽(𝑥), for all 𝑥 ∈ 𝐸 and all 𝜆 ∈ R.
(4) If 𝐸∗ is strictly convex, 𝐽 is single-valued.
(5) If 𝐸 is strictly convex, 𝐽 is one to one; that is, 𝑥 ̸= 𝑦 ⇒

𝐽(𝑥) ∩ 𝐽(𝑦) = 𝜙.
(6) If 𝐸∗is uniformly convex, then 𝐽 is uniformly continu-

ous on each bounded set in 𝐸; that is, ∀𝜀 > 0 and 𝛼 > 0
there is a 𝛿 = 𝛿(𝜀, 𝛼) > 0 such that for 𝑥 and 𝑦 with
‖𝑥‖ < 𝛼 and ‖𝑦‖ < 𝛼 we have

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

< 𝛿 󳨐⇒

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥) − 𝐽 (𝑦)

󵄩

󵄩

󵄩

󵄩

< 𝜀

(5)

(note that if 𝐸∗ is uniformly convex, then it is strictly
convex and hence 𝐽 is single-valued mapping).
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(7) If 𝐸 is reflexive, then 𝐽 is a mapping from 𝐸 onto 𝐸∗,
that is

∪ {𝐽 (𝑥) : 𝑥 ∈ 𝐸} = 𝐸

∗
; (6)

(8) If𝐸 is reflexive strictly convex space with strictly convex
conjugate space 𝐸∗, then 𝐽 and 𝐽∗ are one-to-one, onto
and single-valued mapping and

𝐽

−1
= 𝐽

∗
,

𝐽𝐽

∗
= 𝐼

𝑋
∗ ,

𝐽

∗
𝐽 = 𝐼

𝑋
,

(7)

where 𝐼
𝑋
is the identity mapping on 𝐸 and 𝐼

𝐸
∗ is the

identity mapping on 𝐸∗.

For more properties of the duality mapping, we refer to
[12–14].

Definition 3 (see [12], Def. 2.8.1). The Banach space 𝐸 is said
to be uniformly smooth if

𝜌

󸀠

𝐸
(0) = lim

𝑡→0

𝜌

𝐸
(𝑡)

𝑡

= 0,

(8)

where 𝜌
𝐸
is the modulus of smoothness of 𝐸.

Definition 4 (see [12–14]). Let 𝑞 > 1 be a real number. A
Banach space 𝐸 is said to be 𝑞-uniformly smooth if there
exists a constant 𝑐 > 0 such that 𝜌

𝐸
(𝑡) ≤ 𝑐𝑡

𝑞, ∀𝑡 > 0.

Clearly, every 𝑞-uniformly smooth Banach space is uni-
formly smooth.

Lemma 5 (see [12–14]). The following properties are satisfied:

(1) 𝐸 is uniformly smooth if and only if 𝐸∗ is uniformly
convex.

(2) 𝐸 is uniformly convex if and only if 𝐸∗ is uniformly
smooth.

(3) If 𝐸 is uniformly smooth, then 𝐸 is reflexive.

Lemma 6 (see [12, 13]). Let 𝑝 > 1:
(1) If 𝐸 is 𝑝-uniformly convex, then 𝐸∗ is 𝑝󸀠-uniformly

smooth where 𝑝󸀠
= 𝑝/(𝑝 − 1).

(2) If 𝐸 is 𝑝-uniformly smooth, then 𝐸∗ is 𝑝󸀠-uniformly
convex where 𝑝󸀠

= 𝑝/(𝑝 − 1).

Remark 7. It is known that

(1) the Banach space 𝐿𝑝(𝐼,R) is min{2, 𝑝} uniformly
smooth;

(2) if 1 < 𝑝 < 2, then 𝐿𝑝(𝐼,R) is 2-uniformly convex; if
2 ≤ 𝑝, then 𝐿𝑝(𝐼,R) is 𝑝-uniformly convex.

Now, let

𝑉 : 𝐸

∗
× 𝐸 󳨀→ R,

𝑉

∗
: 𝐸 × 𝐸

∗
󳨀→ R

(9)

be two functions defined by

𝑉 (𝜑, 𝑥) =

󵄩

󵄩

󵄩

󵄩

𝜑

󵄩

󵄩

󵄩

󵄩

2

− 2 ⟨𝜑, 𝑥⟩ + ‖𝑥‖

2
,

𝑉

∗
(𝑥, 𝜑) = 𝑉 (𝜑, 𝑥) .

(10)

Observe that 𝑉(𝐽(𝑥), 𝑥) = 0, ∀𝑥 ∈ 𝐸, and if 𝐸 is a Hilbert
space, then 𝑉(𝜑, 𝑥) = ‖𝜑 − 𝑥‖2.

Definition 8 (see [12]). Let 𝑍 be a nonempty subset of 𝐸 and
𝜑 ∈ 𝐸

∗. If there exists a point 𝑧 ∈ 𝑍 satisfying 𝑉(𝜑, 𝑧) =
𝑑

𝑉

𝑍
(𝜑), then 𝑧 is called a generalized projection of 𝜑 onto 𝑍,

where 𝑑𝑉
𝑍
(𝜑) = inf

𝑥∈𝑍
𝑉(𝜑, 𝑥).

The set of all such points is denoted by 𝜋
𝑍
(𝜑); that is,

𝜋

𝑍
(𝜑) = {𝑧 ∈ 𝑍 : 𝑉 (𝜑, 𝑧) = 𝑑

𝑉

𝑍
(𝜑)} . (11)

The following lemma summarizes some important prop-
erties of 𝑉 and 𝜋

𝑍
(𝜑) (see [12]).

Lemma 9. Let 𝑋 be a reflexive Banach space with dual space
𝑋

∗and let 𝑍 be a nonempty closed convex subset of 𝑋. The
following properties hold:

(1) 𝜋
𝑍
(𝜑) ̸= 𝜙, ∀𝜑 ∈ 𝑋∗.

(2) If𝑋 is uniformly convex or uniformly smooth, then

𝑉 (𝜑, 𝑥) = 0 ⇐⇒

𝜑 = 𝐽 (𝑥) ,

∀𝑥 ∈ 𝑋, 𝜑 ∈ 𝑋

∗
.

(12)

(3) 𝑋 is strictly convex if and only if 𝜋
𝑍
(𝜑) is singleton for

all 𝜑 ∈ 𝑋∗.
(4) If𝑋 is also smooth, then, for any given 𝜑 ∈ 𝑋∗,

𝑧 ∈ 𝜋

𝑍
(𝜑) ⇐⇒

⟨𝜑 − 𝐽 (𝑧) , 𝑥 − 𝑧⟩ ≤ 0,

∀𝑥 ∈ 𝑋.

(13)

Definition 10 (see [4, 14]). Let𝑍 be a nonempty closed convex
subset of 𝐸 and 𝑧 ∈ 𝑍. The convex normal cone of 𝑍 at 𝑧 is
defined by

𝑁

𝑍
(𝑧) = {𝜑 ∈ 𝐸

∗
: ⟨𝜑, 𝑥 − 𝑧⟩ ≤ 0, ∀𝑥 ∈ 𝐸} . (14)

The following lemma gives a closedness property of the
subdifferential of the distance function associated with a set-
valued mapping with closed convex values.

Lemma 11 (see [14]). Let𝑍 be a nonempty, closed, and convex
subset of a Banach space𝑋 and 𝑧 ∈ 𝑍. Then,

(1) 𝑁
𝑍
(𝑧) ∩ {𝑦 ∈ 𝑋

∗
: ‖𝑦‖ ≤ 1} = 𝜕𝑑

𝑍
(𝑧), where 𝜕𝑑

𝑍
(𝑧)

is the subdifferential of the distance function;



4 Abstract and Applied Analysis

(2) if𝑋 is reflexive and smooth, then

𝑧 ∈ 𝜋

𝑍
(𝜑) ⇐⇒

𝜑 − 𝐽 (𝑧) ∈ 𝑁

𝑍
(𝑧) ,

∀𝜑 ∈ 𝑋

∗
, ∀𝑧 ∈ 𝑍.

(15)

Let us recall the following lemmas that will be used in the
sequel.

Lemma 12 (see [5], Lemma 4.1 and Prop. 4.2). Let 𝑝, 𝑞 > 1,
let𝑋 be a 𝑝-uniformly convex and 𝑞-uniformly smooth Banach
space, and let𝑍 be a nonempty bounded subset of𝑋; then, there
exist two constants 𝑎 > 0 and 𝑏 > 0 such that
𝑎

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

𝑝

≤ 𝑉 (𝐽 (𝑥) , 𝑦) ≤ 𝑏

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

𝑞

, ∀𝑥, 𝑦 ∈ 𝑍,

𝑑

𝑉

𝑍
(𝜑) ≤ 𝑏 (𝑑

𝑍
(𝐽

∗
(𝜑)))

𝑞

, ∀𝜑 ∈ 𝑋

∗
.

(16)

Moreover, if 𝑍, in addition, is closed and 𝜑 ∈ 𝑋∗, then

𝑑

𝑉

𝑍
(𝜑) = 0 ⇐⇒

𝐽

∗
(𝜑) ∈ 𝑍.

(17)

Lemma 13 (see [6], Prop. 4.3). Let 𝑝 ≥ 2, and let 𝑋 be a 𝑝-
uniformly convex and 𝑞-uniformly smooth Banach space. The
normalized dualitymapping 𝐽 is Lipschitz on bounded sets; that
is, for any 𝑅 > 0, there is a positive constant dependent on
𝑅, 𝐶(𝑅), such that

‖𝑥‖ ≤ 𝑅,

󵄩

󵄩

󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩

≤ 𝑅 󳨐⇒

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥) − 𝐽 (𝑦)

󵄩

󵄩

󵄩

󵄩

≤ 𝐶 (𝑅)

󵄩

󵄩

󵄩

󵄩

𝑥 − 𝑦

󵄩

󵄩

󵄩

󵄩

.

(18)

Lemma 14 (see [15], Lemma 2.3). Let𝑋 be a separable Banach
space, let 𝐺 : [𝑎, 𝑏] → 2

𝑋 be a measurable multifunction, and
let 𝑧 : [𝑎, 𝑏] → 𝑋 be a measurable function. Then, for any
positive measurable function 𝑟 : [𝑎, 𝑏] → R+, there exists a
measurable selection 𝑔 of 𝐺 such that for almost all 𝑡 ∈ [𝑎, 𝑏]

󵄩

󵄩

󵄩

󵄩

𝑔 (𝑡) − 𝑧 (𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑧 (𝑡) , 𝐺 (𝑡)) + 𝑟 (𝑡) . (19)

3. Existence Results of Solutions for
Problem (2)

Theorem 15. Let 𝑝 > 1, 𝑞 ∈ (1, 2], 𝐸 be a separable, 𝑝-
uniformly convex and 𝑞-uniformly smooth Banach space, 𝐶 :

𝐼 → 𝑃

𝑐𝑘
(𝐸) and 𝐹 : 𝐼 × 𝐶

𝑟
→ 𝑃

𝑐
(𝐸

∗
). Suppose that the

following conditions hold:
(𝐻

1
) There is a convex compact subset 𝐾 ⊆ 𝐸

∗, such that
𝐽(𝐶(𝑡)) ⊆ 𝐾, ∀𝑡 ∈ 𝐼.

(𝐻

2
) There are two constants 𝜆

1
and 𝜆

2
such that for any 𝑡

1
,

𝑡

2
∈ 𝐼 and any 𝑥

1
, 𝑥

2
∈ 𝐸 we have

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[𝑑

𝐶(𝑡
1
)
(𝑥

1
)]

𝑞/𝑞
/

− [𝑑

𝐶(𝑡
2
)
(𝑥

2
)]

𝑞/𝑞
/󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜆

1

󵄨

󵄨

󵄨

󵄨

𝑡

1
− 𝑡

2

󵄨

󵄨

󵄨

󵄨

+ 𝜆

2

󵄩

󵄩

󵄩

󵄩

𝑥

1
− 𝑥

2

󵄩

󵄩

󵄩

󵄩

,

(20)

where 𝑞/ = 𝑞/(𝑞 − 1).

(𝐻

3
) There is a continuous function 𝑚 : 𝐼 → 𝑅

≥0 such that,
for any 𝑡, 𝑠 ∈ 𝐼 and 𝜓

1
, 𝜓

2
∈ 𝐶

𝑟
,

ℎ (𝐹 (𝑡, 𝜓

1
) , 𝐹 (𝑠, 𝜓

2
)) ≤ |𝑚 (𝑡) − 𝑚 (𝑠)| +

󵄩

󵄩

󵄩

󵄩

𝜓

1
− 𝜓

2

󵄩

󵄩

󵄩

󵄩

. (21)

(𝐻

4
) There is a continuous function 𝑃 : 𝐼 → 𝑅

≥0 such that,
for any 𝜑 ∈ 𝐶

𝑟
and any 𝑡 ∈ 𝐼,

sup {󵄩󵄩
󵄩

󵄩

𝑦

󵄩

󵄩

󵄩

󵄩

: 𝑦 ∈ 𝐹 (𝑡, 𝜑)} ≤ 𝑃 (𝑡) (1 +

󵄩

󵄩

󵄩

󵄩

𝜑 (0)

󵄩

󵄩

󵄩

󵄩

) , 𝑎.𝑒. (22)

Then, for any fixed Ψ ∈ 𝐶

𝑟
with Ψ(0) ∈ 𝐶(0), there is a

continuous function 𝑢 : [−𝑟, 𝑇] → 𝐸 such that 𝑢 is Lipschitz
on 𝐼 and satisfies (2).

Proof. Since 𝐸 is uniformly convex, it is reflexive and strictly
convex. Moreover, because 𝐸 is uniformly smooth, its topo-
logical conjugate 𝐸∗ is uniformly convex and hence 𝐸∗

is strictly convex. Then, by property (8) in Lemma 2, the
normalized duality maps 𝐽 and 𝐽

󸀠 are one-to-one, onto,
single-valued maps and 𝐽𝐽∗ = 𝐼

𝐸
∗ ,𝐽∗𝐽 = 𝐼

𝐸
, where 𝐼

𝐸
∗ and

𝐼

𝐸
are the identity maps on 𝐸∗ and 𝐸, respectively. Moreover,

since 𝐸 is reflexive and strictly convex, Lemma 9 ensures that
the generalized projection 𝜋

𝑍
(𝜑) is singleton for any closed

convex subset 𝑍 of 𝐸 and for any 𝜑 ∈ 𝐸∗. Finally, from the
reflexivity and smoothness of 𝐸, Lemma 11 tells us that

𝑦 ∈ 𝜋

𝑍
(𝜑) ⇐⇒

𝜑 − 𝐽 (𝑦) ∈ 𝑁

𝑍
(𝑦) .

(23)

Now, for any fixed natural number 𝑛 ≥ 2, we consider the
following partition for 𝐼: 𝑡𝑛

𝑖
= 𝑖𝑇/2

𝑛, 𝑖 = 0, 1, 2, . . . , 2

𝑛
. We

put 𝐼𝑛
0
= [𝑡

𝑛

0
, 𝑡

𝑛

1
], 𝐼𝑛

𝑖
= (𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
], 𝑖 = 0, 1, 2, . . . , 2

𝑛
− 1, and

𝜇

𝑛
= 𝑇/2

𝑛. Also, let 𝜃
𝑛
, 𝛿

𝑛
: 𝐼 → 𝐼 be defined as 𝜃

𝑛
(0) = 0,

𝜃

𝑛
(𝑡) = 𝑡

𝑛

𝑖+1
, 𝑡 ∈ (𝑡𝑛

𝑖
, 𝑡

𝑛

𝑖+1
], 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, 𝛿

𝑛
(𝑡) = 𝑡

𝑛

𝑖
,

𝑡 ∈ [𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
), 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, and 𝛿

𝑛
(𝑇) = 𝑇. In order to

make the proof easy for the reader, we divide the rest of the
proof into steps.

Step 1. In this step, we show that if 𝑛 ≥ 2 is a fixed natural
number and 𝑧 ∈ 𝐿1(𝐼, 𝐸∗

) is a fixed function, then there are
𝑢

𝑛
∈ 𝐶([−𝑟, 𝑇], 𝐸), 𝑢∗

𝑛
∈ 𝐶([−𝑟, 𝑇], 𝐸

∗
), and 𝑔

𝑛
∈ 𝐿

1
(𝐼, 𝐸

∗
)

such that 𝑢
𝑛
and 𝑢∗

𝑛
are absolutely continuous on 𝐼 and the

following properties hold:

(i) 𝑢∗
𝑛
(𝑡) = 𝐽 (Ψ (𝑡)) , 𝑡 ∈ [−𝑟, 0] ;

(ii) 𝑢
𝑛
(𝑡) = 𝐽

∗
(𝑢

∗

𝑛
(𝑡)) , 𝑡 ∈ [−𝑟, 𝑇] ;

(iii) 𝑢
𝑛
(𝜃

𝑛
(𝑡)) ∈ 𝐶 (𝜃

𝑛
(𝑡)) , 𝑡 ∈ 𝐼;

(iv) 𝑔
𝑛
(𝑡) ∈ 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝑡 ∈ 𝐼;

(v) 󵄩󵄩
󵄩

󵄩

𝑔

𝑛
(𝑡) − 𝑧 (𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑧 (𝑡) , 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
)) +

1

𝑛

2
, 𝑡 ∈ 𝐼;

(vi) − (𝑢∗
𝑛
)

󸀠

(𝑡) + 𝑔

𝑛
(𝑡) ∈ 𝑁

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
(𝑡))) ,

a.e. 𝑡 ∈ 𝐼.

(24)
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Indeed, in view of Lemma 14, there is 𝑔𝑛
0
∈ 𝐿

1
([𝑡

𝑛

0
, 𝑡

𝑛

1
], 𝐸

∗
)

such that 𝑔𝑛
0
(𝑡) ∈ 𝐹(𝑡, 𝜏(0)Ψ), 𝑡 ∈ [𝑡𝑛

0
, 𝑡

𝑛

1
] and

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛

0
(𝑡) − 𝑧 (𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑧 (𝑡) , 𝐹 (𝑡, 𝜏 (0) Ψ)) +

1

𝑛

2
,

for a.e. 𝑡 ∈ [𝑡𝑛
0
, 𝑡

𝑛

1
] .

(25)

Put 𝑥𝑛
0
= 𝜓(0) and

𝑥

𝑛

1
= Π

𝐶(𝑡
𝑛

1
)
(𝐽 (𝑥

𝑛

0
) + 𝜇

𝑛
𝑔

𝑛

0
(𝑡

𝑛

0
)) . (26)

Next, we define 𝑢∗
𝑛
(𝑡) = 𝐽(Ψ(𝑡)) for 𝑡 ∈ [−𝑟, 0] and

𝑢

∗

𝑛
(𝑡) =

𝑡

𝑛

1
− 𝑡

𝜇

𝑛

𝐽 (𝑥

𝑛

0
) +

𝑡 − 𝑡

𝑛

0

𝜇

𝑛

𝐽 (𝑥

𝑛

1
) , 𝑡 ∈ [𝑡

𝑛

0
, 𝑡

𝑛

1
] . (27)

Observe that, according to Lemma 9, this construction is
well defined.Moreover, from the definition of the generalized
projection, relation (26) gives us

𝐽 (𝑥

𝑛

0
) + 𝜇

𝑛
𝑔

𝑛

0
(𝑡

𝑛

0
) − 𝐽 (𝑥

𝑛

1
)

𝜇

𝑛

∈ 𝑁

𝐶(𝑡
𝑛

1
)
(𝑥

𝑛

1
)

(28)

and this relation together with (27) implies

− (𝑢

∗

𝑛
)

󸀠

(𝑡) + 𝑔

𝑛

0
(𝑡

𝑛

0
) ∈ 𝑁

𝐶(𝑡
𝑛

1
)
(𝑥

𝑛

1
) ,

a.e. for 𝑡 ∈ [𝑡𝑛
0
, 𝑡

𝑛

1
] .

(29)

Next, by induction, we can define for 𝑖 = 1, 2, . . . , 2𝑛 − 1

𝑢

∗

𝑛
(𝑡) =

𝑡

𝑛

𝑖+1
− 𝑡

𝜇

𝑛

𝐽 (𝑥

𝑛

𝑖
) +

𝑡 − 𝑡

𝑛

𝑖

𝜇

𝑛

𝐽 (𝑥

𝑛

𝑖+1
) ,

𝑡 ∈ [𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] ,

(30)

where

𝑥

𝑛

𝑖+1
= Π

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) ,

𝑔

𝑛

𝑖
∈ 𝐿

1
([𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] , 𝐸

∗
) ,

𝑔

𝑛

𝑖
(𝑡) ∈ 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝑡 ∈ [𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] ,

𝑢

𝑛
(𝑡) = 𝐽

∗
(𝑢

∗

𝑛
(𝑡)) , 𝑡 ∈ [−𝑟, 𝑇] ,

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛

𝑖
(𝑡) − 𝑧 (𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑧 (𝑡) , 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
)) +

1

𝑛

2
,

a.e. 𝑡 ∈ [𝑡𝑛
𝑖
, 𝑡

𝑛

𝑖+1
] .

(31)

Now, let 𝑔
𝑛
: 𝐼 → 𝐸

∗ be such that 𝑔
𝑛
(𝑡) = 𝑔

𝑛

𝑖
(𝑡), 𝑡 ∈

[𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
), 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, and 𝑔

𝑛
(𝑇) = 𝑔

𝑛

2
𝑛(𝑇). Note that

𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
) = 𝑔

𝑛

𝑖
(𝛿

𝑛
(𝑡)) = 𝑔

𝑛
(𝛿

𝑛
(𝑡)), for 𝑡 ∈ [𝑡𝑛

𝑖
, 𝑡

𝑛

𝑖+1
). Therefore,

the functions 𝑢∗
𝑛
, 𝑔

𝑛
, and 𝑢

𝑛
satisfy properties (i)–(vi) in (24).

Step 2. In this step, we show that there are three sequences
(𝑢

𝑛
)

𝑛≥2
⊆ 𝐶([−𝑟, 𝑇], 𝐸), (𝑢∗

𝑛
)

𝑛≥2
⊆ 𝐶([−𝑟, 𝑇], 𝐸

∗
), and

(𝑔

𝑛
)

𝑛≥2
⊆ 𝐿

1
(𝐼, 𝐸

∗
) such that 𝑢

𝑛
and 𝑢

∗

𝑛
are absolutely

continuous on [0, 𝑇] and for any 𝑛 ≥ 2 we have

(i) 𝑢∗
𝑛
(𝑡) = 𝐽 (Ψ (𝑡)) , 𝑡 ∈ [−𝑟, 0] ;

(ii) 𝑢
𝑛
(𝑡) = 𝐽

∗
(𝑢

∗

𝑛
(𝑡)) , 𝑡 ∈ [−𝑟, 𝑇] ;

(iii) 𝑢
𝑛
(𝜃

𝑛
(𝑡)) ∈ 𝐶 (𝜃

𝑛
(𝑡)) , 𝑡 ∈ 𝐼;

(iv) 𝑔
𝑛
(𝑡) ∈ 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝑡 ∈ 𝐼;

(v) 󵄩󵄩
󵄩

󵄩

𝑔

𝑛+1
(𝑡) − 𝑔

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑔

𝑛
(𝑡) , 𝐹 (𝑡, 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
)) +

1

(𝑛 + 1)

2
,

a.e. 𝑡 ∈ 𝐼;

(vi) − (𝑢∗
𝑛
)

󸀠

(𝑡) + 𝑔

𝑛
(𝑡) ∈ 𝑁

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
(𝑡))) ,

a.e. 𝑡 ∈ 𝐼.

(32)

Indeed, let 𝑧 be any fixed element in 𝐿1(𝐼, 𝐸∗
); in view of

Step 1, there are 𝑢
2
∈ 𝐶([−𝑟, 𝑇], 𝐸), 𝑢∗

2
∈ 𝐶([−𝑟, 𝑇], 𝐸

∗
), and

𝑔

2
∈ 𝐿

1
(𝐼, 𝐸

∗
) such that 𝑢

2
, 𝑢

∗

2
are absolutely continuous on

[0, 𝑇] and properties (i)–(vi) in (24) are satisfied for 𝑛 = 2.
Now, since 𝑔

2
∈ 𝐿

1
(𝐼, 𝐸

∗
), then in view of Step 1, there are

𝑢

3
∈ 𝐶([−𝑟, 𝑇], 𝐸), 𝑢∗

3
∈ 𝐶([−𝑟, 𝑇], 𝐸

∗
), and 𝑔

3
∈ 𝐿

1
(𝐼, 𝐸

∗
)

such that 𝑢
3
, 𝑢

∗

3
are absolutely continuous on [0, 𝑇] and (32)

is satisfied at 𝑛 = 3. So, we can define inductively three
sequences (𝑢

𝑛
)

𝑛≥2
⊆ 𝐶([−𝑟, 𝑇], 𝐸), (𝑢

∗

𝑛
)

𝑛≥2
⊆ 𝐶([−𝑟, 𝑇], 𝐸

∗
),

and (𝑔
𝑛
)

𝑛≥2
⊆ 𝐿

1
(𝐼, 𝐸

∗
) such that properties (i)–(vi) in (32)

are satisfied.

Step 3. In this step, we show that there is a positive number 𝜂
such that for any 𝑛 ≥ 2

󵄩

󵄩

󵄩

󵄩

󵄩

(𝑢

∗

𝑛
)

󸀠

(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜂, a.e. for 𝑡 ∈ 𝐼. (33)

Let 𝑛 ≥ 2 be a fixed natural number. According to (𝐻
1
)

and (𝐻
4
), for any 𝑡 ∈ 𝐼,

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑃 (𝑡)

󵄩

󵄩

󵄩

󵄩

1 + (𝜏 (𝛿

𝑛
(𝑡) 𝑢

𝑛
) (0))

󵄩

󵄩

󵄩

󵄩

= 𝑃 (𝑡)

󵄩

󵄩

󵄩

󵄩

1 + 𝑢

𝑛
(𝛿

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

= 𝑃 (𝑡) (1 + 𝑅)

≤ max
𝑡∈𝐼

𝑃 (𝑡) (1 + 𝑅) = 𝜌,

(34)

where 𝑅 = max{‖𝑥‖ : 𝑥 ∈ 𝐾}. Then, for every 𝑖 =

0, 1, 2, . . . , 2

𝑛
− 1,

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
)

󵄩

󵄩

󵄩

󵄩

≤ 𝑅,

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ 𝑅 + 𝑇𝜌.

(35)

Let 𝐵 = {𝑥 ∈ 𝐸 : ‖𝑥‖ ≤ 𝑅 + 𝑇𝜌} and 𝑍 = {𝑧 ∈ 𝐸∗
: ‖𝑧‖ ≤

𝑅+𝑇𝜌}.Note that 𝐸∗ is 𝑞/-uniformly convex (𝑞/ = 𝑞/(1 − 𝑞))
and𝑝/-uniformly smooth (𝑝/

= 𝑝/(𝑝−1)).Therefore, in view
of Lemma 12 and (35), there exists a positive constant 𝑎 such
that

𝑎

󵄩

󵄩

󵄩

󵄩

𝑧

1
− 𝑧

2

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ 𝑉

∗
(𝐽

∗
(𝑧

1
) , 𝑧

2
) , ∀𝑧

1
, 𝑧

2
∈ 𝑍.

(36)
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Then, for every 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1,

𝑎

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ 𝑉

∗
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖+1
)) , 𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) .

(37)

Further, since 𝐸 is 𝑝-uniformly convex and 𝑞-uniformly
smooth, then, again, by Lemma 12, there is a positive constant
𝑏 such that

𝑑

𝑉

𝐵
𝜑 ≤ 𝑏 [𝑑

𝐵
(𝐽

∗
(𝜑))]

𝑞

, ∀𝜑 ∈ 𝐸

∗
.

(38)

So, for every 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1,

𝑑

𝑉

Γ(𝑡
𝑛

𝑖+1
)
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

≤ 𝑏 [𝑑

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞

.

(39)

This relation together with (37) yields

𝑎

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ 𝑉

∗
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖+1
)) , 𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

= 𝑉 (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
) , 𝑥

𝑛

𝑖+1
)

= 𝑑

𝑉

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

≤ 𝑏 [𝑑

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞

.

(40)

According to (𝐻
2
), the last inequality implies

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

⋅ [𝑑

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞/𝑞
󸀠

= (

𝑏

𝑎

)

1/𝑞
/

⋅ ([𝑑

𝐶(𝑡
𝑛

𝑖+1
)
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞/𝑞
󸀠

− [𝑑

𝐶(𝑡
𝑛

𝑖
)
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
)))]

𝑞/𝑞
󸀠

) ≤ (

𝑏

𝑎

)

1/𝑞
/

[𝜆

1
𝜇

𝑛

+ 𝜆

2

󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) − 𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

] .

(41)

Moreover, from the assumption 𝑞 ∈ (1, 2], we infer that
𝑞

/
≥ 2. Then, 𝐸∗is 𝑞/-uniformly convex (𝑞/ ≥ 2) and 𝑝/-

uniformly smooth.Hence, fromLemma 13, there is a constant
𝛽, depending on (2𝑅 + 𝑇𝜌), such that, for all 𝑧

1
, 𝑧

1
∈ 𝐸

∗,
‖𝑧

1
‖ ≤ 2𝑅 + 𝑇𝜁, and ‖𝑧

1
‖ ≤ 2𝑅 + 𝑇𝜌, we have

󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝑧

1
) − 𝐽

∗
(𝑧

2
)

󵄩

󵄩

󵄩

󵄩

≤ 𝛽

󵄩

󵄩

󵄩

󵄩

𝑧

1
− 𝑧

2

󵄩

󵄩

󵄩

󵄩

. (42)

Consequently,
󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) − 𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ 𝛽

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

= 𝛽𝜇

𝑛

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

= 𝛽𝜇

𝑛
𝜌.

(43)

This inequality and (41) yield

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

[𝜆

1
𝜇

𝑛
+ 𝛽𝜆

2
𝜇

𝑛
𝜌] .

(44)

Thus,

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

[𝜆

1
𝜇

𝑛
+ 𝛽𝜆

2
𝜇

𝑛
𝜌]

+ 𝜇

𝑛
𝜌 = 𝜇

𝑛
(𝜆

1
+ 𝜆

2
) ,

(45)

where 𝜆
1
= (𝑏/𝑎)

1/𝑞
/

𝜆

1
and 𝜆

2
= 𝜌 + (𝑏/𝑎)

1/𝑞
/

𝛽𝜌𝜆

2
.

Therefore, for 𝑛 ≥ 2, 𝑖 = 0, 1, 2, . . . , 2

𝑛
− 1, and 𝑡 ∈

(𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
), we get

󵄩

󵄩

󵄩

󵄩

󵄩

(𝑢

∗

𝑛
)

󸀠

(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ (𝜆

1
+ 𝜆

2
) = 𝜂. (46)

This proves that (33) is true.

Step 4. Our claim in this step is to show that the sequence
(𝑢

∗

𝑛
)

𝑛≥2
has a convergent subsequence, still denoted by

(𝑢

∗

𝑛
)

𝑛≥2
, converging uniformly to a Lipschitz function 𝑢∗ :

𝐼 → 𝐸

∗
, (𝑢

∗

𝑛
)

󸀠

𝑛≥2
converges weakly to (𝑢

∗
)

󸀠, and (𝑢

𝑛
)

converges uniformly to 𝑢 = 𝐽∗(𝑢∗).
Indeed, according to the definition of 𝑢∗

𝑛
and (33), the

sequence (𝑢∗
𝑛
)

𝑛≥2
is equicontinuous.Moreover, let 𝑡 ∈ 𝐼.Then,

there are 𝑛 ≥ 2, 𝑖 = 0, 1, 2, . . . , 2𝑛 − 1, such that 𝑡 ∈ [𝑡𝑛
𝑖
, 𝑡

𝑛

𝑖+1
].

Hence, in view of (30) and (𝐻
1
), 𝑢∗

𝑛
(𝑡) ∈ 𝐾.This shows that

the set {𝑢∗
𝑛
(𝑡) : 𝑛 ≥ 2} is relatively compact in 𝐸∗. Therefore,

Theorem 4. Ch.1. in [16] implies that there is a Lipschitz
function 𝑢∗ : 𝐼 → 𝐸

∗, such that the sequence (𝑢∗
𝑛
)

𝑛≥2

has a subsequence, still denoted by (𝑢∗
𝑛
)

𝑛≥2
, which converges

uniformly to 𝑢∗, and (𝑢∗
𝑛
)

󸀠

𝑛≥2
converges weakly to (𝑢∗)󸀠.We

extend the definition of 𝑢∗ on [−𝑟, 𝑇] by putting 𝑢∗(𝑡) =
𝐽(Ψ(𝑡)), 𝑡 ∈ [−𝑟, 0]. Thus, (𝑢∗

𝑛
)

𝑛≥2
converges uniformly to 𝑢∗

on [−𝑟, 𝑇]. Since 𝐽∗ is uniformly continuous on the compact
set 𝐾, then the sequence (𝑢

𝑛
)

𝑛≥2
is uniformly convergent to

𝑢 : [−𝑟, 𝑇] → 𝐸 with 𝑢 = 𝐽∗(𝑢∗). This proves our claim in
this step.

Step 5. Let us show that 𝑢(𝑡) ∈ 𝐶(𝑡), 𝑡 ∈ 𝐼.
Let 𝑡 ∈ 𝐼. According to (𝐻

2
), we have

[𝑑

𝐶(𝑡)
(𝑢 (𝑡))]

𝑞/𝑞
/

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

[𝑑

𝐶(𝑡)
(𝑢 (𝑡))]

𝑞/𝑞
/

− [𝑑

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
(𝑡)))]

𝑞/𝑞
/ 󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝜆

1

󵄨

󵄨

󵄨

󵄨

𝜃

𝑛
(𝑡) − 𝑡

󵄨

󵄨

󵄨

󵄨

+ 𝜆

2

󵄩

󵄩

󵄩

󵄩

𝑢 (𝑡) − 𝑢

𝑛
(𝜃

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

.

(47)

Since lim
𝑛→∞

𝜆

1
|𝜃

𝑛
(𝑡)−𝑡|+𝜆

2
‖𝑢(𝑡)−𝑢

𝑛
(𝜃

𝑛
(𝑡))‖ = 0, therefore,

𝑢(𝑡) ∈ 𝐶(𝑡), ∀𝑡 ∈ 𝐽.

Step 6. In this step, we show that lim
𝑛→∞

‖𝜏(𝛿

𝑛
(𝑡))𝑢

𝑛
−

𝜏(𝑡)𝑢‖

𝐶
𝐸
([−𝑟,0])

= 0, for every 𝑡 ∈ 𝐼.
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Let 𝑡 ∈ 𝐼.We have

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤ sup
−𝑟≤𝑠≤0

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝛿

𝑛
(𝑡) + 𝑠) − 𝑢

𝑛
(𝑡 + 𝑠)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤ sup
−𝑟≤𝑠
1
≤𝑠
2
≤1

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤ sup
−𝑟≤𝑠
1
≤𝑠
2
≤0

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+ sup
−𝑟≤𝑠
1
≤0≤𝑠
2
≤1

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+ sup
0≤𝑠
1
≤𝑠
2
≤1

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤ sup
−𝑟≤𝑠
1
≤𝑠
2
≤0

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

Ψ (𝑠

1
) − Ψ (𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+ sup
−𝑟≤𝑠
1
≤0

|𝑠
1
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(0)

󵄩

󵄩

󵄩

󵄩

+ sup
0≤𝑠
2
≤1

|𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(0) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+ sup
0≤𝑠
1
≤𝑠
2
≤1

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩𝐶
𝐸
([−𝑟,0])

≤ 2 sup
−𝑟≤𝑠
1
≤𝑠
2
≤0

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

Ψ (𝑠

1
) − Ψ (𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+ 2 sup
0≤𝑠
1
≤𝑠
2
≤1

|𝑠
1
−𝑠
2
|≤1/𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑠

1
) − 𝑢

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝑡) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩

.

(48)

By the continuity of Ψ, the uniform convergence
of 𝑢

𝑛
towards 𝑢, and the preceding estimate, we get

lim
𝑛→∞

‖𝜏(𝛿

𝑛
(𝑡))𝑢

𝑛
− 𝜏(𝑡)𝑢‖ = 0.

Step 7. In this step, we show that the sequence (𝑓
𝑛
)

𝑛≥2
, defined

by 𝑓
𝑛
(𝑡) = 𝑔

𝑛
(𝛿

𝑛
(𝑡)), converges almost everywhere to a

function 𝑓 ∈ 𝐿1(𝐼, 𝐸∗
) and 𝑓(𝑡) ∈ 𝐹(𝑡, 𝜏(𝑡)𝑢), a.e. 𝑡 ∈ 𝐼.

To prove this, let 𝑛 ≥ 2 and let 𝑡 ∈ 𝐼 be a fixed point such
that (32)(iv) and (v) are satisfied. In view of (𝐻

4
), we have

󵄩

󵄩

󵄩

󵄩

𝑓

𝑛+1
(𝑡) − 𝑓

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛+1
(𝛿

𝑛+1
(𝑡)) − 𝑔

𝑛
(𝛿

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

= 𝑑 (𝑔

𝑛
(𝛿

𝑛
(𝑡)) ,

𝐹 (𝛿

𝑛+1
(𝑡) , 𝜏 (𝛿

𝑛+1
(𝛿

𝑛+1
(𝑡))) 𝑢

𝑛+1
)) +

1

(𝑛 + 1)

2

= 𝑑 (𝑔

𝑛
(𝛿

𝑛
(𝑡)) , 𝐹 (𝛿

𝑛+1
(𝑡) , 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
))

+

1

(𝑛 + 1)

2
= ℎ (𝐹 (𝛿

𝑛
(𝑡) , 𝜏 (𝛿

𝑛
(𝛿

𝑛
(𝑡))) 𝑢

𝑛
) ,

𝐹 (𝛿

𝑛+1
(𝑡) , 𝜏 (𝛿

𝑛+1
(𝛿

𝑛+1
(𝑡))) 𝑢

𝑛+1
)) +

1

(𝑛 + 1)

2

= ℎ (𝐹 (𝛿

𝑛
(𝑡) , 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) ,

𝐹 (𝛿

𝑛+1
(𝑡) , 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
)) +

1

(𝑛 + 1)

2

≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡)) − 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1

− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+

1

(𝑛 + 1)

2
≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡))

− 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+

1

(𝑛 + 1)

2
≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡)) − 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+

1

(𝑛 + 1)

2

≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡)) − 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1

− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+

1

(𝑛 + 1)

2
.

(49)

Thus, for any two natural numbers 𝑛 and 𝑞 (2 < 𝑛 < 𝑞), we
infer that

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑛
(𝑡) − 𝑓

𝑞
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝑓

𝑛
(𝑡) − 𝑓

𝑛+1
(𝑡)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝑓

𝑛+1
(𝑡) − 𝑓

𝑛+2
(𝑡)

󵄩

󵄩

󵄩

󵄩

+ ⋅ ⋅ ⋅

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝑓

𝑞−1
(𝑡) − 𝑓

𝑞
(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡)) − 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+2
(𝑡)) − 𝑚 (𝛿

𝑛+1
(𝑡))

󵄨

󵄨

󵄨

󵄨

+ ⋅ ⋅ ⋅

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑞−1
(𝑡)) − 𝑚 (𝛿

𝑞
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩



8 Abstract and Applied Analysis

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+2
(𝑡)) 𝑢

𝑛+2
− 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1

󵄩

󵄩

󵄩

󵄩

+ ⋅ ⋅ ⋅

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑞
(𝑡)) 𝑢

𝑞
− 𝜏 (𝛿

𝑞−1
(𝑡)) 𝑢

𝑞−1

󵄩

󵄩

󵄩

󵄩

󵄩

+

1

(𝑛 + 1)

2

+

1

(𝑛 + 2)

2
+ ⋅ ⋅ ⋅ +

1

𝑟

2

≤

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+1
(𝑡)) − 𝑚 (𝛿

𝑛
(𝑡))

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛+2
(𝑡)) − 𝑚 (𝛿

𝑛+1
(𝑡))

󵄨

󵄨

󵄨

󵄨

+ ⋅ ⋅ ⋅

+

󵄨

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑞−1
(𝑡)) − 𝑚 (𝛿

𝑞
(𝑡))

󵄨

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
− 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛+2
(𝑡)) 𝑢

𝑛+2
− 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1

󵄩

󵄩

󵄩

󵄩

+ ⋅ ⋅ ⋅

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑞
(𝑡)) 𝑢

𝑞
− 𝜏 (𝛿

𝑞−1
(𝑡)) 𝑢

𝑞−1

󵄩

󵄩

󵄩

󵄩

󵄩

+

𝑟 − 𝑛

(𝑛 + 1)

2
.

(50)

Since lim
𝑛→∞

𝛿

𝑛
(𝑡) = 𝑡, 𝑚 is continuous, and

lim
𝑛→∞

‖𝜏(𝛿

𝑛
(𝑡))𝑢

𝑛
− 𝜏(𝑡)𝑢‖

𝐶
𝐸
([−𝑟,0])

= 0, then the right-hand
side of the last inequality tends to zero when 𝑛, 𝑞 → ∞.

Hence, the sequence (𝑓
𝑛
(𝑡))

𝑛≥2
is a Cauchy sequence in 𝐸∗

.

Thus, there is a function 𝑓 : 𝐼 → 𝐸

∗such that

lim
𝑛→∞

𝑓

𝑛
(𝑡) = 𝑓 (𝑡) , a.e. 𝑡 ∈ 𝐼. (51)

Observe that, by (34), ‖𝑓
𝑛
(𝑡)‖ ≤ 𝜌, ∀𝑡 ∈ 𝐼. So, 𝑓 ∈ 𝐿1(𝐼, 𝐸∗

).
It remains to show that 𝑓(𝑡) ∈ 𝐹(𝑡, 𝜏(𝑡)𝑢), a.e. 𝑡 ∈ 𝐼. Indeed,
for every 𝑛 ≥ 2 and almost everywhere 𝑡 ∈ 𝐼, we have

𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝜏 (𝑡) 𝑢))

≤

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡) − 𝑓

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

+ 𝑑 (𝑓

𝑛
(𝑡) , 𝐹 (𝑡, 𝜏 (𝑡) 𝑢))

≤

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡) − 𝑓

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

+ 𝑑 (𝑔

𝑛
(𝛿

𝑛
(𝑡)) , 𝐹 (𝑡, 𝜏 (𝑡) 𝑢))

≤

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡) − 𝑓

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

+ ℎ (𝐹 (𝛿

𝑛
(𝑡) , 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝐹 (𝑡, 𝜏 (𝑡) 𝑢)) .

(52)

This relation and (𝐻
4
) imply

𝑑 (𝑓 (𝑡) , 𝐹 (𝑡, 𝜏 (𝑡) 𝑢))

≤

󵄩

󵄩

󵄩

󵄩

𝑓 (𝑡) − 𝑓

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

+

󵄨

󵄨

󵄨

󵄨

𝑚 (𝛿

𝑛
(𝑡)) − 𝑚 (𝑡)

󵄨

󵄨

󵄨

󵄨

+

󵄩

󵄩

󵄩

󵄩

𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
− 𝜏 (𝑡) 𝑢

󵄩

󵄩

󵄩

󵄩

.

(53)

Because 𝑓
𝑛
converges to 𝑓 almost everywhere, 𝑚 is

continuous, and lim
𝑛→∞

‖𝜏(𝛿

𝑛
(𝑡))𝑢

𝑛
− 𝜏(𝑡)𝑢‖

𝐶
𝐸
([−𝑟,0])

= 0, for
every 𝑡 ∈ 𝐼, we conclude that 𝑓(𝑡) ∈ 𝐹(𝑡, 𝜏(𝑡)𝑢), a.e. 𝑡 ∈ 𝐼.

Step 8. We proceed to show that

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ 𝑁

𝐶(𝑡)
𝑢 (𝑡) , a.e. 𝑡 ∈ 𝐼. (54)

We follow the arguments used in [10]. In view of (32)(vi), (37),
and Lemma 11, for every natural number 𝑛 ≥ 2 one obtains

− (𝐽𝑢

𝑛
)

󸀠

(𝑡) + 𝑓

𝑛
(𝑡) ∈ 𝜆𝜕𝑑

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
𝑡)) , a.e., (55)

where 𝜆 = 𝜂+𝜌. (𝐻
2
). Observe that the uppersemicontinuity

of the subdifferential of Lipschtz function ([17], Prop. 1.7)
imply the multivalued function (𝑡, 𝑦) → 𝜕𝑑

𝐶(𝑡)
(𝑦) is scalary

uppersemicontinuous with convex and weak∗compact val-
ues. That is, let 𝑡

𝑛
→ 𝑡, in 𝐼, 𝑦

𝑛
→ 𝑦, in 𝐸, 𝑦

𝑛
∈ 𝐶(𝑡

𝑛
), and

𝑦 ∈ 𝐶(𝑡).Then, for any V ∈ 𝐸,

lim sup
𝑛→∞

𝜎 (V, 𝜕𝑑
𝐶(𝑡
𝑛
)
(𝑦

𝑛
)) ≤ 𝜎 (V, 𝜕𝑑

𝐶(𝑡)
(𝑦)) . (56)

So, for any V ∈ 𝐸,

lim sup
𝑛→∞

𝜎 (V, 𝜕𝑑
𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
𝑡)))

≤ 𝜎 (V, 𝜕𝑑
𝐶(𝑡)

(𝑢 (𝑡))) ,

(57)

where 𝜎 is the support function.
Now, let (𝑒

𝑘
) be a sequence in 𝐸 which separates the

points. Hence, from the weak convergence of the sequence
((𝐽𝑢

𝑛
)

󸀠
+ 𝑓

𝑛
)

𝑛≥2
to 𝐽(𝑢󸀠) + 𝑓 in 𝐿1(𝐼, 𝐸∗

), for any Lebesgue
measurable subset 𝐴 ⊆ 𝐽, we have

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ 𝑑𝑡

= lim
𝑛→∞

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢

𝑛
)

󸀠

(𝑡) + 𝑓

𝑛
(𝑡))⟩ 𝑑𝑡.

(58)

This relation with (55) and (57) yields

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ 𝑑𝑡

≤ lim sup
𝑛→∞

∫

𝐴

𝜎 (𝑒

𝑘
, 𝜆𝜕𝑑

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
𝑡))) 𝑑𝑡

≤ ∫

𝐴

lim sup
𝑛→∞

𝜎 (𝑒

𝑘
, 𝜆𝜕𝑑

𝐶(𝜃
𝑛
(𝑡))
(𝑢

𝑛
(𝜃

𝑛
𝑡))) 𝑑𝑡

≤ ∫

𝐴

𝜎 (𝑒

𝑘
, 𝜆𝜕𝑑

𝐶(𝑡)
(𝑢 (𝑡))) 𝑑𝑡.

(59)

Therefore,

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ ≤ 𝜎 (𝑒

𝑘
, 𝜆𝜕𝑑

𝐶(𝑡)
(𝑢 (𝑡))) ,

∀𝑘 ≥ 1.

(60)

Again, since the multivalued function 𝑡 → 𝜕𝑑

𝐶
(𝑢(𝑡)) is

measurable with convex and weak∗compact, then by ([18],
III.35) it follows that

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ 𝜆𝜕𝑑

𝐶(𝑡)
(𝑢 (𝑡)) , a.e. 𝑡 ∈ 𝐼. (61)

As 𝑢(𝑡) ∈ 𝐶(𝑡), ∀𝑡 ∈ 𝐼, we get

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ 𝑁

𝐶(𝑡)
𝑢

󸀠

(𝑡) , a.e. (62)

This completes the proof.
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4. Existence Result for (3)

In the following theorem, we present an existence theorem of
solutions for (3). We do not assume that the values of Γ are
contained in a convex compact fixed subset.

Theorem 16. Let 𝑝 ≥ 2, let 𝑞 ∈ (1, 2], let 𝐸 be a separable,
𝑝-uniformly convex and 𝑞-uniformly smooth Banach space, let
𝑇 > 0, let Γ : 𝐼 × 𝐸∗

→ 𝑃

𝑐𝑐
(𝐸), and let 𝐹 : 𝐼 × 𝐶

𝑟
→ 𝑃

𝑐𝑐
(𝐸

∗
).

Suppose that (𝐻
3
), (𝐻

4
) and the following conditions hold:

(𝐻

5
) There is a positive constant 𝑅 such that Γ(𝑡, 𝑥) ⊆

𝑅𝐵(0, 1), ∀(𝑡, 𝑥) ∈ 𝐼 × 𝐸∗.

(𝐻

6
) There are three positive constants 𝛾

1
, 𝛾

2
, 𝛾

3
with 0 <

𝛾

2
< (𝑎/𝑏)

1/𝑞
/

such that for any 𝑡
1
, 𝑡

2
∈ 𝐼, any 𝑥

1
, 𝑥

2
∈

𝐸, and any 𝑦
1
, 𝑦

2
∈ 𝐸

∗we have

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

[𝑑

Γ(𝑡
1
,𝑦
1
)
(𝑥

1
)]

𝑞/𝑞
󸀠

− [𝑑

Γ(𝑡
2
,𝑦
2
)
(𝑥

2
)]

𝑞/𝑞
󸀠󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝛾

1

󵄨

󵄨

󵄨

󵄨

𝑡

1
− 𝑡

2

󵄨

󵄨

󵄨

󵄨

+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝑦

1
− 𝑦

2

󵄩

󵄩

󵄩

󵄩

+ 𝛾

3

󵄩

󵄩

󵄩

󵄩

𝑥

1
− 𝑥

2

󵄩

󵄩

󵄩

󵄩

,

(63)

where 𝑞/ = 𝑞/(1 − 𝑞) and the coefficients 𝑎, 𝑏 are given
in Lemma 12.

(𝐻

7
) For any 𝑡 ∈ 𝐼 and any bounded subset 𝐴 in 𝐸∗ with
𝜒

𝐸
∗(𝐴) > 0 and any 𝑟 > 0, one has

𝜒 ((Γ (𝑡, 𝐴)) ∩ 𝑟𝐵 (0, 1)) < 𝜒

𝐸
(𝐴

∗
) , (64)

where 𝐴∗
= {𝐽

∗
(𝑥) : 𝑥 ∈ 𝐴}.

Then, for any fixed Ψ ∈ 𝐶

𝑟
satisfying Ψ(0) ∈

Γ(0, 𝐽(Ψ(0))), there is a continuous function 𝑢 : [−𝑟, 𝑇] → 𝐸

such that 𝑢 is absolutely continuous on [0, 𝑇] and

𝑢 (𝑡) = Ψ (𝑡) , for 𝑡 ∈ [−𝑟, 0] ;

𝑢 (𝑡) = Ψ (0) + ∫

𝑡

0

𝑢

󸀠

(𝑠) 𝑑𝑠, for 𝑡 ∈ 𝐼,

𝑢 (𝑡) ∈ Γ (𝑡, 𝐽 (𝑢 (𝑡))) , for 𝑡 ∈ 𝐼,

− (𝐽 (𝑢)

󸀠

(𝑡)) ∈ 𝑁

Γ(𝑡,𝐽(𝑢(𝑡)))
(𝑢 (𝑡)) + 𝐹 (𝑡, 𝜏 (𝑡) 𝑢) , a.e.

for 𝑡 ∈ 𝐼.

(65)

Proof. We divide the proof into the following steps.

Step 1. For any fixed natural number 𝑛 ≥ 2, let 𝑡𝑛
𝑖
, 𝐼

𝑛

0
, 𝐼

𝑛

𝑖
, 𝑖 =

0, 1, 2, . . . , 2

𝑛
− 1, 𝜇

𝑛
,𝜃

𝑛
, and 𝛿

𝑛
be as in the proof of

Theorem 15.
By following the same lines in Steps 1 and 2 in the proof

of Theorem 15, with the following modifications: 𝑥𝑛
0
= Ψ(0),

𝑥

𝑛

𝑖+1
= Π

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) ,

𝑖 = 1, 2, . . . , 2

𝑛
− 1;

(66)

𝑔

𝑛

𝑖
∈ 𝐿

1
([𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] , 𝐸

∗
) ;

(67)

𝑔

𝑛

𝑖
(𝑡) ∈ 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝑡 ∈ [𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] ; (68)

𝑢

∗

𝑛
(𝑡) =

𝑡

𝑛

𝑖+1
− 𝑡

𝜇

𝑛

𝐽 (𝑥

𝑛

𝑖
) +

𝑡 − 𝑡

𝑛

𝑖

𝜇

𝑛

𝐽 (𝑥

𝑛

𝑖+1
) ,

𝑡 ∈ [𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
] ;

(69)

𝑢

𝑛
(𝑡) = 𝐽

∗
(𝑢

∗

𝑛
(𝑡)) , 𝑡 ∈ [−𝑟, 𝑇] , (70)

we can show that there are 𝑢
𝑛
∈ 𝐶([−𝑟, 𝑇], 𝐸), 𝑢∗

𝑛
∈

𝐶([−𝑟, 𝑇], 𝐸

∗
), and 𝑔

𝑛
∈ 𝐿

1
(𝐼, 𝐸

∗
) such that 𝑢

𝑛
and 𝑢∗

𝑛
are

absolutely continuous on 𝐼 and the following properties hold:

(i) 𝑢
𝑛
(𝑡) = Ψ (𝑡) , 𝑡 ∈ [−𝑟, 0] ;

(ii) 𝑢∗
𝑛
(𝑡) = 𝐽 (𝑢

𝑛
(𝑡)) , 𝑡 ∈ [−𝑟, 𝑇] ;

(iii) 𝑢
𝑛
(𝜃

𝑛
(𝑡)) ∈ Γ (𝜃

𝑛
(𝑡) , 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))) , 𝑡 ∈ 𝐼;

(iv) 𝑔
𝑛
(𝑡) ∈ 𝐹 (𝑡, 𝜏 (𝛿

𝑛
(𝑡)) 𝑢

𝑛
) , 𝑡 ∈ 𝐼;

(v) 󵄩󵄩
󵄩

󵄩

𝑔

𝑛+1
(𝑡) − 𝑔

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑑 (𝑔

𝑛
(𝑡) , 𝐹 (𝑡, 𝜏 (𝛿

𝑛+1
(𝑡)) 𝑢

𝑛+1
)) +

1

(𝑛 + 1)

2
,

a.e. 𝑡 ∈ 𝐼;

(vi) − (𝑢∗
𝑛
)

󸀠

(𝑡) + 𝑔

𝑛
(𝑡) ∈ 𝑁

Γ(𝜃
𝑛
(𝑡),𝑢
∗

𝑛
(𝛿
𝑛
(𝑡)))
𝑢

𝑛
(𝜃

𝑛
(𝑡)) ,

a.e. 𝑡 ∈ 𝐼.

(71)

Step 2. In this step, we show that there is a positive number 𝜂
such that, for any 𝑛 ≥ 2,

󵄩

󵄩

󵄩

󵄩

󵄩

(𝑢

∗

𝑛
)

󸀠

(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ 𝜂, a.e. for 𝑡 ∈ 𝐼. (72)

Let 𝑛 ≥ 2 be a fixed natural number. According to (𝐻
5
)

and (𝐻
6
), for any 𝑡 ∈ 𝐼, we have

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝑃 (𝑡)

󵄩

󵄩

󵄩

󵄩

1 + 𝜏 (𝛿

𝑛
(𝑡) 𝑢

𝑛
) (0)

󵄩

󵄩

󵄩

󵄩

= 𝑃 (𝑡)

󵄩

󵄩

󵄩

󵄩

1 + 𝑢

𝑛
(𝛿

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

= 𝑃 (𝑡) (1 + 𝑅)

≤ max
𝑡∈𝐼

𝑃 (𝑡) (1 + 𝑅) = 𝜁.

(73)

Then, for 𝑖 ∈ {𝑖 = 0, 1, 2, . . . , 2𝑛 − 1},

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
)

󵄩

󵄩

󵄩

󵄩

≤ 𝑅,

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ 𝑅 + 𝑇𝜁,

(74)
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Note that 𝐸∗ is 𝑞/-uniformly convex and 𝑝/-uniformly
smooth.Therefore, in view of (73), (74), and Lemma 12, there
exists a positive constant 𝑎 such that

𝑎

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ 𝑉

∗
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖+1
)) , 𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) .

(75)

In addition, since 𝐸 is 𝑝-uniformly convex and 𝑞-
uniformly smooth, then, again, by Lemma 12, there is a
positive constant 𝑏 such that

𝑑

𝑉

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

≤ 𝑏 [𝑑

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞

.

(76)

Then,

𝑎

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ 𝑉

∗
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖+1
)) , 𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

= 𝑉 (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
) , 𝑥

𝑛

𝑖+1
)

= 𝑑

𝑉

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

≤ 𝑏 [𝑑

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞

.

(77)

This inequality with (66), (73), and (𝐻
6
), give us

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

⋅ [𝑑

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞/𝑞
/

= (

𝑏

𝑎

)

1/𝑞
/

⋅ ([𝑑

Γ(𝑡
𝑛

𝑖+1
,𝐽(𝑥
𝑛

𝑖
))
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)))]

𝑞/𝑞
/

− [𝑑

Γ(𝑡
𝑛

𝑖
,𝐽(𝑥
𝑛

𝑖−1
))
(𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
)))]

𝑞/𝑞
/

) ≤ (

𝑏

𝑎

)

1/𝑞
/

[𝛾

1
𝜇

𝑛

+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖−1
)

󵄩

󵄩

󵄩

󵄩

+ 𝛾

3

󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) − 𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

] .

(78)

Moreover, from the assumption 𝑞 ∈ (1, 2], we infer that
𝑞

/
≥ 2. Then, 𝐸∗ is 𝑞/-uniformly convex (𝑞/ ≥ 2) and 𝑝/-

uniformly smooth.Hence, fromLemma 13, there is a constant
𝛽, depending on (2𝑅 + 𝑇𝜁), such that, for all 𝑧

1
, 𝑧

1
∈ 𝐸

∗,
‖𝑧

1
‖ ≤ 2𝑅 + 𝑇𝜁, and ‖𝑧

2
‖ ≤ 2𝑅 + 𝑇𝜁, we have

󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝑧

1
) − 𝐽

∗
(𝑧

2
)

󵄩

󵄩

󵄩

󵄩

≤ 𝛽

󵄩

󵄩

󵄩

󵄩

𝑧

1
− 𝑧

2

󵄩

󵄩

󵄩

󵄩

. (79)

Consequently,
󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)) − 𝐽

∗
(𝐽 (𝑥

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ 𝛽

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

= 𝛽𝜇

𝑛

󵄩

󵄩

󵄩

󵄩

𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

= 𝛽𝜇

𝑛
𝜁.

(80)

This inequality and (78) yield
󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − (𝐽 (𝑥

𝑛

𝑖
) + 𝜇

𝑛
𝑔

𝑛

𝑖
(𝑡

𝑛

𝑖
))

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

[𝛾

1
𝜇

𝑛
+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖−1
)

󵄩

󵄩

󵄩

󵄩

+ 𝛽𝛾

3
𝜇

𝑛
𝜁] .

(81)

Thus,
󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

[𝛾

1
𝜇

𝑛
+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖−1
)

󵄩

󵄩

󵄩

󵄩

+ 𝛽𝛾

3
𝜇

𝑛
]

+ 𝜇

𝑛
𝜁 = 𝜇

𝑛
(𝛾

1
+ 𝛾

3
) + 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖
) − 𝐽 (𝑥

𝑛

𝑖−1
)

󵄩

󵄩

󵄩

󵄩

,

(82)

where 𝛾
1
= (𝑏/𝑎)

1/𝑞
/

𝛾

1
, 𝛾

2
= (𝑏/𝑎)

1/𝑞
/

𝛾

2
, and 𝛾

3
= 𝜁 +

(𝑏/𝑎)

1/𝑞
/

𝛽𝜁𝛾

3
. By repeating the same procedure as (82), (𝑖−1)-

times, we infer that
󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ 𝜇

𝑛
(𝛾

1
+ 𝛾

3
) [1 + 𝛾

2
+ 𝛾

2

2
+ 𝛾

2

3
+ ⋅ ⋅ ⋅ + 𝛾

2

𝑖−1
]

+ 𝛾

2

𝑖 󵄩
󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

1
) − 𝐽 (𝑥

𝑛

0
)

󵄩

󵄩

󵄩

󵄩

.

(83)

Note thatΨ(0) ∈ Γ(0, 𝐽(Ψ(0))) and 𝑥𝑛
0
= Ψ(0).Then, 𝑥𝑛

0
∈

Γ(0, 𝐽(𝑥

𝑛

0
)). Hence, by arguing as in (78) and using (79), one

obtains

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

1
) − (𝐽 (𝑥

𝑛

0
) + 𝜇

𝑛
𝑔

𝑛

0
(𝑡

𝑛

0
))

󵄩

󵄩

󵄩

󵄩

𝑞
/

≤ (

𝑏

𝑎

)

1/𝑞
/

⋅ ([𝑑

Γ(𝑡
𝑛

1
,𝐽(𝑥
𝑛

0
))
(𝐽

∗
(𝐽 (𝑥

𝑛

0
) + 𝜇

𝑛
𝑔

𝑛

0
(𝑡

𝑛

0
)))]

𝑞/𝑞
/

− [𝑑

Γ(𝑡
𝑛

0
,𝐽(𝑥
𝑛

0
))
(𝐽

∗
(𝐽 (𝑥

𝑛

0
)))]

𝑞/𝑞
/

) = (

𝑏

𝑎

)

1/𝑞
/

(𝛾

1
𝜇

𝑛

+ 𝛾

3

󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝐽 (𝑥

𝑛

0
) + 𝜇

𝑛
𝑔

𝑛

0
(𝑡

𝑛

0
)) − 𝐽

∗
(𝐽 (𝑥

𝑛

0
))

󵄩

󵄩

󵄩

󵄩

)

≤ (

𝑏

𝑎

)

1/𝑞
/

(𝛾

1
𝜇

𝑛
+ 𝛽𝛾

3
𝜇

𝑛
𝜁) .

(84)

Thus,

󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

1
) − 𝐽 (𝑥

𝑛

0
)

󵄩

󵄩

󵄩

󵄩

≤ (

𝑏

𝑎

)

1/𝑞
/

(𝛾

1
𝜇

𝑛
+ 𝛽𝛾

3
𝜇

𝑛
𝜁) + 𝜇

𝑛
𝜁

= 𝜇

𝑛
(𝛾

1
+ 𝛾

3
) .

(85)

Relations (83) and (85) and the fact that 0 < 𝛾

2
<

(𝑎/𝑏)

1/𝑞
󸀠

yield
󵄩

󵄩

󵄩

󵄩

𝐽 (𝑥

𝑛

𝑖+1
) − 𝐽 (𝑥

𝑛

𝑖
)

󵄩

󵄩

󵄩

󵄩

≤ 𝜇

𝑛
(𝛾

1
+ 𝛾

3
) [1 + 𝛾

2
+ 𝛾

2

2
+ 𝛾

2

3
+ ⋅ ⋅ ⋅ + 𝛾

2

𝑖−1
+ 𝛾

2

𝑖
]

≤ 𝜇

𝑛
(𝛾

1
+ 𝛾

3
)

1

1 − 𝛾

2

.

(86)
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Therefore, for 𝑛 ≥ 2, for 𝑖 = 0, 1, 2, . . . , 2

𝑛
− 1, and for

𝑡 ∈ (𝑡

𝑛

𝑖
, 𝑡

𝑛

𝑖+1
), we get

󵄩

󵄩

󵄩

󵄩

󵄩

(𝑢

∗

𝑛
)

󸀠

(𝑡)

󵄩

󵄩

󵄩

󵄩

󵄩

≤ (𝛾

1
+ 𝛾

3
)

1

1 − 𝛾

2

= 𝜂. (87)

This shows that (72) is true.

Step 3. We show that there is a Lipschitz function 𝑢

∗
:

𝐼 → 𝐸

∗, such that the sequence (𝑢∗
𝑛
)

𝑛≥2
has a convergent

uniform subsequence, still denoted by (𝑢∗
𝑛
)

𝑛≥2
, to 𝑢∗ and

(𝑢

∗

𝑛
)

󸀠

𝑛≥2
converges weakly to (𝑢∗)󸀠.

Indeed, by (72), for any 𝑠
1
, 𝑠

2
∈ 𝐼(𝑠

1
< 𝑠

2
), we have

󵄩

󵄩

󵄩

󵄩

𝑢

∗

𝑛
(𝑠

1
) − 𝑢

∗

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

≤ 𝜂

󵄨

󵄨

󵄨

󵄨

𝑠

1
− 𝑠

2

󵄨

󵄨

󵄨

󵄨

, ∀𝑛 ≥ 2. (88)

Then, the sequence (𝑢∗
𝑛
)

𝑛≥2
is equicontinuous on 𝐼. We

want to show that, for any 𝑡 ∈ 𝐼, the subset {𝑢∗
𝑛
(𝑡) : 𝑛 ≥ 2} is

relatively compact in 𝐸∗.
As above, by Lemma 12, there is a constant 𝛿, depending

on (‖Ψ(0) + 𝑇𝜂‖), such that
󵄩

󵄩

󵄩

󵄩

𝐽

∗
(𝑢

∗

𝑛
(𝑠

1
)) − 𝐽

∗
(𝑢

∗

𝑛
(𝑠

2
))

󵄩

󵄩

󵄩

󵄩

≤ 𝛿

󵄩

󵄩

󵄩

󵄩

𝑢

∗

𝑛
(𝑠

1
) − 𝑢

∗

𝑛
(𝑠

2
)

󵄩

󵄩

󵄩

󵄩

≤ 𝛿𝜂

󵄨

󵄨

󵄨

󵄨

𝑠

1
− 𝑠

2

󵄨

󵄨

󵄨

󵄨

, ∀𝑛 ≥ 2.

(89)

So, for 𝑛 ≥ 2 and 𝑡 ∈ 𝐼,
󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝜃

𝑛
(𝑡)) − 𝑢

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝐽

∗
𝑢

∗

𝑛
(𝜃

𝑛
(𝑡)) − 𝐽

∗
𝑢

∗

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝛿𝜂

󵄨

󵄨

󵄨

󵄨

𝜃

𝑛
(𝑡) − 𝑡

󵄨

󵄨

󵄨

󵄨

= 𝛿𝜂𝜇

𝑛
.

(90)

But, by (66),

𝑢

𝑛
(𝜃

𝑛
(𝑡)) ∈ Γ (𝜃

𝑛
(𝑡) , 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))) . (91)

Then, (90) yields

𝑢

𝑛
(𝑡) ∈ Γ (𝜃

𝑛
(𝑡) , 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡)))

+

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝜃

𝑛
(𝑡)) − 𝑢

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

𝐵 (0, 1)

⊆ Γ (𝜃

𝑛
(𝑡) , 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))) + 𝛿𝜂𝜇

𝑛
𝐵 (0, 1) ,

∀𝑡 ∈ 𝐼.

(92)

On the other hand, in view of (88) and (𝐻
7
), for any 𝑡 ∈ 𝐼 and

any 𝑧 ∈ Γ(𝜃
𝑛
(𝑡), 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))), we have

[𝑑

Γ(𝑡,𝑢
∗

𝑛
(𝑡))
(𝑧)]

𝑞/𝑞
/

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

[𝑑

Γ(𝜃
𝑛
(𝑡),𝑢
∗

𝑛
(𝛿
𝑛
(𝑡)))

(𝑧)]

𝑞/𝑞
/

− [𝑑

Γ(𝑡,𝑢
∗

𝑛
(𝑡))
(𝑧)]

𝑞/𝑞
/ 󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝛾

1

󵄨

󵄨

󵄨

󵄨

𝜃

𝑛
(𝑡) − 𝑡

󵄨

󵄨

󵄨

󵄨

+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝑢

∗

𝑛
(𝛿

𝑛
(𝑡)) − 𝑢

𝑛
(𝑡)

󵄩

󵄩

󵄩

󵄩

≤ 𝛾

1
𝜇

𝑛
+ 𝛾

2
𝜂

󵄨

󵄨

󵄨

󵄨

𝛿

𝑛
(𝑡) − 𝑡

󵄨

󵄨

󵄨

󵄨

≤ 𝛾

1
𝜇

𝑛
+ 𝛾

2
𝜂𝜇

𝑛
.

(93)

This means that

Γ (𝜃

𝑛
(𝑡) , 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))) ⊆ Γ (𝑡, 𝑢

∗

𝑛
(𝑡))

+ (𝛾

1
𝜇

𝑛
+ 𝛾

2
𝜂𝜇

𝑛
) 𝐵 (0, 1) ,

∀𝑡 ∈ 𝐼.

(94)

In view of (92) and (94), one obtains

𝑢

𝑛
(𝑡) ⊆ Γ (𝑡, 𝑢

∗

𝑛
(𝑡)) + (𝛿𝜂𝜇

𝑛
+ 𝛾

1
𝜇

𝑛
+ 𝛾

2
𝜂𝜇

𝑛
) 𝐵 (0, 1)

= Γ (𝑡, 𝑢

∗

𝑛
(𝑡)) + 𝜇

𝑛
𝐵 (0, 1) , ∀𝑡 ∈ 𝐼,

(95)

where 𝜇
𝑛
= 𝜇

𝑛
(𝛿𝜂𝜇

𝑛
+ 𝛾

1
𝜇

𝑛
+ 𝛾

2
𝜂).

Now, assume by contradiction that there is 𝑡
0
∈ 𝐼 such

that 𝐵∗
(𝑡

0
) = {𝑢

∗

𝑛
(𝑡

0
) : 𝑛 ≥ 2} is not relatively compact in

𝐸

∗. Since 𝐽∗ is continuous on bounded sets, the set 𝐵(𝑡
0
) =

{𝑢

𝑛
(𝑡

0
) : 𝑛 ≥ 2} is not relatively compact in 𝐸. Then,

𝜒(𝐵(𝑡

0
)) > 0. Observe that, by (90), for 𝑛 ≥ 2,

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑡

0
)

󵄩

󵄩

󵄩

󵄩

=

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛
(𝑡

0
) − 𝑢

𝑛
(0)

󵄩

󵄩

󵄩

󵄩

+

󵄩

󵄩

󵄩

󵄩

𝜓 (0)

󵄩

󵄩

󵄩

󵄩

≤ 𝛿𝜂𝑇 +

󵄩

󵄩

󵄩

󵄩

𝜓 (0)

󵄩

󵄩

󵄩

󵄩

= 𝜂.

(96)

Therefore, in view of (𝐻
8
),

𝜒

𝐸
(𝐵 (𝑡

0
)) − 𝜒

𝐸
(Γ (𝑡

0
, 𝐵

∗
(𝑡

0
)) ∩ 𝜂𝐵 (0, 1)) > 0. (97)

Then, we can find 𝜉 > 0 such that

𝜒

𝐸
(𝐵 (𝑡

0
)) − 𝜒

𝐸
(Γ (𝑡

0
, 𝐵

∗
(𝑡

0
)) ∩ 𝜂𝐵 (0, 1)) > 2𝜉. (98)

Let 𝑛
0
be a natural number such that 𝑛

0
≥ 2 and 𝜇

𝑛
< 𝜉/2,

∀𝑛 ≥ 𝑛

0
. So, by using (95) and (96),

𝑢

𝑛
(𝑡

0
) ⊆ (Γ (𝑡, 𝑢

∗

𝑛
0

(𝑡)) ∩ 𝜂𝐵) +

𝜉

2

𝐵 (0, 1) .

(99)

Then, from the properties of 𝜒, (99), and (𝐻
8
), we infer that

𝜒 (𝐵 (𝑡

0
)) = 𝜒 {𝑢

𝑛
(𝑡

0
) : 𝑛 ≥ 𝑛

0
}

≤ 𝜒 (Γ (𝑡

0
, 𝐵

∗
(𝑡

0
)) ∩ 𝜂𝐵 (0, 1)) + 𝜉

< 𝜒 (𝐵 (𝑡

0
)) − 2𝜉 + 𝜉 = 𝜒 (𝐵 (𝑡

0
)) − 𝜉,

(100)

which is a contradiction.
Therefore, Theorem 4. Ch.1. in [16] implies that there is

a Lipschitz function 𝑢∗ : 𝐼 → 𝐸

∗, such that the sequence
(𝑢

∗

𝑛
)

𝑛≥2
has a convergent uniform subsequence, still denoted

by (𝑢∗
𝑛
)

𝑛≥2
, to 𝑢∗ and (𝑢∗

𝑛
)

󸀠

𝑛≥2
converges weakly to (𝑢∗)󸀠.We

extend the definition of 𝑢∗ on [−𝑟, 𝑇] by putting 𝑢∗(𝑡) =
𝐽(Ψ(𝑡)), 𝑡 ∈ [−𝑟, 0]. Thus, (𝑢∗

𝑛
)

𝑛≥2
converges uniformly to

𝑢

∗ on [−𝑟, 𝑇]. Since 𝐽∗ is uniformly continuous on bounded
sets, then the sequence (𝑢

𝑛
)

𝑛≥2
(𝑢

𝑛
= 𝐽

∗
𝑢

∗

𝑛
) is uniformly

convergent to 𝑢 : [−𝑟, 𝑇] → 𝐸 with 𝑢 = 𝐽∗(𝑢∗).

Step 4. Let us show that 𝑢(𝑡) ∈ Γ(𝑡, 𝑢∗(𝑡)), 𝑡 ∈ 𝐼.
Let 𝑡 ∈ 𝐼. According to (𝐻

7
), we have

[𝑑

Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡))]

𝑞/𝑞
/

=

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

[𝑑

Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡))]

𝑞/𝑞
/

− [𝑑

Γ(𝜃
𝑛
(𝑡),𝑢
∗
(𝛿
𝑛
(𝑡)))

(𝑢

𝑛
(𝜃

𝑛
(𝑡)))]

𝑞/𝑞
/ 󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝛾

1

󵄨

󵄨

󵄨

󵄨

𝜃

𝑛
(𝑡)

− 𝑡

󵄨

󵄨

󵄨

󵄨

+ 𝛾

2

󵄩

󵄩

󵄩

󵄩

𝑢

∗

(𝑡) − 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

+ 𝛾

3

󵄩

󵄩

󵄩

󵄩

𝑢 (𝑡)

− 𝑢

𝑛
(𝜃

𝑛
(𝑡))

󵄩

󵄩

󵄩

󵄩

.

(101)
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Note that lim
𝑛→∞

𝛾

1
|𝜃

𝑛
(𝑡) − 𝑡| + 𝛾

2
‖𝑢

∗
(𝑡) − 𝑢

∗

𝑛
(𝛿

𝑛
(𝑡))‖ +

𝛾

3
‖𝑢(𝑡) − 𝑢

𝑛
(𝜃

𝑛
(𝑡))‖ = 0.Then, 𝑢(𝑡) ∈ Γ(𝑡, 𝑢∗(𝑡)), 𝑡 ∈ 𝐼.

Step 5. Following the same lines in Steps 5 and 6 in the
proof of Theorem 15, we can show that lim

𝑛→∞
‖𝜏(𝛿

𝑛
(𝑡))𝑢

𝑛
−

𝜏(𝑡)𝑢‖

𝐶
𝐸
([−𝑟,0])

= 0, for every 𝑡 ∈ 𝐼. Moreover, the sequence
(𝑓

𝑛
)

𝑛≥2
defined by 𝑓

𝑛
(𝑡) = 𝑔

𝑛
(𝛿

𝑛
(𝑡)), 𝑡 ∈ 𝐼, converges

almost everywhere to a function 𝑓 ∈ 𝐿

1
(1, 𝐸

∗
) and 𝑓(𝑡) ∈

𝐹(𝑡, 𝜏(𝑡)𝑢), a.e. 𝑡 ∈ 𝐼.

Step 6. We proceed to show that

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ 𝑁

Γ(𝑡,𝑢
∗
(𝑡))
𝑢 (𝑡) , a.e. 𝑡 ∈ 𝐼. (102)

In view of (72) and (73) and Lemma 11, for every natural
number 𝑛 ≥ 2, one obtains

− (𝐽𝑢

𝑛
)

󸀠

(𝑡) + 𝑓

𝑛
(𝑡)

∈ (𝜂 + 𝜍) 𝜕𝑑

Γ(𝜃
𝑛
(𝑡),𝑢
∗
(𝛿
𝑛
(𝑡)))

(𝑢

𝑛
(𝜃

𝑛
𝑡)) , a.e. 𝑡 ∈ 𝐼.

(103)

By (𝐻
2
) and ([19], Prop. 1.7), the multivalued function

(𝑡, 𝑦) → 𝜕𝑑

Γ(𝑡)
(𝑦) is scalary uppersemicontinuous with

convex and weak∗compact values. Then, for any V ∈ 𝐸,

lim sup
𝑛→∞

𝜎 (V, 𝜕𝑑
Γ(𝜃
𝑛
(𝑡),𝑢
∗
(𝛿
𝑛
(𝑡)))

(𝑢

𝑛
(𝜃

𝑛
𝑡)))

≤ 𝜎 (V, 𝜕𝑑
Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡))) ,

(104)

where 𝜎 is the support function.
Now, let (𝑒

𝑘
) be a sequence in 𝐸 which separates the

points. Hence, from the weak convergence of the sequence
((𝐽𝑢

𝑛
)

󸀠
+ 𝑓

𝑛
)

𝑛≥2
to 𝐽(𝑢󸀠) + 𝑓 in 𝐿1(𝐼, 𝐸∗

), for any Lebesgue
measurable subset 𝐴 ⊆ 𝐼, we have

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ 𝑑𝑡

= lim
𝑛→∞

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢

𝑛
)

󸀠

(𝑡) + 𝑓

𝑛
(𝑡))⟩ 𝑑𝑡.

(105)

This relation with (103) and (104) yields

∫

𝐴

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ 𝑑𝑡 ≤ lim sup
𝑛→∞

∫

𝐴

𝜎 (𝑒

𝑘
,

(𝜂 + 𝜍) 𝜕𝑑

Γ(𝜃
𝑛
(𝑡),𝑢
∗
(𝛿
𝑛
(𝑡)))

(𝑢

𝑛
(𝜃

𝑛
𝑡))) 𝑑𝑡

≤ ∫

𝐴

lim sup
𝑛→∞

𝜎 (𝑒

𝑘
,

(𝜂 + 𝜍) 𝜕𝑑

Γ(𝜃
𝑛
(𝑡),𝑢
∗
(𝛿
𝑛
(𝑡)))

(𝑢

𝑛
(𝜃

𝑛
𝑡))) 𝑑𝑡

≤ ∫

𝐴

𝜎 (V, 𝜕𝑑
Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡))) 𝑑𝑡.

(106)

So, for almost 𝑡 ∈ 𝐼,

⟨𝑒

𝑘
, (− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡))⟩ ≤ 𝜎 (V, 𝜕𝑑
Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡))) ,

∀𝑘 ≥ 1.

(107)

Again, since the multivalued function 𝑡 → 𝜕𝑑

Γ(𝑡)
(𝑢(𝑡))

is measurable with convex and weak∗compact, then by ([18],
III.35) it follows that

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ (𝜂 + 𝜍) 𝜕𝑑

Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡)) , a.e. (108)

As 𝑢(𝑡) ∈ Γ(𝑡, 𝑢∗(𝑡)), ∀𝑡 ∈ 𝐼, we get

− (𝐽𝑢)

󸀠

(𝑡) + 𝑓 (𝑡) ∈ 𝑁

Γ(𝑡,𝑢
∗
(𝑡))
(𝑢 (𝑡)) , a.e. (109)

This completes the proof.
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