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We show that the dual (𝐵loc
𝑝(⋅)(Ω))󸀠 of the variable exponentHörmander space𝐵loc

𝑝(⋅)(Ω) is isomorphic to theHörmander space𝐵𝑐∞(Ω)
(when the exponent𝑝(⋅) satisfies the conditions 0 < 𝑝− ≤ 𝑝+ ≤ 1, the Hardy-Littlewoodmaximal operator𝑀 is bounded on 𝐿𝑝(⋅)/𝑝0
for some 0 < 𝑝0 < 𝑝− and Ω is an open set in R𝑛) and that the Fréchet envelope of 𝐵loc

𝑝(⋅)(Ω) is the space 𝐵loc
1 (Ω). Our proofs rely

heavily on the properties of the Banach envelopes of the 𝑝0-Banach local spaces of 𝐵loc
𝑝(⋅)(Ω) and on the inequalities established in

the extrapolation theorems in variable Lebesgue spaces of entire analytic functions obtained in a previous article. Other results
for 𝑝(⋅) ≡ 𝑝, 0 < 𝑝 < 1, are also given (e.g., all quasi-Banach subspace of 𝐵loc

𝑝 (Ω) is isomorphic to a subspace of 𝑙𝑝, or 𝑙∞ is not
isomorphic to a complemented subspace of the Shapiro space ℎ𝑝−). Finally, some questions are proposed.

Dedicated to the memory of Nigel J. Kalton

1. Introduction and Notation

The Lebesgue spaces 𝐿𝑝(⋅) with variable exponent and the
corresponding Sobolev spaces𝑊𝑚

𝑝(⋅) have been the subject of
considerable interest since the early 1990s.These spaces are of
interest in their own right and also have applications to PDEs
of nonstandard growth and to modelling electrorheological
fluids and to image restoration. For a thorough discussion of
these spaces and their history, see [1, 2]. Our paper lies in this
field of variable exponent function spaces and is a continua-
tion of [3] (see also [4, 5]). In [5] the (nonweighted) variable
exponentHörmander spaces𝐵𝑝(⋅) ,𝐵𝑐𝑝(⋅)(Ω), and𝐵loc𝑝(⋅)(Ω)were
introduced (recall that the classical Hörmander spaces 𝐵𝑝,𝑘,𝐵𝑐𝑝,𝑘(Ω), and 𝐵loc𝑝,𝑘(Ω) play a crucial role in the theory of
linear partial differential operators (see, e.g., [6–10])) and
there, extending a Hörmander result [6, Chapter XV] to our
context, the dual of 𝐵𝑐𝑝(⋅)(Ω) (when 1 < 𝑝− ≤ 𝑝+ < ∞) was
calculated (as a consequence some results on sequence space
representation of variable exponent Hörmander spaces were
obtained). In [3] the dual (𝐵𝑐𝑝(⋅)(Ω))󸀠 was calculated when

0 < 𝑝− ≤ 𝑝+ ≤ 1 (with techniques necessarily different
from those used in [5]) and a number of applications were
given. In the current article we show that the dual (𝐵loc𝑝(⋅)(Ω))󸀠
is isomorphic to 𝐵𝑐∞(Ω) (when 0 < 𝑝− ≤ 𝑝+ ≤ 1) and that
the Fréchet envelope of𝐵loc𝑝(⋅)(Ω) is𝐵loc1 (Ω). Applications to the
study of the structure of complemented subspaces of 𝐵loc𝑝(⋅)(Ω)
are also given. The techniques used in the article (also in [3])
are based on the inequalities of the extrapolation theorems
obtained by the authors in [4] and on the properties of the
Banach envelopes of the 𝑝0-Banach local spaces of 𝐵loc𝑝(⋅)(Ω).
Finally, three questions on duality and on sequence space
representation of variable exponent Hörmander spaces are
proposed.

1.1. Notation

(1) Let 𝐸 and 𝐹 be Hausdorff topological linear spaces
over C. If 𝐸 and 𝐹 are isomorphic (i.e., there exists
a linear homeomorphism from 𝐸 onto 𝐹) we put
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2 Abstract and Applied Analysis

𝐸 ≃ 𝐹. The (topological) dual of 𝐸 is denoted by 𝐸󸀠
and is given (unless otherwise stated) the topology of
uniform convergence on all the bounded subsets of𝐸 (sometimes denoted by 𝛽(𝐸󸀠, 𝐸)). The completion
of 𝐸 is denoted by 𝐸̃. If 𝐸 is metrizable and complete,𝐸 is said to be an 𝐹-space. A locally convex 𝐹-space
is said to be a Fréchet space. We put 𝐸 󳨅→ 𝐹 if 𝐸
is a linear subspace of 𝐹 and the canonical injection
is continuous. If 𝐸 is a Banach space, 𝐸N (resp.,𝐸(N)) is the topological product (resp., the locally
convex direct sum) of a countable number of copies
of 𝐸. CN (resp., C(N)) is denoted by 𝜔 (resp., 𝜑). For
unexplained notation we refer to [11–14].

(2) If 𝑓 ∈ 𝐿1(R𝑛) the Fourier transform of 𝑓, 𝑓̂ orF𝑓, is
defined by 𝑓̂(𝜉) = ∫

R𝑛
𝑓(𝑥)𝑒−𝑖𝜉𝑥𝑑𝑥. If 𝑓 is a function

onR𝑛, then 𝑓̃(𝑥) = 𝑓(−𝑥) for 𝑥 ∈ R𝑛. 𝐵𝑟 is the closed
Euclidean ball {𝑥 : |𝑥| ≤ 𝑟} in R𝑛. 𝐶∞0 (R𝑛), 𝐶∞0 (Ω),
and 𝑆(R𝑛) are the usual Schwartz spaces (in the last
space the norms max|𝛼|≤𝑚sup𝑥∈R𝑛 (1 + |𝑥|2)𝑚|𝜕𝛼𝜑(𝑥)|,𝑚 = 0, 1, 2, . . ., are denoted by |𝜑|𝑚). 𝐷󸀠(R𝑛), 𝐷󸀠(Ω),
and 𝑆󸀠(R𝑛) are their corresponding duals. E󸀠(𝐾) (𝐾
compact in R𝑛) is the set of distributions on R𝑛 with
support contained in 𝐾. The Fourier transform in𝑆󸀠(R𝑛) is also denoted by ∧ (or F). If 𝑢 ∈ 𝑆󸀠(R𝑛),𝑢̃ is defined by ⟨𝜑, 𝑢̃⟩ = ⟨𝜑̃, 𝑢⟩ for all 𝜑 ∈ 𝑆(R𝑛);
thus ∼ coincides with the operator (2𝜋)−𝑛F2. When
we consider function spaces (or distribution spaces)
defined on the whole Euclidean space R𝑛, we shall
omit the “R𝑛” of their notation. The letter 𝐶 will
always denote a positive constant, not necessarily the
same at each occurrence.

(3) Throughout this paper all vector spaces are assumed
complex. By definition, a quasi-normed space is a
vector space𝑋 with a quasi-norm 𝑥 → ‖𝑥‖ satisfying
(i) ‖𝑥‖ > 0, 𝑥 ̸= 0, (ii) ‖𝛼𝑥‖ = |𝛼|‖𝑥‖, and (iii)‖𝑥 + 𝑦‖ ≤ 𝐶(‖𝑥‖ + ‖𝑦‖), 𝑥, 𝑦 ∈ 𝑋, for some 𝐶
independent of 𝑥, 𝑦. If 𝑋 is complete, we say it is a
quasi-Banach space.The quasi-norm is𝑝-subadditive
for some 𝑝 > 0 if ‖𝑥 + 𝑦‖𝑝 ≤ ‖𝑥‖𝑝 + ‖𝑦‖𝑝, 𝑥, 𝑦 ∈ 𝑋;
in this case, if 𝑋 is complete, we say it is a 𝑝-Banach
space. Recall that if a quasi-normed space (𝑋, ‖ ⋅ ‖) is
locally convex then it becomes a normed space: Let𝐵𝑋 = {𝑥 : ‖𝑥‖ < 1} be and let 𝑈 be a balanced convex
open neighborhood of 0 such that 𝑈 ⊂ 𝐵𝑋. If 𝜖 > 0
is such that 𝜖𝐵𝑋 ⊂ 𝑈 then the Minkowski functional
of 𝑈, ‖ ⋅ ‖𝑈 (‖ ⋅ ‖𝑈 = inf{𝜆 > 0 : 𝑥 ∈ 𝜆𝑈}), is a norm
equivalent to ‖ ⋅ ‖ since

𝜖 ‖𝑥‖𝑈 ≤ ‖𝑥‖ ≤ ‖𝑥‖𝑈 (1)

holds for all 𝑥 ∈ 𝑋. (See [12, Chapter 1] and [15,
Chapter 25].)

(4) P0 is the set of all measurable functions 𝑝(⋅) on R𝑛

with range in (0, ∞) such that𝑝− = ess inf𝑥∈R𝑛𝑝(𝑥) >0 and 𝑝+ = ess sup𝑥∈R𝑛𝑝(𝑥) < ∞. 𝐿𝑝(⋅) denotes the
set of all complex-valued measurable functions onR𝑛

such that, for some 𝜆 > 0, ∫
R𝑛
(|𝑓(𝑥)|/𝜆)𝑝(𝑥)𝑑𝑥 < ∞.

With the norm (quasi-norm if 𝑝− < 1) defined by‖𝑓‖𝑝(⋅) fl inf{𝜆 > 0 : ∫
R𝑛
(|𝑓(𝑥)|/𝜆)𝑝(𝑥)𝑑𝑥 ≤ 1}, 𝐿𝑝(⋅)

becomes a Banach (quasi-Banach if 𝑝− < 1) space.
If 𝑝− < 1 we can also define 𝐿𝑝(⋅) as the set of all
measurable functions 𝑓 such that |𝑓|𝑝0 ∈ 𝐿𝑞(⋅), where0 < 𝑝0 ≤ 𝑝− and 𝑞(𝑥) = 𝑝(𝑥)/𝑝0. In this case we have‖𝑓‖𝑝(⋅) = ‖|𝑓|𝑝0‖1/𝑝0𝑞(⋅) . (See [1, 2, 16].)

(5) If 𝐾 is a compact subset of R𝑛 and 0 < 𝑝 ≤ ∞, then𝐿𝐾𝑝 := {𝑓 ∈ 𝑆󸀠 : supp 𝑓̂ ⊂ 𝐾, 𝑓 ∈ 𝐿𝑝}. (𝐿𝐾𝑝 , ‖ ⋅ ‖𝑝)
is a quasi-Banach (Banach if 𝑝 ≥ 1) space (see [17,
Chapters 1, 2]). If 𝑝(⋅) ∈ P0 then

𝐿𝐾𝑝(⋅) fl {𝑓 ∈ 𝑆󸀠 : supp 𝑓̂ ⊂ 𝐾, 󵄩󵄩󵄩󵄩𝑓󵄩󵄩󵄩󵄩𝑝(⋅) < ∞} . (2)

(𝐿𝐾𝑝(⋅), ‖⋅‖𝑝(⋅)) is a quasi-normed space (normed if𝑝− ≥1) linear space. From the Paley-Wiener-Schwartz
theorem it follows that the elements of 𝐿𝐾𝑝(⋅) are entire
analytic functions of exponential type. When 𝑝(⋅) ≡𝑝, a constant, then 𝐿𝐾𝑝(⋅) = 𝐿𝐾𝑝 with equality of quasi-
norms (resp., norms). We shall denote by 𝑆𝐾 the
collection of all𝑓 ∈ 𝑆 such that supp 𝑓̂ ⊂ 𝐾; obviously𝑆𝐾 ⊂ 𝐿𝐾𝑝(⋅).The spaces 𝐿𝐾𝑝(⋅) have been introduced and
studied in [4].

(6) Let 𝑝(⋅) ∈ P0 be and letΩ be an open set inR𝑛. Then

𝐵𝑝(⋅) fl {𝑢 ∈ 𝑆󸀠 : 𝑢̂ ∈ 𝐿𝑝(⋅) (⇐⇒ ∃𝑔 ∈ 𝐿𝑝(⋅)
∩ 𝐿loc1 : ⟨𝜑, 𝑢̂⟩ = ∫

R𝑛
𝜑𝑔𝑑𝑥, ∀𝜑 ∈ 𝐶∞0 )} .

(3)

If 𝑢 ∈ 𝐵𝑝(⋅) we put ‖𝑢‖𝐵𝑝(⋅) fl ‖𝑢̂‖𝑝(⋅). (𝐵𝑝(⋅), ‖ ⋅ ‖𝐵𝑝(⋅) ) is
a quasi-normed space (a Banach space isomorphic to𝐿𝑝(⋅) if 𝑝− ≥ 1). Now consider the space

𝐵𝑐𝑝(⋅) (Ω) fl⋃{𝐵𝑝(⋅) ∩ E
󸀠 (𝐾) : 𝐾 compact in Ω} . (4)

If every 𝐵𝑝(⋅) ∩ E󸀠(𝐾) is equipped with the topology
induced by 𝐵𝑝(⋅), then 𝐵𝑐𝑝(⋅)(Ω) (endowed with the
corresponding inductive linear topology) becomes a
strict inductive limit

𝐵𝑐𝑝(⋅) (Ω) fl ind
𝐾
[𝐵𝑝(⋅) ∩E

󸀠 (𝐾)] . (5)

(Each step 𝐵𝑝(⋅) ∩ E󸀠(𝐾) is a quasi-Banach space
since it is isomorphic to 𝐿−𝐾𝑝(⋅) via the Fourier trans-
form and this space is a quasi-Banach space by
[4, Theorem 3.5]. On the other hand, the bilinear
mapping 𝑆×(𝐵𝑝∩E󸀠(𝐾)) → 𝐵𝑝∩E󸀠(𝐾) : (𝜑, 𝑢) → 𝜑𝑢
is continuous (see [5])). Finally,

𝐵loc𝑝(⋅) (Ω) fl {𝑢 ∈ 𝐷󸀠 (Ω) : 𝜑𝑢 ∈ 𝐵𝑝(⋅), ∀𝜑 ∈ 𝐶∞0 (Ω)} . (6)
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The topology of this space is generated by the semi-
norms (𝑝0-seminorms when 𝑝− < 1; here 𝑝0 ∈(0, 𝑝−)) 𝑢 → ‖𝑢‖𝑝(⋅),𝜑 fl ‖𝜑𝑢‖𝐵𝑝(⋅) , 𝜑 ∈ 𝐶∞0 (Ω).
The spaces 𝐵𝑝(⋅), 𝐵𝑐𝑝(⋅)(Ω), and 𝐵loc𝑝(⋅)(Ω) are called
variable exponent Hörmander spaces and have been
introduced in [5]. If 𝑝(⋅) ≡ 𝑝 and 𝑝 ≥ 1, these spaces
coincide with the Hörmander spaces 𝐵𝑝,1, 𝐵loc𝑝,1(Ω),
and 𝐵loc𝑝,1(Ω), respectively (see [6]). Throughout this
paper, 𝐵loc∞ (Ω) will denote the Hörmander space𝐵loc∞,1(Ω) (see again [6, Chapter X]).

(7) We conclude this section recalling some basic facts
about the Banach envelope of a quasi-normed space
and the Fréchet envelope of a metrizable topological
linear space.
Let (𝑋, ‖ ⋅ ‖𝑋) be a quasi-normed space whose dual𝑋󸀠 separates the points of 𝑋 and let 𝐵𝑋 be the unit
ball of 𝑋. Then 𝑋󸀠 is a Banach space under the norm‖𝑥󸀠‖ = sup{|⟨𝑥, 𝑥󸀠⟩| : 𝑥 ∈ 𝐵𝑋}. The Banach envelope𝑋̂ of (𝑋, ‖ ⋅‖𝑋) is the completion of𝑋 in the norm ‖ ⋅‖𝑐
defined by

‖𝑥‖𝑐 fl sup {󵄨󵄨󵄨󵄨󵄨⟨𝑥, 𝑥󸀠⟩󵄨󵄨󵄨󵄨󵄨 : 󵄩󵄩󵄩󵄩󵄩𝑥󸀠󵄩󵄩󵄩󵄩󵄩 ≤ 1} . (7)

‖ ⋅ ‖𝑐 coincides with the Minkowski functional of the
convex hull of 𝐵𝑋, ‖ ⋅ ‖𝑐 ≤ ‖ ⋅ ‖𝑋 and the inclusion𝑋 󳨅→ 𝑋̂ is continuous with dense range (if 𝑋 is a
Banach space then 𝑋 = 𝑋̂). 𝑋̂ has the property that
any bounded linear operator𝐿 : 𝑋 → 𝑌 into aBanach
space extendswith preservation of norm to a bounded
linear operator 𝐿̂ : 𝑋̂ → 𝑌; thus (𝑋̂)󸀠 (and (𝑋, ‖ ⋅ ‖𝑐)󸀠)
becomes linearly isometric to𝑋󸀠 (see, e.g., [12, pp. 27,
28] and [18, Section 2]; in the last paper the Banach
envelopes of some Besov and Triebel-Lizorkin spaces
are computed; in [19] the Banach envelope of Paley-
Wiener type spaces is also computed).
Now let𝑋[T] be ametrizable topological linear space
such that its dual 𝑋󸀠(= (𝑋[T])󸀠) separates points
of 𝑋. The Mackey topology of 𝑋[T], 𝑚(𝑋,𝑋󸀠), is
the finest locally convex topology on 𝑋 which has𝑋󸀠 as dual space. If {𝑈𝑛}∞𝑛=1 is a base of balanced
neighborhoods of zero forT then {𝑈̃𝑛}∞𝑛=1, where 𝑈̃𝑛

denotes the T-closed convex hull of 𝑈𝑛, is a base
of neighborhoods of zero for 𝑚(𝑋,𝑋󸀠) and thus this
topology is metrizable. The Fréchet envelope 𝑋̂ of𝑋[T] is the completion of 𝑋[𝑚(𝑋,𝑋󸀠)] (𝑋̂ = 𝑋[T]
when 𝑋[T] is a Fréchet space). 𝑋̂ coincides with the
Banach envelope of 𝑋[T] when this space is quasi-
normed. If 𝑗 is the canonical injection of 𝑋[T] into𝑋̂, then the transpose of 𝑗 is an algebraic isomorphism
of (𝑋̂)󸀠 onto (𝑋[T])󸀠. If 𝑋 and 𝑌 are metrizable
topological linear spaces with separating duals and𝑇 is a continuous linear mapping taking 𝑋 into 𝑌,
then 𝑇 is also continuous from 𝑋[𝑚(𝑋,𝑋󸀠)] into𝑌[𝑚(𝑌,𝑌󸀠)] and so there is a unique extension 𝑇̂ of𝑇 to a continuous linear mapping taking 𝑋̂ into 𝑌̂.

If in addition 𝑋 and 𝑌 are 𝐹-spaces and 𝑇(𝑋) = 𝑌,
then 𝑇̂(𝑋̂) = 𝑌̂. (See the proofs of these results in
[20, 21]; furthermore, in these papers and in [12], the
Fréchet envelopes of several 𝐹-spaces of holomorphic
and harmonic functions are computed.)

2. The Dual and the Fréchet Envelope of𝐵loc
𝑝(⋅)(Ω) (0 < 𝑝− ≤ 𝑝+ ≤ 1)

In [6], the isomorphism (𝐵𝑐2,𝑘(Ω))󸀠 ≃ 𝐵loc
2,1/𝑘̃

(Ω) is shown
(being Ω an open convex set in R𝑛 and 𝑘 a weight satisfying
the estimate 𝑘(𝑥 + 𝑦) ≤ (1 +𝐶|𝑥|)𝑁𝑘(𝑦), 𝑥, 𝑦 ∈ R𝑛, 𝐶 and𝑁
positive constants). In Theorem 4.3 of [5] this isomorphism
is extended to variable exponent Hörmander spaces with 1 <𝑝− ≤ 𝑝+ < ∞ : (𝐵𝑐𝑝(⋅)(Ω))󸀠 ≃ 𝐵loc

𝑝󸀠(⋅)
(Ω). In [3] it is shown

that (𝐵𝑐𝑝(⋅)(Ω))󸀠 ≃ 𝐵loc∞ (Ω) when the exponent 𝑝(⋅) satisfies0 < 𝑝− ≤ 𝑝+ ≤ 1 (the techniques used are different from
those used in [5] since if 𝑝+ < 1 the dual of 𝐿𝑝(⋅) is trivial
and the steps 𝐵𝑝(⋅) ∩ E󸀠(𝐾) are quasi-Banach spaces instead
of Banach spaces) and several applications of this result were
given.

As a consequence [5, Theorem 4.3] and the reflexivity
of 𝐿𝑝(⋅) (see [1, Corollary 2.81]) one gets the isomorphism(𝐵loc𝑝(⋅)(Ω))󸀠 ≃ 𝐵𝑐

𝑝󸀠(⋅)
(Ω) when 1 < 𝑝− ≤ 𝑝+ < ∞ and the

Hardy-Littlewood maximal operator is bounded on 𝐿𝑝(⋅) and𝐿𝑝(⋅). In this section we show the 𝑝+ ≤ 1 counterpart of
this result: the dual (𝐵loc𝑝(⋅)(Ω))󸀠 (equipped with the topology
T of the uniform convergence on 𝑚(𝐵loc𝑝(⋅)(Ω), (𝐵loc𝑝(⋅)(Ω))󸀠)-
bounded subsets of 𝐵loc𝑝(⋅)(Ω)) is isomorphic to 𝐵𝑐∞(Ω) (and
therefore to 𝑙(N)∞ ) when 0 < 𝑝− ≤ 𝑝+ ≤ 1 and the Hardy-
Littlewood maximal operator 𝑀 is bounded on 𝐿𝑝(⋅)/𝑝0 .
Our proof is based on the inequalities obtained in the
extrapolation theorem [4, Theorem 3.5], on the properties
of the Banach envelopes of the 𝑝0-Banach local spaces of𝐵loc𝑝(⋅)(Ω), and on the identification of the Fréchet envelope
of 𝐵loc𝑝(⋅)(Ω). We also give a characterization of the locally
convex complemented subspaces of 𝐵loc𝑝(⋅)(Ω) and we show
that 𝑙∞ is not isomorphic to a complemented subspace of the
Shapiro space ℎ𝑝− (see Remark 8(1) toTheorem 7). Note that
Theorem 7 can have independent interest to calculate Fréchet
envelopes of 𝐹-spaces.

Throughout the entire article, 𝑝(⋅) denotes a variable
exponent in P0 such that 0 < 𝑝− ≤ 𝑝+ ≤ 1 and the Hardy-
Littlewood maximal operator 𝑀 is bounded on 𝐿𝑝(⋅)/𝑝0 for
some 0 < 𝑝0 < 𝑝−, Ω denotes an open set in R𝑛, {𝐾𝑗}∞𝑗=1 is a
fundamental sequence of compact subsets ofΩ such that, for
all 𝑗,𝐾𝑗 = ∘𝐾𝑗 and

∘𝐾𝑗 has the segment property, and {𝜃𝑗}∞𝑗=1 is
a 𝐶∞0 (Ω)-partition of unity on Ω such that supp 𝜃𝑗 ⊂ 𝐾𝑗 for
every 𝑗. Finally, {𝜒𝑗}∞𝑗=1 denotes a sequence in 𝐶∞0 (Ω) such
that 𝜒𝑗 ≡ 1 on 𝐾𝑗 and supp𝜒𝑗 ⊂ ∘𝐾𝑗+1 for each 𝑗.
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Recall (see Section 1 and [5]) that 𝐵loc𝑝(⋅)(Ω), with the topol-
ogy defined by the collection of 𝑝0-seminorms {‖ ⋅‖𝑝(⋅),𝜒𝑗 : 𝑗 =1, 2, . . .}, becomes an 𝐹-space (actually, a locally 𝑝0-convex
space) and that ‖ ⋅ ‖𝑝(⋅),𝜒𝑗 ≤ 𝐶𝑗‖ ⋅ ‖𝑝(⋅),𝜒𝑗+1 holds for all 𝑗. The
family {𝑉𝑗,𝜀 : 𝑗 ∈ N, 𝜀 > 0}, where 𝑉𝑗,𝜀 = {𝑢 ∈ 𝐵loc𝑝(⋅)(Ω) :‖𝑢‖𝑝(⋅),𝜒𝑗 < 𝜀}, is a base of neighborhoods of 0 in 𝐵loc𝑝(⋅)(Ω).
Lemma 1. 𝑋 fl (𝐵loc𝑝(⋅)(Ω)/ ker ‖⋅‖𝑝(⋅),𝜒𝑗 , ‖ ⋅‖∗𝑝(⋅),𝜒𝑗 ) is an infinite
dimensional 𝑝0-normed space whose dual separates points of𝑋
(here ‖ ⋅ ‖∗𝑝(⋅),𝜒 is the corresponding quotient 𝑝0-norm). If 𝑝(⋅) ≡𝑝, 0 < 𝑝 < 1, then 𝑋 becomes an infinite dimensional 𝑝-
normed space with separating dual.

Proof. If 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω), [𝑢]𝑗 denotes the coset of 𝑢. Then{[𝜑]𝑗 : 𝜑 ∈ 𝐶∞0 (𝐾𝑗)} is an infinite dimensional subspace
of 𝐵loc𝑝(⋅)(Ω)/ ker ‖ ⋅ ‖𝑝(⋅),𝜒𝑗 (see also [5, Theorem 3.7/2]). Now,
for each 𝜑 ∈ 𝑆, put ⟨[𝑢]𝑗, 𝑈𝜑⟩ fl ⟨𝜑, 𝜒𝑗𝑢⟩. Let us see that𝑈𝜑 ∈ 𝑋󸀠. Naturally, 𝑈𝜑 is well defined (if ] ∈ [𝑢]𝑗 then𝜒𝑗] = 𝜒𝑗𝑢). Furthermore, of the embedding 𝐿−𝐾𝑗+1𝑝(⋅) 󳨅→ 𝐿−𝐾𝑗+11

(see [4,Theorem 3.5/5]) and the fact that for 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω) one
has 𝜒𝑗𝑢 ∈ 𝐵𝑝(⋅) ∩ E󸀠(𝐾𝑗+1), that is, (𝜒𝑗𝑢)∧ ∈ 𝐿−𝐾𝑗+1𝑝(⋅) , it follows
that

⟨[𝑢]𝑗 , 𝑈𝜑⟩ = ⟨𝜑, 𝜒𝑗𝑢⟩ = (2𝜋)−𝑛 ⟨̂̃𝜑, (𝜒𝑗𝑢)∧⟩
= (2𝜋)−𝑛 ∫

R𝑛

̂̃𝜑 (𝜒𝑗𝑢)∧ 𝑑𝑥,
󵄨󵄨󵄨󵄨󵄨⟨[𝑢]𝑗 , 𝑈𝜑⟩󵄨󵄨󵄨󵄨󵄨 ≤ (2𝜋)−𝑛 ∫

R𝑛

󵄨󵄨󵄨󵄨󵄨̂̃𝜑󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨(𝜒𝑗𝑢)∧󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ (2𝜋)−𝑛 󵄩󵄩󵄩󵄩𝜑̂󵄩󵄩󵄩󵄩∞ 󵄩󵄩󵄩󵄩󵄩󵄩(𝜒𝑗𝑢)∧󵄩󵄩󵄩󵄩󵄩󵄩1
≤ 𝐶 󵄩󵄩󵄩󵄩𝜑̂󵄩󵄩󵄩󵄩∞ 󵄩󵄩󵄩󵄩󵄩󵄩(𝜒𝑗𝑢)∧󵄩󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
= 𝐶 󵄩󵄩󵄩󵄩𝜑̂󵄩󵄩󵄩󵄩∞ ‖𝑢‖𝑝(⋅),𝜒𝑗
= (𝐶 󵄩󵄩󵄩󵄩𝜑̂󵄩󵄩󵄩󵄩∞) 󵄩󵄩󵄩󵄩󵄩[𝑢]𝑗󵄩󵄩󵄩󵄩󵄩∗𝑝(⋅),𝜒𝑗 ,

(8)

which proves that 𝑈𝜑 ∈ 𝑋󸀠. Hence the required conclusion
follows easily.

The second part of lemma is obvious taking into account
that ‖ ⋅ ‖∗𝑝,𝜒𝑗 is a 𝑝-norm and that [5, Theorem 3.7/2] and [4,
Theorem 3.5/5] are also valid when 𝑝(⋅) ≡ 𝑝 because the
Hardy-Littlewood maximal operator is bounded in 𝐿𝑝/𝑝0 for
all 0 < 𝑝0 < 𝑝.
Remark 2. Naturally in the second part of the previous
lemma we could apply [17, Proposition 1.3.2, p. 17] instead of
[4, Theorem 3.5/5].

Lemma 3. Let 𝐸[T] be a locally 𝑝-convex space (0 < 𝑝 < 1)
and metrizable whose topology is defined by a family of 𝑝-
seminorms {‖ ⋅ ‖𝑛 : 𝑛 ≥ 1} such that, for every 𝑚 < 𝑛, ‖ ⋅ ‖𝑚 ≤𝐶𝑚,𝑛‖ ⋅ ‖𝑛 (𝐶𝑚,𝑛 constants > 0). Let 𝑄 be a (complemented)

quasi-normed subspace of 𝐸. Then there exists 𝑘 such that, for
each 𝑟 ≥ 𝑘, 𝑄 is isomorphic to a (complemented) subspace
of the local 𝑝-normed space 𝐸𝑟 = (𝐸/ ker ‖ ⋅ ‖𝑟, ‖ ⋅ ‖∗𝑟 ). If
furthermore 𝑄 is complete, that is, a quasi-Banach space, then𝑄 is isomorphic to a (complemented) subspace of the local 𝑝-
Banach space 𝐸𝑟.
Proof. Let ‖ ⋅ ‖𝑄 be the quasi-norm on 𝑄 which generates the
topology of 𝑄. Then the identity id𝑄 : (𝑄, ‖ ⋅ ‖𝑄) → 𝑄[T]
is an isomorphism. Thus, for every 𝑛, there exists an𝑀𝑛 > 0
such that ‖𝑥‖𝑛 ≤ 𝑀𝑛‖𝑥‖𝑄 for all 𝑥 ∈ 𝑄, and there exist also
an integer 𝑚 and 𝐶 > 0 so that ‖𝑥‖𝑄 ≤ 𝐶‖𝑥‖𝑚 for all 𝑥 ∈ 𝑄.
Next, fix 𝑛 ≥ 𝑚. Then, for every 𝑥 ∈ 𝑄, we have

‖𝑥‖𝑛 ≤ 𝑀𝑛 ‖𝑥‖𝑄 ≤ 𝑀𝑛𝐶 ‖𝑥‖𝑚 ≤ 𝑀𝑛𝐶𝐶𝑚,𝑛 ‖𝑥‖𝑛 , (9)

which shows that on 𝑄‖ ⋅ ‖𝑛 is a 𝑝-norm equivalent to ‖ ⋅ ‖𝑄.
Furthermore, these inequalities prove immediately that the
restriction to𝑄 of the canonical mapping 𝜋𝑛 : 𝐸 → 𝐸𝑛 : 𝑥 →[𝑥]𝑛 is an isomorphism onto 𝜋𝑛(𝑄).

If 𝑄 is complemented in 𝐸 and 𝑃 is a continuous
projection in 𝐸 such that Im𝑃 = 𝑄, there exist an integer𝑘 ≥ 𝑚 and a constant 𝐵 > 0 such that ‖𝑃𝑥‖𝑚 ≤ 𝐵‖𝑥‖𝑘 for
every 𝑥 ∈ 𝐸. Then it is easy to check that, for every 𝑟 ≥ 𝑘,
the mapping 𝑃𝑟 : 𝐸𝑟 → 𝐸𝑟 defined by 𝑃𝑟([𝑥]𝑟) = [𝑃𝑥]𝑟 is a
continuous projection such that Im𝑃𝑟 = 𝜋𝑟(𝑄).

Finally, if𝑄 is complete then the extension of 𝑃𝑟 to 𝐸𝑟, 𝑃𝑟,
is a continuous projection in 𝐸𝑟 such that Im𝑃𝑟 = 𝜋𝑟(𝑄).
Remark 4. This lemma is well known in the locally convex
case (see, e.g., [22]).

Proposition 5. Let 𝑝(⋅) ≡ 𝑝, 0 < 𝑝 < 1, and 𝑋 fl(𝐵loc𝑝 (Ω)/ ker ‖ ⋅ ‖𝑝,𝜒𝑗 , ‖ ⋅ ‖∗𝑝,𝜒𝑗 ). Then, consider the following:

(1) The completion of 𝑋 is a 𝑝-Banach space (∞-di-
mensional and with separating dual) isomorphic to a
subspace of 𝑙𝑝 and contains a subspace isomorphic to𝑙𝑝.

(2) 𝐵loc𝑝 (Ω) is not locally convex.
(3) If 0 < 𝑝 < 𝑞 ≤ 1, then 𝐵loc(Ω) ⫋ 𝐵loc𝑞 (Ω).
(4) All quasi-Banach subspace of 𝐵loc𝑝 (Ω) is isomorphic to

a subspace of 𝑙𝑝.
Proof. (1) Since the operator 𝑋 → {𝜒𝑗𝑢 : 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω)}(⊂𝐵𝑝 ∩ E󸀠(𝐾𝑗+1)) : [𝑢]𝑗 → 𝜒𝑗𝑢 is an isometry, the completion
of 𝑋 is a 𝑝-Banach space isometric to a closed subspace of𝐵𝑝 ∩ E󸀠(𝐾𝑗+1). Let 𝑎, 𝑏 > 0 be such that 𝑏 < 𝜋 and 𝐾𝑗+1 ⊂[−𝑎, 𝑎]𝑛 and consider the following diagram:

𝐵𝑝 ∩ E
󸀠 (𝐾𝑗+1) ∧󳨀→ 𝐿−𝐾𝑗+1𝑝

𝑗󳨀→ 𝐿[−𝑎,𝑎]𝑛𝑝

𝑠󳨀→ 𝐿[−𝑏,𝑏]𝑛𝑝

𝐷󳨀→ 𝑙𝑝 (Z𝑛) ≃ 𝑙𝑝,
(10)

where ∧ is the Fourier transform, 𝑗 is the canonical injection,𝑠 is the isomorphism defined by 𝑠(𝑓) = 𝑓((𝑏/𝑎)⋅), and 𝐷 is
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the isomorphic embedding defined by 𝐷(𝑓) = (𝑓(𝑘))𝑘∈Z𝑛
(this property of 𝐷 is well known; see, e.g., [23, pp. 101, 197]
for 𝑛 = 1 and [24, Lemma 1.8, p. 17] for 𝑛 ≥ 1). The
proof concludes composing these operators with the former
isometric isomorphism. The second claim is a consequence
of a result of Stiles (see, e.g., [12, Theorem 2.5]).

(2) First we observe that, for each compact 𝐾 ⊂ Ω, the
restriction mapping Φ𝐾 : 𝐵𝑝 ∩ E󸀠(𝐾) → 𝐵loc𝑝 (Ω) : 𝑢 →𝑢∘𝑗∘𝑗Ω (here 𝑗 is the natural injection from𝐶∞0 into 𝑆 and 𝑗Ω
is the natural extension from 𝐶∞0 (Ω) into 𝐶∞0 ) is continuous:
If 𝑢] → 0 in 𝐵𝑝 ∩E󸀠(𝐾) then

󵄩󵄩󵄩󵄩Φ𝐾 (𝑢])󵄩󵄩󵄩󵄩𝑝,𝜑 = 󵄩󵄩󵄩󵄩𝜑Φ𝐾 (𝑢])󵄩󵄩󵄩󵄩𝐵𝑝 = 󵄩󵄩󵄩󵄩𝜑𝑢]󵄩󵄩󵄩󵄩𝐵𝑝
≤ 𝐶 󵄨󵄨󵄨󵄨𝜑󵄨󵄨󵄨󵄨𝑚 󵄩󵄩󵄩󵄩𝑢]󵄩󵄩󵄩󵄩𝐵𝑝 󳨀→ 0, (11)

for every 𝜑 ∈ 𝐶∞0 (Ω) (we have used the continuity of the
bilinear mapping 𝑆 × (𝐵𝑝 ∩E󸀠(𝐾)) → 𝐵𝑝 ∩E󸀠(𝐾) : (𝜑, 𝑢) →𝜑𝑢; see (6) in Section 1.1). Next we show that the space 𝐵loc𝑝 (Ω)
is not locally convex. Suppose otherwise and recall that the
family {𝑉𝑗,𝜀 : 𝑗 ∈ N, 𝜀 > 0} is a local base of 𝐵loc𝑝 (Ω). Then,
given𝑉𝑗,𝜀 there exist an absolutely convex neighborhood𝑈 of0 and𝑉𝑘,𝛿 with 𝑘 > 𝑗 such that𝑉𝑗,𝜀 ⊃ 𝑈 ⊃ 𝑉𝑘,𝛿 and so we have
that 𝜀−1‖𝑢‖𝑝,𝜒𝑗 ≤ 𝑝𝑈(𝑢) ≤ 𝛿−1‖𝑢‖𝑝,𝜒𝑘 holds for all 𝑢 ∈ 𝐵loc𝑝 (Ω)
(𝑝𝑈 is the Minkowski functional of 𝑈). We consider now the
following commutative diagram

Bk Bj

BU

lp

AkU

Akj

AUj

𝜃j

where 𝐵𝑘 (resp., 𝐵𝑗) is the completion of the 𝑝-normed
space (𝐵loc𝑝 (Ω)/ ker ‖ ⋅ ‖𝑝,𝜒𝑘 , ‖ ⋅ ‖∗𝑝,𝜒𝑘 ) (resp., (𝐵loc𝑝 (Ω)/ ker ‖ ⋅‖𝑝,𝜒𝑗 , ‖ ⋅ ‖∗𝑝,𝜒𝑗 )), 𝐵𝑈 is the completion of the normed space
(𝐵loc𝑝 (Ω)/ ker𝑝𝑈, 𝑝∗𝑈), 𝐴𝑘𝑗 (resp., 𝐴𝑘𝑈, 𝐴𝑈𝑗) denotes the
extension of the natural operator [𝑢]𝑘 → [𝑢]𝑗 (resp., [𝑢]𝑘 →[𝑢]𝑈, [𝑢]𝑈 → [𝑢]𝑗), and 𝜃𝑗 is an isomorphism from 𝐵𝑗
onto Im 𝜃𝑗 (see (1)). By a result of Stiles (see, e.g., [12,
Proposition 2.9]), the operator 𝜃𝑗 ∘ 𝐴𝑈𝑗 is compact but then,
by the properties of 𝜃𝑗,𝐴𝑈𝑗 is also compact. From this and of𝐴𝑘𝑗 = 𝐴𝑈𝑗 ∘ 𝐴𝑘𝑈, it follows that 𝐴𝑘𝑗 is compact.

In order to complete the proof we consider a seq-
uence {𝜑𝑒𝑖⟨⋅,𝑦]⟩}∞]=1 with 𝜑 ∈ 𝐶∞0 (𝐾𝑗) \ {0} and 𝑦] → ∞.
Obviously, this sequence lies in 𝐵𝑝 ∩ E󸀠(𝐾𝑗) and it is
bounded here (‖𝜑𝑒𝑖⟨⋅,𝑦]⟩‖𝐵𝑝 = ‖𝜑̂‖𝑝 for ] = 1, 2, . . .). Thus
{Φ𝐾𝑗

(𝜑𝑒𝑖⟨⋅,𝑦]⟩)}∞]=1 = {𝜑𝑒𝑖⟨⋅,𝑦]⟩}∞]=1 is bounded in 𝐵loc𝑝 (Ω) and
so {[𝜑𝑒𝑖⟨⋅,𝑦]⟩]𝑘}∞]=1 is bounded in 𝐵𝑘 and since𝐴𝑘𝑗 is a compact
operator we can find ]1 < ]2 < ⋅ ⋅ ⋅ such that the subsequence{[𝜑𝑒𝑖⟨⋅,𝑦]𝑙 ⟩]𝑘}∞𝑙=1 converges in 𝐵𝑗. By applying (1), we see that𝜒𝑗(𝜑𝑒𝑖⟨⋅,𝑦]𝑙 ⟩) = 𝜑𝑒𝑖⟨⋅,𝑦]𝑙 ⟩ → 𝜓 in𝐵𝑝∩E󸀠(𝐾𝑗+1) but 𝜑𝑒𝑖⟨⋅,𝑦]𝑙 ⟩ → 0
in 𝑆󸀠 (because 𝑦]𝑙 → ∞). Hence it follows that 𝜓 = 0, that is,
that ‖𝜑𝑒𝑖⟨⋅,𝑦]⟩‖𝐵𝑝 → 0. This contradiction concludes the proof
of (2).

(3) If 𝐵loc𝑝 (Ω) = 𝐵loc𝑞 (Ω), then these spaces should be
isomorphic by the open mapping theorem and so there exist
positive integers 𝑗 ≤ 𝑟 ≤ 𝑙 and a constant 𝐶 > 0 such that𝐶−1‖𝑢‖𝑝,𝜒𝑗 ≤ ‖𝑢‖𝑞,𝜒𝑟 ≤ 𝐶‖𝑢‖𝑝,𝜒𝑙 holds for all 𝑢 ∈ 𝐵loc𝑝 (Ω).
Hence and from the fact that 𝜒𝑖 ≡ 1 on 𝐾𝑗 for every 𝑖 ≥ 𝑗,
it follows that 𝐶−1‖𝜑̂‖𝑝(= 𝐶−1‖(𝜒𝑗𝜑)∧‖𝑝 = 𝐶−1‖𝜑‖𝑝,𝜒𝑗 ) ≤‖𝜑̂‖𝑞 ≤ 𝐶‖𝜑̂‖𝑝 holds for all 𝜑 ∈ 𝐶∞0 (𝐾𝑗) and therefore
that 𝐶−1‖𝜓‖𝑝 ≤ ‖𝜓‖𝑞 ≤ 𝐶‖𝜓‖𝑝 is also valid for all 𝜓 ∈
𝑆−𝐾𝑗 . Then, by using the density of 𝑆−𝐾𝑗 in 𝐿−𝐾𝑗𝑝 (see [25,
Proposition 1.4.4]) and the embedding 𝐿−𝐾𝑗𝑝 󳨅→ 𝐿−𝐾𝑗𝑞 [17,
Proposition 1.3.2, p. 17], we get 𝐶−1‖𝑓‖𝑝 ≤ ‖𝑓‖𝑞 ≤ 𝐶‖𝑓‖𝑝
for all 𝑓 ∈ 𝐿−𝐾𝑗𝑝 . This and the density of 𝑆−𝐾𝑗 in 𝐿−𝐾𝑗𝑞 imply
that 𝐿−𝐾𝑗𝑝 = 𝐿−𝐾𝑗𝑞 (coinciding algebraically and topologically).
But then, reasoning as in the proof of (1), it is found that𝑙𝑝 contains a subspace isomorphic to 𝑙𝑞 which contradicts a
result of Stiles (see, e.g., [12, Corollary 2.8]).

(4) Let 𝑄 be a quasi-Banach subspace of 𝐵loc𝑝 (Ω). By
using Lemma 3, 𝑄 becomes isomorphic to a complemented
subspace of the local 𝑝-Banach space (𝐵loc𝑝 (Ω)/ ker ‖ ⋅ ‖𝑝,𝜒𝑗 ,‖ ⋅ ‖∗𝑝,𝜒𝑗 ) for all large enough 𝑗. But we know by (1) that each of
these spaces is isomorphic to a subspace of 𝑙𝑝. This concludes
the proof of (4).

Theorem 6. (𝐵loc𝑝(⋅)(Ω))󸀠 is algebraically isomorphic to 𝐵𝑐∞(Ω)
when 0 < 𝑝− ≤ 𝑝+ ≤ 1 (in particular (𝐵loc𝑝 (Ω))󸀠 is algebraically
isomorphic to 𝐵𝑐∞(Ω) for all 0 < 𝑝 ≤ 1).
Proof. For each 𝑗 let𝑋𝑗 be the normed space (𝐵loc𝑝(⋅)(Ω)/ ker ‖ ⋅‖𝑝(⋅),𝜒𝑗 , ‖ ⋅ ‖𝑗), where ‖ ⋅ ‖𝑗 is the Minkowski functional of
the convex hull of the unit ball of the 𝑝0-normed space(𝐵loc𝑝(⋅)(Ω)/ ker ‖ ⋅ ‖𝑝(⋅),𝜒𝑗 , ‖ ⋅ ‖∗𝑝(⋅),𝜒𝑗). It is easily seen that the
mapping 𝑍 : 𝐵loc𝑝(⋅)(Ω) → ∏∞

𝑗=1𝑋𝑗 is linear, injective, and
continuous (for each 𝑗 one has ‖[𝑢]𝑗‖𝑗 ≤ ‖[𝑢]𝑗‖∗𝑝(⋅),𝜒𝑗 =
‖𝑢‖𝑝(⋅),𝜒𝑗 for all 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω), and so pr𝑗 ∘ 𝑍 is continuous).

Let 𝐿 be a continuous linear functional on 𝐵loc𝑝(⋅)(Ω) and
let 𝑙 and 𝐶 be such that |⟨𝑢, 𝐿⟩| ≤ 𝐶‖𝑢‖𝑝(⋅),𝜒𝑙 holds for all𝑢 ∈ 𝐵loc𝑝(⋅)(Ω). The linear functional 𝐿 𝑙 : 𝑋𝑙 → C defined
by ⟨[𝑢]𝑙, 𝐿 𝑙⟩ = ⟨𝑢, 𝐿⟩ is continuous also since it is in the dual(𝐵loc𝑝(⋅)(Ω)/ ker ‖ ⋅ ‖𝑝(⋅),𝜒𝑙 , ‖ ⋅ ‖∗𝑝(⋅),𝜒𝑙)󸀠 and this space and 𝑋󸀠

𝑙 are
linearly isometric (Lemma 1 and (7), Section 1); therefore we
get |⟨[𝑢]𝑙, 𝐿 𝑙⟩| ≤ 𝐶‖[𝑢]𝑙‖𝑙. Hence it follows that the linear
functional 𝐿 ∘ 𝑍−1 is continuous on Im𝑍: the family of
seminorms {‖(𝑥𝑗)‖(𝑁) fl ∑𝑁

𝑗=1 ‖𝑥𝑗‖𝑗 : 𝑁 = 1, 2, . . .} generates
the product topology on∏∞

𝑗=1𝑋𝑗 and

󵄨󵄨󵄨󵄨󵄨⟨𝑍𝑢, 𝐿 ∘ 𝑍−1⟩󵄨󵄨󵄨󵄨󵄨 = |⟨𝑢, 𝐿⟩| = 󵄨󵄨󵄨󵄨⟨[𝑢]𝑙 , 𝐿 𝑙⟩󵄨󵄨󵄨󵄨 ≤ 𝐶 󵄩󵄩󵄩󵄩[𝑢]𝑙󵄩󵄩󵄩󵄩𝑙
≤ 𝐶 󵄩󵄩󵄩󵄩󵄩([𝑢]𝑗)󵄩󵄩󵄩󵄩󵄩(𝑙) = 𝐶 ‖𝑍 (𝑢)‖(𝑙)

(12)
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holds for all 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω). By the Hahn-Banach theorem,𝐿 ∘ 𝑍−1 can be extended to a continuous linear functional on∏∞
𝑗=1𝑋𝑗. Then, by using the isomorphism

𝐴 : ∞⨁
𝑗=1

𝑋󸀠
𝑗 󳨀→ ( ∞∏

𝑗=1

𝑋𝑗)
󸀠

, (13)

defined by ⟨(𝑥𝑗), 𝐴((𝑥󸀠𝑗))⟩ = ∑∞
𝑗=1⟨𝑥𝑗, 𝑥󸀠𝑗⟩ (see, e.g., [13, p.

284]), we find (𝜉𝑗) ∈ ⨁∞
𝑗=1𝑋󸀠

𝑗 such that 𝐴((𝜉𝑗)) = (𝐿 ∘ 𝑍−1)−
and we obtain the following representation of 𝐿:

⟨𝑢, 𝐿⟩ = ∞∑
𝑗=1

⟨[𝑢]𝑗 , 𝜉𝑗⟩ , 𝑢 ∈ 𝐵loc𝑝(⋅) (Ω) . (14)

Now we shall prove that the mapping

Φ𝑝(⋅) : (𝐵loc𝑝(⋅) (Ω))󸀠 󳨀→ 𝐵𝑐∞ (Ω) , (15)

defined by Φ𝑝(⋅)(𝐿) = ∑∞
𝑗=1[𝜉𝑗], is an algebraic isomorphism

(here (𝜉𝑗) is the sequence which represents to 𝐿 and, for every𝑗, [𝜉𝑗] is the tempered distribution defined by ⟨𝜑, [𝜉𝑗]⟩ =⟨[𝜑]𝑗, 𝜉𝑗⟩ for all 𝜑 ∈ 𝑆). Let us see that Φ𝑝(⋅) is well defined:
(i) First we show that each [𝜉𝑗] ∈ 𝐵𝑐∞(Ω). If 𝜑] → 0 in 𝑆
then (𝜒𝑗𝜑])∧ → 0 in 𝑆 and so in 𝐿𝑝(⋅); therefore ‖[𝜑]]𝑗‖𝑗 ≤‖[𝜑]]𝑗‖∗𝑝(⋅),𝜒𝑗 = ‖𝜑]‖𝑝(⋅),𝜒𝑗 = ‖(𝜒𝑗𝜑])∧‖𝑝(⋅) → 0, that is, [𝜑]]𝑗 →0 in 𝑋𝑗. As a consequence, ⟨𝜑], [𝜉𝑗]⟩ = ⟨[𝜑]]𝑗, 𝜉𝑗⟩ → 0 and[𝜉𝑗] becomes a tempered distribution. Furthermore, for each𝜑 ∈ 𝐶∞0 (R𝑛 \ 𝐾𝑗+1), we have

󵄨󵄨󵄨󵄨󵄨⟨𝜑, [𝜉𝑗]⟩󵄨󵄨󵄨󵄨󵄨 = 󵄨󵄨󵄨󵄨󵄨󵄨⟨[𝜑]𝑗 , 𝜉𝑗⟩󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩󵄩[𝜑]𝑗󵄩󵄩󵄩󵄩󵄩󵄩𝑗
= 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩󵄩[𝜑]𝑗󵄩󵄩󵄩󵄩󵄩󵄩∗𝑝(⋅),𝜒𝑗 = 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩𝜑󵄩󵄩󵄩󵄩𝑝(⋅),𝜒𝑗
= 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝜒𝑗𝜑󵄩󵄩󵄩󵄩󵄩𝐵𝑝(⋅) = 0,

(16)

(since supp𝜒𝑗 ⊂ ∘𝐾𝑗+1) and so supp[𝜉𝑗] ⊆ 𝐾𝑗+1. Thus (see,
e.g., [26, p. 165]) [𝜉𝑗]∧ coincides with the Fourier-Laplace
transform of [𝜉𝑗] defined by

[𝜉𝑗]∧ (𝑥) = ⟨𝜒𝑗+2𝑒−𝑖(⋅)𝑥, [𝜉𝑗]⟩ = ⟨[𝜒𝑗+2𝑒−𝑖(⋅)𝑥]𝑗 , 𝜉𝑗⟩ ,
𝑥 ∈ R

𝑛. (17)

Taking here absolute values and using [2, Lemma 3.2.5], we
get

󵄨󵄨󵄨󵄨󵄨󵄨[𝜉𝑗]∧ (𝑥)󵄨󵄨󵄨󵄨󵄨󵄨 ≤ 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩󵄩[𝜒𝑗+2𝑒−𝑖(⋅)𝑥]𝑗󵄩󵄩󵄩󵄩󵄩󵄩𝑗 ≤ 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩
⋅ 󵄩󵄩󵄩󵄩󵄩𝜒𝑗+2𝑒−𝑖(⋅)𝑥󵄩󵄩󵄩󵄩󵄩𝑝(⋅),𝜒𝑗 = 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩𝜒𝑗𝑒−𝑖(⋅)𝑥󵄩󵄩󵄩󵄩󵄩𝐵𝑝(⋅) = 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩

⋅ 󵄩󵄩󵄩󵄩󵄩󵄩(𝜒j𝑒−𝑖(⋅)𝑥)∧󵄩󵄩󵄩󵄩󵄩󵄩𝑝(⋅) = 󵄩󵄩󵄩󵄩󵄩𝜉𝑗󵄩󵄩󵄩󵄩󵄩 󵄩󵄩󵄩󵄩󵄩󵄩󵄨󵄨󵄨󵄨󵄨𝜒̂𝑗 (𝑥 + (⋅))󵄨󵄨󵄨󵄨󵄨𝑝0󵄩󵄩󵄩󵄩󵄩󵄩1/𝑝0𝑝(⋅)/𝑝0

≤ max{(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝜒̂𝑗 (𝑥 + 𝑦)󵄨󵄨󵄨󵄨󵄨𝑝(𝑦) 𝑑𝑦)1/𝑝
− ,

(∫
R𝑛

󵄨󵄨󵄨󵄨󵄨𝜒̂𝑗 (𝑥 + 𝑦)󵄨󵄨󵄨󵄨󵄨𝑝(𝑦) 𝑑𝑦)1/𝑝
+} ≤ 21/𝑝−−1

⋅max {󵄩󵄩󵄩󵄩󵄩𝜒̂𝑗󵄩󵄩󵄩󵄩󵄩𝑝− + 󵄩󵄩󵄩󵄩󵄩𝜒̂𝑗󵄩󵄩󵄩󵄩󵄩𝑝+/𝑝−𝑝+
, 󵄩󵄩󵄩󵄩󵄩𝜒̂𝑗󵄩󵄩󵄩󵄩󵄩𝑝+ + 󵄩󵄩󵄩󵄩󵄩𝜒̂𝑗󵄩󵄩󵄩󵄩󵄩𝑝−/𝑝+𝑝−

} ,
𝑥 ∈ R

𝑛.
(18)

Therefore [𝜉𝑗]∧ ∈ 𝐿∞ and [𝜉𝑗] ∈ 𝐵𝑐∞(Ω). (ii) If (𝜂𝑗) comes
from another extension (𝐿 ∘ 𝑍−1)=, then ∑∞

𝑗=1[𝜉𝑗] = ∑∞
𝑗=1[𝜂𝑗]

since

⟨𝜑, ∞∑
𝑗=1

[𝜉𝑗]⟩ = ∞∑
𝑗=1

⟨𝜑, [𝜉𝑗]⟩ = ∞∑
𝑗=1

⟨[𝜑]𝑗 , 𝜉𝑗⟩
= ⟨𝜑, 𝐿⟩ = ∞∑

𝑗=1

⟨[𝜑]𝑗 , 𝜂𝑗⟩

= ∞∑
𝑗=1

⟨𝜑, [𝜂𝑗]⟩ = ⟨𝜑, ∞∑
𝑗=1

[𝜂𝑗]⟩

(19)

holds for all 𝜑 ∈ 𝑆.
We have proved thatΦ𝑝(⋅) is well defined, and it is obvious

that it is linear. If Φ𝑝(⋅)(𝐿) = 0 then ⟨𝜑, 𝐿⟩ = 0 for all 𝜑 ∈ 𝑆,
but 𝑆 is dense in 𝐵loc𝑝(⋅)(Ω) [5, Theorem 3.7/2]; thus 𝐿 = 0 andΦ𝑝(⋅) is injective. Let us see that Φ𝑝(⋅) is surjective: Let ] be an
element of 𝐵𝑐∞(Ω). We now define the functional

⟨𝑢, 𝐿⟩ fl (2𝜋)−𝑛 ∞∑
𝑗=1

∫
R𝑛
(𝜒𝑗𝑢)∧∼ (𝜃𝑗])∧ 𝑑𝑥,

𝑢 ∈ 𝐵loc𝑝(⋅) (Ω) ,
(20)

and we show that it is continuous. These integrals converge
because 𝜒𝑗𝑢 ∈ 𝐵𝑝(⋅) ∩ E󸀠(𝐾𝑗+1) that is (𝜒𝑗𝑢)∧ ∈ 𝐿−𝐾𝑗+1𝑝(⋅) ,

𝜃𝑗] ∈ 𝐵∞ ∩E󸀠(𝐾𝑗) that is (𝜃𝑗])∧ ∈ 𝐿−𝐾𝑗∞ , and 𝐿−𝐾𝑗+1𝑝(⋅) 󳨅→ 𝐿−𝐾𝑗+11

[4, Theorem 3.5]. Moreover, by the properties of the 𝐶∞0 (Ω)-
partition of unity (𝜃𝑗), there exists a positive integer 𝑚 such
that 𝜃𝑗] = 0 for all 𝑗 > 𝑚 and ] = ∑𝑚

𝑗=1(𝜃𝑗]). Then we have
that

|⟨𝑢, 𝐿⟩| ≤ 𝐶 𝑚∑
𝑗=1

∫
R𝑛

󵄨󵄨󵄨󵄨󵄨󵄨(𝜒𝑗𝑢)∧∼󵄨󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨󵄨(𝜃𝑗])∧󵄨󵄨󵄨󵄨󵄨󵄨 𝑑𝑥
≤ 𝐶 𝑚∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩󵄩(𝜃𝑗])∧󵄩󵄩󵄩󵄩󵄩󵄩∞ 󵄩󵄩󵄩󵄩󵄩󵄩(𝜒𝑗𝑢)∧󵄩󵄩󵄩󵄩󵄩󵄩1
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≤ 𝐶 𝑚∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜃𝑗]󵄩󵄩󵄩󵄩󵄩𝐵∞ 󵄩󵄩󵄩󵄩󵄩󵄩(𝜒𝑗𝑢)∧󵄩󵄩󵄩󵄩󵄩󵄩𝑝(⋅)
= 𝐶 𝑚∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜃𝑗]󵄩󵄩󵄩󵄩󵄩𝐵∞ ‖𝑢‖𝑝(⋅),𝜒𝑗
≤ (𝐶 𝑚∑

𝑗=1

󵄩󵄩󵄩󵄩󵄩𝜃𝑗]󵄩󵄩󵄩󵄩󵄩𝐵∞)‖𝑢‖𝑝(⋅),𝜒𝑚
(21)

holds for all 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω) and so 𝐿 ∈ (𝐵loc𝑝(⋅)(Ω))󸀠. Finally
we check that Φ𝑝(⋅)(𝐿) = ]: Assume that (𝜉𝑗) ∈ ⨁∞

𝑗=1𝑋󸀠
𝑗

represents to 𝐿 and recall that 𝜒𝑗𝜃𝑗 = 𝜃𝑗 (𝑗 = 1, 2, . . .) and(𝜓̂)∧ = (2𝜋)𝑛𝜓̃ (for all 𝜓 ∈ 𝑆); then
⟨𝜑,Φ𝑝(⋅) (𝐿)⟩ = ⟨𝜑, ∞∑

𝑗=1

[𝜉𝑗]⟩ = ∞∑
𝑗=1

⟨𝜑, [𝜉𝑗]⟩
= ∞∑

𝑗=1

⟨[𝜑]𝑗 , 𝜉𝑗⟩ = ⟨𝜑, 𝐿⟩
= (2𝜋)−𝑛 𝑚∑

𝑗=1

∫
R𝑛
(𝜒𝑗𝜑)∧∼ (𝜃𝑗])∧ 𝑑𝑥

= (2𝜋)−𝑛 𝑚∑
𝑗=1

⟨(𝜒𝑗𝜑)∧∼ , (𝜃𝑗])∧⟩
= 𝑚∑

𝑗=1

⟨𝜒𝑗𝜑, 𝜃𝑗]⟩ = 𝑚∑
𝑗=1

⟨𝜒𝑗𝜃𝑗𝜑, ]⟩

= 𝑚∑
𝑗=1

⟨𝜃𝑗𝜑, ]⟩ = ⟨𝜑, 𝑚∑
𝑗=1

𝜃𝑗]⟩
= ⟨𝜑, ]⟩

(22)

holds for all 𝜑 ∈ 𝑆.
Finally, if 𝑝(⋅) ≡ 𝑝 and 0 < 𝑝 ≤ 1 then the Hardy-

Littlewoodmaximal operator𝑀 is bounded on𝐿𝑝/𝑝0 for each𝑝0 ∈ ]0, 𝑝[ and so we also have that (𝐵loc𝑝 (Ω))󸀠 is algebraically
isomorphic to 𝐵𝑐∞(Ω).

Now we prove a result we use to calculate the Fréchet
envelope of 𝐵loc𝑝(⋅)(Ω).
Theorem 7. Let 𝑋[T] be an 𝐹-space such that its dual𝑋󸀠 fl (𝑋[T])󸀠 separates points of 𝑋. Assume that 𝑋 is
a dense linear subspace of a Fréchet space 𝑌[S], that the
inclusion map 𝜄 : 𝑋[T] 󳨅→ 𝑌[S] is continuous, and
that 𝑌󸀠 = 𝑋󸀠 (𝑌󸀠 fl (𝑌[S])󸀠), that is, the transpose of 𝜄,
𝑡𝜄, is an algebraic isomorphism. Assume finally that 𝑍 is a
complemented subspace of𝑋. Then, we have the following:

(1) 𝑌[S] = 𝑋̂; that is, 𝑌[S] is the Fréchet envelope of𝑋[T], 𝑍𝑌[S] = 𝑍̂, and 𝑍̂ is also a complemented
subspace of 𝑌[S].

(2) If furthermore 𝑌[S] is separable then 𝑡𝜄 becomes an
isomorphism of 𝑌󸀠[𝛽(𝑌󸀠, 𝑌)] onto 𝑋󸀠[T] being T the
topology of the uniform convergence on the 𝑚(𝑋,𝑋󸀠)-
bounded subsets of 𝑋.

Proof. (1) To see that 𝑍𝑌[S] = 𝑍̂ it suffices to show that the
induced topology by S on 𝑍, S𝑍, coincides with the Mackey
topology𝑚(𝑍, 𝑍󸀠) (𝑍 is also an 𝐹-space with separating dual
since it is a complemented subspace of 𝑋). To do so first
we observe that (𝑍[S𝑍])󸀠 = 𝑍󸀠(fl (𝑍[T𝑍])󸀠) (obviously(𝑍[S𝑍])󸀠 ⊂ 𝑍󸀠 and, on the other hand, if 𝑧󸀠 ∈ 𝑍󸀠 and 𝑥󸀠 ∈ 𝑋󸀠

is an extension of 𝑧󸀠 then this 𝑥󸀠 has the form 𝑥󸀠 = 𝑦󸀠 ∘ 𝜄,
with 𝑦󸀠 ∈ 𝑌󸀠; thus 𝑧󸀠 ∈ (𝑍[S𝑍])󸀠) and then recall that every
metrizable locally convex space has theMackey topology (see,
e.g., [13, pp. 379, 380]). In particular, we have also shown that𝑌[S] = 𝑋̂.

It remains to prove the last claim. Let 𝑃 be a continuous
projection in 𝑋[T] such that Im𝑃 = 𝑍 and let 𝑃̂ : 𝑌[S] →𝑌[S] be the unique extension linear and continuous of 𝑃
(recall that 𝑌[S] is 𝑋̂). Since 𝑍̂ = 𝑍𝑌[S], 𝑃̂ is also a linear and
continuous mapping from 𝑌[S] into 𝑍𝑌[S]. Furthermore, if𝑦 ∈ 𝑍𝑌[S] and (𝑧𝑛) is a sequence in 𝑍 convergent to 𝑦 in𝑌[S] then 𝑃̂(𝑦) = lim𝑛𝑃̂(𝑧𝑛) = lim𝑛𝑃(𝑧𝑛) = lim𝑛𝑧𝑛 = 𝑦.
Therefore, Im 𝑃̂ = 𝑍𝑌[S]. To conclude we check that 𝑃̂ is a
projection: If 𝑦 ∈ 𝑌 and (𝑥𝑛) is a sequence in 𝑋 such that
lim𝑛𝑥𝑛 = 𝑦 in 𝑌[S] then 𝑃̂(𝑦) = lim𝑛𝑃(𝑥𝑛) in 𝑌[S] and
so 𝑃̂2(𝑦) = 𝑃̂(lim𝑛𝑃(𝑥𝑛)) = lim𝑛𝑃̂(𝑃(𝑥𝑛)) = lim𝑛𝑃2(𝑥𝑛) =
lim𝑛𝑃(𝑥𝑛) = 𝑃̂(𝑦).

(2) The continuity of the mapping 𝑡𝜄 follows from the
fact that every 𝑚(𝑋,𝑋󸀠)-bounded subset of 𝑋 is S-bounded
subset of 𝑌 (by (1), S𝑋 = 𝑚(𝑋,𝑋󸀠)). If 𝑌[S] is separable,
every bounded subset of the Fréchet space 𝑌[S] is contained
in the closure of a bounded subset of𝑋[S𝑋] (apply [13, (1) p.
403]), and since S𝑋 = 𝑚(𝑋,𝑋󸀠), it follows that the mapping(𝑡𝜄)−1 is also continuous.
Remark 8. (1) In [21] Shapiro constructs subspaces of the𝐹-space (of harmonic functions) ℎ𝑝− isomorphic to 𝑙∞ and
also proves that the Fréchet envelope of ℎ𝑝− is the separable
Fréchet space 𝑏𝑝− (see notations in [21]). From Theorem 7
it follows that these subspaces are not complemented inℎ𝑝− .

(2) If in Theorem 7 𝑋[T] = (𝑋, ‖ ⋅ ‖𝑋) is a quasi-Banach
space and 𝑌[S] = (𝑌, ‖ ⋅ ‖𝑌) is a Banach space not necessarily
separable, then 𝑌[S] is the Banach envelope of 𝑋[T] and 𝑡𝜄
is an isomorphism of 𝑌󸀠 onto𝑋󸀠 (these spaces equipped with
the norms ‖𝑦󸀠‖ = sup‖𝑦‖𝑌≤1|⟨𝑦, 𝑦󸀠⟩|, ‖𝑥󸀠‖ = sup‖𝑥‖𝑋≤1|⟨𝑥, 𝑥󸀠⟩|,
resp.): It suffices to take into account that if 𝐸 is a Banach
space and 𝐹 a dense linear subspace; then every bounded
subset of 𝐸 is contained in the closure of a bounded subset
of 𝐹.

Thus Theorem 7 recovers known results (see, e.g., [18,
Theorem 5]).

In Proposition 9 and Theorem 10 we will use the same
notation as in the proof of Theorem 6.
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Proposition 9. Let T1 be the topology on (𝐵loc𝑝(⋅)(Ω))󸀠 of the
uniform convergence on the bounded subsets of 𝐵loc𝑝(⋅)(Ω). Then
the mapping Φ𝑝(⋅) : (𝐵loc𝑝(⋅)(Ω))󸀠[T1] → 𝐵𝑐∞(Ω) is open. If𝑝(⋅) ≡ 1 then Φ1 becomes an isomorphism.

Proof. First we show that Φ−1
𝑝(⋅) is continuous (⇔ Φ𝑝(⋅) is

open). For this it suffices to check, since 𝐵𝑐∞(Ω) = ind𝑗[𝐵∞ ∩
E󸀠(𝐾𝑗)], that, for every 𝑗, Φ−1

𝑝(⋅) is continuous from 𝐵∞ ∩
E󸀠(𝐾𝑗) into (𝐵loc𝑝(⋅)(Ω))󸀠[T1]. Fix 𝑗 and let 𝑚 be a positive
integer such that, for all ] ∈ 𝐵∞∩E󸀠(𝐾𝑗), 𝜃𝑙] = 0 for all 𝑙 > 𝑚
and ] = ∑𝑚

𝑙=1(𝜃𝑙]). Let 𝑀 be a bounded subset of 𝐵loc𝑝(⋅)(Ω);
then sup𝑢∈𝑀‖𝑢‖𝑝(⋅),𝜒𝑚 < ∞. Now we argue as in the proof of
Theorem 6 and we obtain that

sup
𝑢∈𝑀

󵄨󵄨󵄨󵄨󵄨⟨𝑢, Φ−1
𝑝(⋅) (])⟩󵄨󵄨󵄨󵄨󵄨 ≤ 𝐶

𝑚∑
𝑙=1

󵄩󵄩󵄩󵄩󵄩(𝜃𝑙])∧󵄩󵄩󵄩󵄩󵄩∞ sup
𝑢∈𝑀

‖𝑢‖𝑝(⋅),𝜒𝑚
= 𝐶 𝑚∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩𝜃̂𝑙 ∗ ]̂󵄩󵄩󵄩󵄩󵄩∞ sup
𝑢∈𝑀

‖𝑢‖𝑝(⋅),𝜒𝑚
≤ (𝐶 𝑚∑

𝑙=1

󵄩󵄩󵄩󵄩󵄩𝜃̂𝑙󵄩󵄩󵄩󵄩󵄩1 sup
𝑢∈𝑀

‖𝑢‖𝑝(⋅),𝜒𝑚)‖]‖𝐵∞

(23)

holds for all ] ∈ 𝐵∞ ∩ E󸀠(𝐾𝑗), which shows the continuity
of Φ−1

𝑝(⋅). If 𝑝(⋅) ≡ 1, then T1 is the strong topology𝛽((𝐵loc1 (Ω))󸀠, 𝐵loc1 (Ω)). By a result of Vogt [10] 𝐵loc1 ≃ (𝑙1)N,
and thus (𝐵loc1 (Ω))󸀠[T1] ≃ (𝑙∞)(N) (apply, e.g., [13, p. 287]).
Hence it follows that (𝐵loc1 (Ω))󸀠[T1] is an (𝐿𝐵)-space. Since𝐵𝑐∞(Ω) is also an (𝐿𝐵)-space, we can apply [14, (4) b p. 43] toΦ−1
1 and conclude that Φ1 is an isomorphism.

The next theorem improves the first part of the previous
result considering the topology of the uniform convergence
on the 𝑚(𝐵loc𝑝(⋅)(Ω), (𝐵loc𝑝(⋅)(Ω))󸀠)-bounded subsets of 𝐵loc𝑝(⋅)(Ω)
instead of the topologyT1. Our method requires the calcula-
tion of the Fréchet envelope of 𝐵loc𝑝(⋅)(Ω).
Theorem 10. (1) 𝐵loc𝑝(⋅)(Ω) = 𝐵loc1 (Ω); that is, 𝐵loc1 (Ω) is the
Fréchet envelope of 𝐵loc𝑝(⋅)(Ω) (in particular, 𝐵loc𝑝 (Ω) = 𝐵loc1 (Ω)
for all 0 < 𝑝 ≤ 1).

(2) If T is the topology of the uniform convergence on
the 𝑚(𝐵loc𝑝(⋅)(Ω), (𝐵loc𝑝(⋅)(Ω))󸀠)-bounded subsets of 𝐵loc𝑝(⋅)(Ω), then
the spaces (𝐵loc𝑝(⋅)(Ω))󸀠[T] and 𝐵𝑐∞(Ω) are isomorphic (in
particular, (𝐵loc𝑝 (Ω))󸀠[T] and 𝐵𝑐∞(Ω) are isomorphic for all0 < 𝑝 ≤ 1).
Proof. (1) 𝐵loc𝑝(⋅)(Ω) is an 𝐹-space on which (𝐵loc𝑝(⋅)(Ω))󸀠 sepa-
rates points (seeTheorem 6). Furthermore,𝐵loc𝑝(⋅)(Ω) is a dense
linear subspace of the Fréchet space 𝐵loc1 (Ω) [5,Theorem 3.7]
and the inclusion map 𝜄 : 𝐵loc𝑝(⋅)(Ω) 󳨅→ 𝐵loc1 (Ω) is continuous
(for each 𝑗 and each 𝑢 ∈ 𝐵loc𝑝(⋅)(Ω), we have ‖𝑢‖1,𝜒𝑗 = ‖(𝜒𝑗𝑢)∧‖1≤ 𝐶‖(𝜒𝑗𝑢)∧‖𝑝(⋅) = 𝐶‖𝑢‖𝑝(⋅),𝜒𝑗 in virtue of the embedding

𝐿−𝐾𝑗+1𝑝(⋅) 󳨅→ 𝐿−𝐾𝑗+11 [4, Theorem 3.5]). Now we shall see that the
following diagram

(Bloc
1 (Ω))

󳰀

Bc
∞(Ω)

(Bloc
p(·)(Ω))

󳰀

Φ1 Φ−1
p(·)

t𝜄

is commutative. Let 𝐿 ∈ (𝐵loc1 (Ω))󸀠.ThenΦ1(𝐿) ∈ 𝐵𝑐∞(Ω) and
we can find a positive integer 𝑘 such that 𝜃𝑗Φ1(𝐿) = 0 for all𝑗 > 𝑘 and Φ1(𝐿) = ∑𝑘

𝑗=1(𝜃𝑗Φ1(𝐿)) and so (reasoning as in
Theorem 6) we have that

⟨𝜑,Φ−1
𝑝(⋅) (Φ1 (𝐿))⟩

= (2𝜋)−𝑛 ∞∑
𝑗=1

∫
R𝑛
(𝜒𝑗𝜑)∧∼ (𝜃𝑗Φ1 (𝐿))∧ 𝑑𝑥

= (2𝜋)−𝑛 𝑘∑
𝑗=1

⟨(𝜒𝑗𝜑)∧∼ , (𝜃𝑗Φ1 (𝐿))∧⟩

= 𝑘∑
𝑗=1

⟨𝜒𝑗𝜑, 𝜃𝑗Φ1 (𝐿)⟩ = ⟨𝜑,Φ1 (𝐿)⟩ = ⟨𝜑, 𝐿⟩
= ⟨𝜑,𝑡𝜄 (𝐿)⟩ ,

(24)

for all 𝜑 ∈ 𝐶∞0 (Ω). Since 𝐶∞0 (Ω) is dense in 𝐵loc𝑝(⋅)(Ω), it
follows that the previous diagram is commutative and that
𝑡𝜄 is an algebraic isomorphism. Then, using Theorem 7(1), we
conclude that 𝐵loc𝑝(⋅)(Ω) = 𝐵loc1 (Ω) and that (𝐵loc𝑝(⋅)(Ω))󸀠[T] and(𝐵loc1 (Ω))󸀠 are isomorphic via the map 𝑡𝜄.

(2) It is an immediate consequence of (1) and of Proposi-
tion 9.

Corollary 11. Let 𝑋 be a complemented subspace of 𝐵loc𝑝(⋅)(Ω).
Then 𝑋̂ is finite-dimensional or isomorphic to one of the spaces𝑙1, 𝑙N1 ,𝜔,𝜔×𝑙1. If furthermore𝑋 is locally convex (resp., a quasi-
Banach space) then 𝑋 is finite-dimensional or isomorphic to
one of the spaces 𝑙1, 𝑙N1 , 𝜔, 𝜔 × 𝑙1 (resp., 𝑋̂ is finite-dimensional
or isomorphic to 𝑙1).
Proof. By Theorem 10(1) and Theorem 7(1), 𝑋̂ is also a
complemented subspace of 𝐵loc1 (Ω). Then, since 𝐵loc1 (Ω) ≃𝑙N1 (see [10]), 𝑋̂ becomes isomorphic to a complemented
subspace of 𝑙N1 . The proof of the first claim concludes by
applying Theorem 1.2 of [27]. If𝑋 is locally convex then 𝑋 is
a Fréchet or Banach space (see (3), Section 1) and so 𝑋 = 𝑋̂.
Finally, if𝑋 is a quasi-Banach space, its Banach envelopemust
necessarily be finite-dimensional or isomorphic to 𝑙1.
Corollary 12. Let𝑋 be an infinite dimensional complemented
subspace of (𝐵loc𝑝(⋅)(Ω))󸀠[T]. Then 𝑋 is isomorphic to one of the
spaces 𝑙∞, (𝑙∞)(N), 𝜑, or 𝜑 × 𝑙∞.
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Proof. ByTheorem 10(2)𝑋 is isomorphic to a complemented
subspace of 𝐵𝑐∞(Ω) and since

𝐵𝑐∞ (Ω) ≃ (𝐵loc1 (Ω))󸀠 ≃ (𝑙∞)(N) , (25)

(see the proof of Proposition 9) 𝑋 is also isomorphic to a
complemented subspace of (𝑙∞)(N). The proof concludes by
applying [27, Theorem 2.1].

Questions

(1) To obtain the dual of the space 𝐵loc𝑝(⋅)(Ω) when the
variable exponent 𝑝(⋅) ∈ P0, 𝑝− ≤ 1 < 𝑝+, and the
Hardy-Littlewoodmaximal operator𝑀 is bounded in𝐿𝑝(⋅)/𝑝0 for some 0 < 𝑝0 < 𝑝−.

(2) To obtain a sequence space representation of the space𝐵loc𝑝(⋅)(Ω) (𝑝(⋅) ∈ P0).

(3) To prove that 𝐵loc𝑝 (Ω) ≃ 𝑙N𝑝 for all 0 < 𝑝 < 1.
(In a forthcoming paper the authors have shown this
isomorphism for Ω = R𝑛.)
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