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We use the reproducing kernel method (RKM) with interpolation for finding approximate solutions of delay differential equations.
Interpolation for delay differential equations has not been used by this method till now. The numerical approximation to the exact
solution is computed. The comparison of the results with exact ones is made to confirm the validity and efficiency.

1. Introduction

In this paper we consider delay differential equations in the
reproducing kernel space:

Tlx)“" (t () + p(lx) i (h(x)) + ﬁu(m () = g(x),
0<x<l1,
u(0) = A, u(l) =B,
)

where u(x) € W;’[O, 1]and g(x) € W21 [0,1].

The theory of reproducing kernels [1] was used for the
first time at the beginning of the 20th century by S. Zaremba
in his work on boundary value problems for harmonic and
biharmonic functions. In recent years, a lot of attention has
been devoted to the study of RKM to investigate various
scientific models. The RKM which accurately computes the
series solution is of great interest to applied sciences. The
method provides the solution in a rapidly convergent series
with components that can be elegantly computed. The book
[2] provides excellent overviews of the existing reproducing
kernel methods for solving various model problems such as
integral and integrodifferential equations.

The efficiency of the method was used by many authors
to investigate several scientific applications. Geng and Cui
[3] applied the RKM to handle the second-order boundary
value problems. Wang et al. [4] investigated a class of
singular boundary value problems by this method and the
obtained results were good. Zhou et al. [5] used the RKM
effectively to solve second-order boundary value problems.
In [6], the method was used to solve nonlinear infinite-delay-
differential equations. Wang and Chao [7] and Zhou and Cui
[8] independently employed the RKM to variable-coefficient
partial differential equations. Geng and Cui [9] and Du
and Cui [10] researched the approximate solution of the
forced Duffing equation with integral boundary conditions
by combining the homotopy perturbation method and the
RKM. Wu and Li [11] applied iterative reproducing kernel
method to obtain the analytical approximate solution of a
nonlinear oscillator with discontinuities. Yang et al. [12] used
this method for solving the system of the linear Volterra
integral equations with variable coeflicients. A particular
singular integral equation was solved by Du and Shen [13].
Barbieri and Meo [14] have studied evaluation of the integral
terms in reproducing kernel methods. Third-order three-
point boundary value problems were considered by Wu and
Li [15]. Chen and Chen [16] investigated the exact solution
of system of linear operator equations in reproducing kernel
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spaces. Akgiil has investigated fractional order boundary
value problems by RKM [17]. Inc et al. have solved ordinary
and partial differential equations by RKM [18-20].

The paper is organized as follows. Section 2 introduces
several reproducing kernel spaces. The associated linear oper-
ator is presented in Section 3. Section 4 provides the main
results. The exact and approximate solutions of problems and
an iterative method are developed in the reproducing kernel
space in this section. We have proved that the approximate
solutions converge to the exact solutions uniformly. Some
numerical experiments are illustrated in Section 5. Some
conclusions are given in Section 6.

2. Preliminaries

2.1. Reproducing Kernel Spaces. In this section, we define
some useful reproducing kernel spaces.

Definition 1 (reproducing kernel function). Let E # 0. A
function K : E x E — C is called areproducing kernel
function of the Hilbert space H if and only if

(a) K(-,t) € H for all t € E;

(b) (@, K(-,1)) = ¢(t) forallt € Eand all ¢ € H.

The last condition is called “the reproducing property” as
the value of the function ¢ at the point t is reproduced by the
inner product of ¢ with K(-,t).

Definition 2. We define the space W; [0, 1] by

W; [0,1] = {u e AC[0,1] : ', u" € AC[0,1],
(2)
u® € 1[0,1],u(0) = u (1) = 0} .

The third derivative of u exists almost everywhere since 1’
is absolutely continuous. The inner product and the norm in
W23 [0, 1] are defined by

2
(1, g)ys = Y u? (0) g” (0) + Jl u® (x) % (x) dx,
i 0

u,g e w; [0,1], 3)

el = /s whyzs  w e W5 [0,1].

The space W; [0, 1] is called a reproducing kernel space, as,
for each fixed y € [0,1] and any u € W23 [0, 1], there exists a
function R, such that

w(y) = (R, ) (4)
Definition 3. We define the space W, [0, 1] by

W, [0,1] = {u € AC[0,1] : ' € L*[0,1]}. (5)
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The inner product and the norm in W, [0, 1] are defined by

1
(u, g>Wzl = Jo u(x)g(x)+ u (x) g' (x) dx,

U, g€ G; [0,1], (6)

luslg = \[Gat)ugs €W, [0,1].

The space W, [0,1] is a reproducing kernel space, and its
reproducing kernel function T, is given by Cui and Lin [2]:

1
Tx(y) = m [COSh(X+)}— 1)+C08h(|x—y|—1)],
(7)

Lemma 4 (see [21]). The space W;[O,l] is a reproducing
kernel space, and its reproducing kernel function R, is given

by

6

Ya()x  x<y,
R,0=17% ®

Yd(y)x x>y,

i1

where ¢;(y) and d;(y) coefficients can be found by Maple 16.

3. Solution Representation in W23 [0,1]

In this section, the solution of (1) is considered in the
reproducing kernel space W, [0, 1]. On defining the linear
operator L : W;[O, 1] — W21 [0,1] as

Lv(x) = B (t (x)) + L, (h(x)) + ! v(m(x)),
s (x) p(x) q(x)
9)
model problem (1) takes the form
Lv=f(xv), x€[01],
(10)
v(0) =v(1) =0.

In (9), since v(x) is sufficiently smooth, we see that L :
W23 [0,1] — W21 [0,1] is a bounded linear operator. For
convenience, we write v instead of v in (10).

Theorem 5. The linear operator L defined by (9) is a bounded
linear operator.

Proof. We only need to prove IILullé\,Zl < Mllull‘z,\,zg, where M >
0 is a positive constant. By (6), we have

1

||Lu||§vzl = (Lu, Ly = j [Lu (x)]* + [Lu' (x)]zdx. (11)

0

By reproducing property, we have
u(x) = ()R )y

Lt () = () LR,O)) 0

(12)
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SO
L0 ()] < Nuhg [R s = M, (13)

where M, > 0 is a positive constant; thus,

Ll [(L) ()] dx < Ml (14)
Since
(L)' (x) = (u (), (LR () (15)
we have

|(Lw)" ()| < Nl

(LR |,y = Mallulhs,  (16)

where M, > 0 is a positive constant, so we have

(L) 0] < M2l

1 5 17)
|, (@’ @) dax < M0l
that is
1
1Lul?y < | (1) 0P + [ (0)]*)d
qu J;)( u)(x [u x])x (18)

2 2 2 2
< (M7 + M3) il = Mllullss

where M = Mf + M; > 0 is a positive constant. This com-
pletes the proof. O

4. The Structure of the Solution
and the Main Results

From (9), it is clear that L : W;[O, 1] — W21 [0,1] is a
bounded linear operator. Put ¢;(x) = T, (x) and y;(x) =
L*¢;(x), where L* is conjugate operator of L. The orthonor-

mal system {‘T’i(x)}?:1 of W23 [0, 1] can be derived from Gram-
Schmidt orthogonalization process of {y;(x)}:2;:

G0 =) PBavi (%), (Bi>0,i=1,2,..). (19
k=1

Theorem 6. Let {x;};°, be dense in [0,1] and y;(x) =
Lny(y)|y:Xi. Then the sequence {y;(x)}io, is a complete

system in W, [0,1].
Proof. We have
¥ () = (L7¢) () = ((L79:) (¥), R (¥))
={(9) (> R () = LR ()] _,

The subscript y by the operator L indicates that the oper-
ator L applies to the function of y. Clearly, v;(x) € W, [0, 1].

(20)

For each fixed u(x) € W;[O, 1], let (u(x),y;(x)) = 0, (i =
1,2,...), which means that

(u(x), (L ;) (x)) = (Lu (), ¢; () = (Lu) (x;) = 0. (21)
Note that {x;};°, is dense in [0, 1]; hence, (Lu)(x) = 0. It

follows that u = 0 from the existence of L™". So the proof of
Theorem 6 is completed. O

Theorem 7. If u(x) is the exact solution of (10), then

u() =Y Buf (xpouy) % (x) (22)

i=1k=1

where {(x;)};2) is dense in [0, 1].

Proof. From (19) and uniqueness of solution of (10), we have

u(x) = Z<u(x>,?,- ()3 i ()

nMg

Z B4 (), ¥ ()3 % (x)

1l
) Mg

Z Bic (4 (), L@y ()i ()

(23)

3

ZZ Bic (Lt (x), i ()1 ¥ (x)

i=1k

3

ZZ B f (1),

LR AC)

OZO:iﬂikf (%) T, (x) .

i=1k=1

This completes the proof. O

Now the approximate solution u,(x) can be obtained
from the n-term intercept of the exact solution u and

Uy (%) = )Y Bief (1011 ¥ (x). (24)
i=1k=1
Lemma 8 (see [22]). If |lu, - ”"wg - 0,x, & x,(n —

00), and f(x,u) is continuous for x € [0, 1], then
f G thyy (%)) — f (o u(x)

Lemma 9 (see [23]). For any fixed uy(x) € W;’[O, 1], suppose
the following conditions are satisfied:

as n — oo. (25)

@)
Uy () = D A (), (26)
i1
A= Zﬂikf (x> iy (%)) - (27)
k=1

(ii) ””n”w; is bounded;
(iii) {x;}:2) is dense in [0, 1];
(iv) f(x,u) € W21 [0, 1] for any u(x) € W23[0, 1].



TABLE 1: Approximate solutions of Example 12.
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TABLE 2: Approximate solutions of Example 13.

Approximate solution

Approximate solution

Approximate solution

Approximate solution

x (m = 20) (m = 40) x (m = 20) (m = 40)
01  —0.14567324629372310303 ~0.14332570351241038744 /128 1.007699352586986977 1.0078430972064479777
0.2 —0.29985556099058424878  —0.29495827353958461228 1/64 1.015467872441933409 1.0157477085866857475
03 -0.45709584460083115842  —0.44946832894209791578 /32 10312145777006698521 1.0317781924005388582
0.4 -0.61194299763471154735  —0.60142648858052541270 /16 1.0635619468092503034 1.0646422184208995853
05  —0.75894502060247313735  -0.74540337131544220233 /8 11317728332594306196 11336864923985190672
0.6  —0.89265351401436369206 —0.875969596007423769 /4 12820670848004034655  12853973453552029427
0.7 -1.0076146783806308025 ~0.987695781517044783 38 14506420021011940437 1455402968114665958
TABLE 3: Approximate solutions of Example 14.
Lo . Approximate solution Approximate solution
Then u,(x) in iterative formula (26) converges to the exact x (m = 20) (m = 40)
solution of (22) in W, [0, 1] and 04 0.37198086110266406119 0.36562543902764212178
o 0.6 0.56420118043724686324 0.55433514429791597661
u(x) =Y A (x), (28) 07  0.66467348067813109719 0.65290860208735486704
i1 0.8  0.76971776926603696502 0.75593299892958661386
where A, is given by (27). 0.9  0.8808862311855404085 0.86493995475233692321
3/8  0.34846550611241626259 0.34252746655728479953
We assume that {x,}%°, is dense in [0, 1]. Let u(x) be the ~ 5/8  0.58896615156191184948 0.57863565938605001693

exact solution of (1) and let u,,(x) be the n-term approxima-
tion solution of (1). We set

u = max |{u(x)|.
lullc = max fu (x)] (29)

Theorem 10. Ifu € W;[O, 1], then
. = ulyy — 0. n— oo (30)

Moreover, a sequence |u,,
inn.

— ullyz is monotonically decreasing

Proof. From (22) and (24), it follows that

[C
o4, —””wz3 = Z Zﬁikf (o i) ¥, (31)
i=ntlk=1 w3
Thus,
||un - u“wzg — 0, n-— oo. (32)
In addition,
5 o i . 2
[, — ”“w; = Z Zﬁikf (o1 ) ¥,
i=n+1 k=1 w3
: (33)
2
= Z (Zﬁzkf Xe> ”k)‘{j>
i=n+1
Clearly, [[u,, - ull is monotonically decreasing in 7. O

Remark 11. Let us consider countable dense set {x;,x,,...} €
[0, 1] and define

1
=T, ¥ =L, ¥i= Zﬁikq]k' (34)
k=1

7/8  0.85242546043516774048 0.83703396768442560044

Then f3; coeflicients can be found by
1

\P b
1% m;ﬁ o’

Zk _ &k=jtikFPkj 1kﬂk] ¢y = <\I’l,§7k>

\HWP Y

4.1. Interpolation for Reproducing Kernel Method. We used
interpolation to find the numerical results by RKM with

/311 =

(35)

_(x=b)(x=0)
“ = @b @
(x-a)(x-c) (x —a)(x-b) o
x—a)(x— - -
+(b—a)(b—c)u(b)+(c—b)(c—a)u(C)’

where 0.1 < a < x < b < ¢ < 1. More details for interpolation
can be found in [24].

5. Numerical Results

In this section, four numerical examples are provided to show
the accuracy of the present method. We used interpolation
for Examples 12-14. The RKM does not require discretization
of the variables, that is, time and space; it is not effected
by computation round-oft errors and one is not faced with
necessity of large computer memory and time. The accuracy
of the RKM for the delay differential equation is controllable
and absolute errors are small with present choice of x (see
Tables 1-6). The numerical results we obtained justify the
advantage of this methodology.
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TABLE 4: Numerical results of Example 15.

x Exact solution Approximate solution (m = 20) Approximate solution (m = 40)
0.1 0.001 0.00090776461553418538803 0.00098904754340427120243
0.2 0.008 0.0079254004789810215967 0.0079919839363928962286
0.3 0.027 0.026940356780732013097 0.026994411062098332384
0.4 0.064 0.063953086850948970952 0.063996421220125258843
0.5 0.125 0.12496400548134896886 0.12499809894400479331
0.6 0.216 0.21597349594471182527 0.21599952248650893754
0.7 0.343 0.34298191656657060634 0.343000765213362709
0.8 0.512 0.51198960694198087943 0.51200189692520825458
0.9 0.729 0.72899689388568731882 0.72900298512674395795
1.0 1.000 1.000 1.000
TABLE 5: Absolute error for Example 15.
X Absolute error (m = 20) Absolute error (m = 40)
0.1 9.223538446581461197 x 10™° 1.095245659572879757 x 10~°
0.2 7.45995210189784033 x 107> 8.0160636071037714 x 107°
0.3 5.9643219267986903 x 10~° 5.588937901667616 x 10°°
0.4 4.6913149051029048 x 10~° 3.578779874741157 x 10°°
0.5 3.599451865103114 x 10~ 1.90105599520669 x 10~
0.6 2.650405528817473 x 107° 4.7751349106246 x 1077
0.7 1.808343342939366 x 107 7.65213362709 x 10~
0.8 1.039305801912057 x 10~ 1.89692520825458 x 107°
09 3.10611431268118 x 107° 2.98512674395795 x 107°
1.0 0.0 0.0
Example 12. Consider the equation We use transformation
vix)=u(x)—-x(exp(l)—1)— 40
p(x ( )
1 | to obtain
f—u@r—d () =Fx),
r(x) s(x) v (x)
u(0)=0=u(), x (1+2x)?
=(v[ 5 (ex p(1—1)+1]>
where 1+ 2x)* (1+2 )
v(0)=0 v(l)=0
g =%  hEx)=3x © )
(41)
px) =% qx) =x%, (38)
Thus, if the method described above is applied, then we find
r(x)=x-1, s(x)=x+1, F(x) = exp (x). Table 2.

Thus, if the method described above is applied, then we find
Table 1.

Example 13. We take notice of equation

, X (1+2x)?
" (x):<u[(1+2x)2]> ’

u(0) =1, u(l) =exp(1).

(39)

Example 14. We regard the following equation:

" (x)=u (xz),

(42)
u(0) = u(l) =1.
‘We use transformation
v(x) =u(x)-x (43)
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TABLE 6: Relative error for Example 15.

X Relative error (m = 20) Relative error (m = 40)

0.1 9.223538446581461197 x 10~ 1.095245659572879757 x 107
0.2 9.3249401273723004125 x 107 1.002007950887971425 x 10~
0.3 2.209008121036551963 x 10~ 2.0699770006176355556 x 10~*
0.4 7.33017953922328875 x 10~* 5.5918435542830578125 x 10~
0.5 2.8795614920824912 x 10~ 1.520844796165352 x 10~
0.6 1.2270395966747560185 x 107 2.2107106067706481481 x 10~
0.7 5.2721380260622915452 x 10~° 2.2309427484227405248 x 10~°
0.8 2.0298941443594863281 x 10~ 3.7049320473722265625 x 10~
0.9 4.2607878088905075446 x 10~ 4.0948240657859396433 x 10~°
1.0 0.0 0.0

to obtain Conlflict of Interests

" _ 2 2
v (x) v(x )+x , )

v(0) =0, v(1)=0.

Thus, if the method described above is applied, then we find
Table 3.

Example 15. We consult equation

u’ (x) = u(|x|) + |x| (6 - x2) ,

(45)
u(-1)=1, u(l)=1.
We use transformation
v(x) = u(x) - |x]| (46)
to obtain
v (x) = v (Ixl) + %] (7 - %%),
(47)
v(-1) =0, v(1) =0.
The exact solution of (45) is given as
u(x) = |x| 2% (48)

Thus, if the method described above is applied, then we find
Tables 4, 5, and 6.

6. Conclusion

In this paper, we introduced an algorithm for finding approx-
imate solutions of delay differential equations with RKM. For
illustration purposes, four examples were selected to show
the computational accuracy. It may be concluded that the
RKM is very powerful and efficient in finding approximate
solutions for wide classes of problems. Solutions obtained
by the present method are uniformly convergent. As shown
in Tables 1-6, results of numerical examples show that
the present method is an accurate and reliable analytical
method for these problems. The present study has confirmed
that the RKM offers significant advantages in terms of its
straightforward applicability, its computational effectiveness,
and its accuracy to solve the strongly nonlinear equations.

The authors declare that they do not have any competing
interests or conflict of interests.
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