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Circulant type matrices have become an important tool in solving fractional order differential equations. In this paper, we consider
the circulant and left circulant and 𝑔-circulant matrices with the Jacobsthal and Jacobsthal-Lucas numbers. First, we discuss the
invertibility of the circulant matrix and present the determinant and the inverse matrix. Furthermore, the invertibility of the left
circulant and 𝑔-circulant matrices is also discussed. We obtain the determinants and the inverse matrices of the left circulant and
𝑔-circulant matrices by utilizing the relation between left circulant, 𝑔-circulant matrices, and circulant matrix, respectively.

1. Introduction

Circulant type matrices possess interesting properties, which
have been exploited to obtain the transient solution in a
closed form for fractional order differential equations. In
[1], Qu et al. derived the discretized linear system from
fractional advection-diffusion equations (FADEs) with con-
stant coefficients and introduced the background of circulant
and skew-circulant splitting (CSCS) iteration for solving
the discretized linear system. In [2], some Routh-Hurwitz
stability conditions are generalized to the fractional order
case. Ahmed et al. considered the 1-system CML (10) in [2].
They selected a circulant matrix, which reads a tridiagonal
matrix. Ahmed et al. used coupled map lattices (CML) as
an alternative approach to include spatial effects in fractional
order systems (FOS). Consider the 1-system CML (10) in [3].
They claimed that the system is stable if all the eigenvalues
of the circulant matrix satisfy (2) in [3]. Lei and Sun [4]
proposed the preconditioned CGNR (PCGNR) method with
a circulant preconditioner to solve such Toeplitz-like systems.
Kloeden et al. adopted the multilevel Monte Carlo method
introduced byM.Giles to SDEswith additive fractional noise.
They adopted the simplest approximation schemes for (1)
in [5] with the Euler method, which reads (5) in [5]. They
exploited that the covariance matrix of the increments can
be embedded in a circulant matrix. The total loops can be
done by fast Fourier transformation, which leads to a total

computational cost of 𝑂(𝑚 log𝑚), where 𝑚 is the order of
the circulant matrix.

Jacobsthal and Jacobsthal-Lucas circulant type matrices
are circulant type matrices with Jacobsthal and Jacobsthal-
Lucas numbers. Circulant type matrices include the circulant
and left circulant and 𝑔-circulant matrices. These matrices
have important applications in various disciplines includ-
ing image processing, communications, signal processing,
encoding, solving Toeplitz matrix problems, preconditioner,
and solving least squares problems.They have been put on the
firm basis with the work of Davis [6] and Jiang and Zhou [7].

The𝑔-circulantmatrices play an important role in various
applications as well; for details please refer to [8, 9] and
the references therein. Ngondiep et al. showed the singular
values of 𝑔-circulants in [10]. There are discussions about the
convergence in probability and in distribution of the spectral
norm of 𝑔-circulant matrices in [11].

For 𝑛 > 0, the Jacobsthal number {𝐽
𝑛
} is defined by 𝐽

𝑛+1
=

𝐽
𝑛
+ 2𝐽
𝑛−1

, where 𝐽
0
= 0 and 𝐽

1
= 1. If we generalize 𝐽

𝑛+1

to 𝑗
𝑛+1
= 𝑗
𝑛
+ 2𝑗
𝑛−1

and let 𝑗
0
= 2, 𝑗

1
= 1, then we obtain

Jacobsthal-Lucas number {𝑗
𝑛
}. Let 𝛼 and 𝛽 be the roots of the

characteristic equation 𝑥2−𝑥−2 = 0; then the Binet formulas
of the sequences {𝐽

𝑛
} and {𝑗

𝑛
} have the form [12, 13]

𝐽
𝑛
=
𝛼
𝑛

− 𝛽
𝑛

𝛼 − 𝛽
, 𝑗

𝑛
= 𝛼
𝑛

+ 𝛽
𝑛

. (1)
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Besides, some scholars have given various algorithms
for the determinants and inverses of nonsingular circulant
matrices in [6]. It is worth pointing out that the computa-
tional complexity of these algorithms is amazing with the
order of matrix increasing. However, some authors gave the
explicit determinant and inverse of the circulant and skew-
circulant matrix involving Fibonacci and Lucas numbers. For
example, authors [14] studied the nonsingularity of the skew-
circulant type matrices and presented explicit determinants
and inverse matrices of these special matrices. Furthermore,
four kinds of norms and bounds for the spread of these
matrices are given separately. In [15], the nonsingularity
of circulant type matrices with the sum and product of
Fibonacci and Lucas numbers is discussed. And the exact
determinants and inverses of these matrices are given. In
[16], Jiang and Hong presented exact determinants of some
special circulant matrices involving four kinds of famous
numbers. Jaiswal evaluated some determinants of circulant
matrix whose elements are the generalized Fibonacci num-
bers in [17]. Lind presented the determinants of circulant
and skew-circulant matrix involving Fibonacci numbers in
[18]. Dazheng gave the determinant of the Fibonacci-Lucas
quasicyclic matrices in [19]. Shen et al. considered circulant
matrices with Fibonacci and Lucas numbers and presented
their explicit determinants and inverses by constructing the
transformation matrices in [20].

The purpose of this paper is to obtain the better results for
the determinants and inverses of circulant type matrices by
some properties of Jacobsthal and Jacobsthal-Lucas numbers.

Definition 1 (see [21]). A right circulant matrix (or simply,
circulant matrix) is written as

Circ (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
𝑛
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

.

.

.
.
.
.

.

.

.

𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

]
]
]
]

]

. (2)

Definition 2 (see [21]). A left circulant matrix is written as

LCirc (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) =

[
[
[
[

[

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
2
𝑎
3
⋅ ⋅ ⋅ 𝑎

1

.

.

.
.
.
.

.

.

.

𝑎
𝑛
𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−1

]
]
]
]

]

. (3)

Definition 3 (see [22]). A 𝑔-circulant matrix is an 𝑛 × 𝑛
complex matrix with the following form:

𝐴
𝑔,𝑛
=(

𝑎
1
𝑎
2
⋅ ⋅ ⋅ 𝑎

𝑛

𝑎
𝑛−𝑔+1
𝑎
𝑛−𝑔+2
⋅ ⋅ ⋅ 𝑎

𝑛−𝑔

𝑎
𝑛−2𝑔+1
𝑎
𝑛−2𝑔+2
⋅ ⋅ ⋅ 𝑎
𝑛−2𝑔

.

.

.
.
.
. d

.

.

.

𝑎
𝑔+1
𝑎
𝑔+2
⋅ ⋅ ⋅ 𝑎

𝑔

), (4)

where 𝑔 is a nonnegative integer and each of the subscripts is
understood to be reduced modulo 𝑛.

The first row of 𝐴
𝑔,𝑛

is (𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
); its (𝑗 + 1)th row

is obtained by giving its 𝑗th row a right circular shift by 𝑔

positions (equivalently, 𝑔 mod 𝑛 positions). Note that 𝑔 = 1
or 𝑔 = 𝑛+ 1 yields the standard circulant matrix. If 𝑔 = 𝑛− 1,
then we obtain the left circulant matrix.

2. Circulant Matrix with the
Jacobsthal Numbers

In this section, let 𝐴
𝑛
= Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a circulant

matrix. Firstly, we give a determinant formula for the matrix
𝐴
𝑛
. Afterwards, we prove that 𝐴

𝑛
is an invertible matrix for

𝑛 > 2, and then we find the inverse of the matrix 𝐴
𝑛
.

Theorem 4. Let 𝐴
𝑛
= Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a circulant ma-

trix; then we have

det𝐴
𝑛
= (1 − 𝐽

𝑛+1
)
𝑛−1

+ (2𝐽
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

(2𝐽
𝑘
) (
1 − 𝐽
𝑛+1

2𝐽
𝑛

)

𝑘−1

,

(5)

where 𝐽
𝑛
is the 𝑛th Jacobsthal number.

Proof. Obviously, when 𝑛 = 1, det𝐴
1
= 1 satisfies the for-

mula (5). In the case 𝑛 > 1, let

Γ =

(
(
(
(
(
(

(

1

−1 1

−2 1 −1

0 0 1 −1 −2

.

.

. c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −2

)
)
)
)
)
)

)

,

Π
1
=

(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

.

.

.
.
.
.

.

.

. d
.
.
.
.
.
.

0
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)

)

(6)

be two 𝑛 × 𝑛matrices; then the product Γ𝐴
𝑛
Π
1
has the form

(
(
(
(

(

𝐽
1
𝛿
󸀠

𝑛
𝐽
𝑛−1
⋅ ⋅ ⋅ 𝐽

3
𝐽
2

0 𝛿
𝑛
2𝐽
𝑛−2
⋅ ⋅ ⋅ 2𝐽

2
2𝐽
1

0 0 𝐽
1
− 𝐽
𝑛+1

0 0 −2𝐽
𝑛

d 0

.

.

.
.
.
. d d

0 0

0 0 0 −2𝐽
𝑛
𝐽
1
− 𝐽
𝑛+1

)
)
)
)

)

, (7)
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where

𝛿
𝑛
= 𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

,

𝛿
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

𝐽
𝑘+1
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

.

(8)

So we obtain

det Γ det𝐴
𝑛
detΠ
1

= 𝐽
1
× [𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐽
1
− 𝐽
𝑛+1
)
𝑛−2

= 𝐽
1
× [𝐽
1
− 𝐽
𝑛+1
+

𝑛−1

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

]

× (𝐽
1
− 𝐽
𝑛+1
)
𝑛−2

= (1 − 𝐽
𝑛+1
)
𝑛−1

+ (2𝐽
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

2𝐽
𝑘
(
1 − 𝐽
𝑛+1

2𝐽
𝑛

)

𝑘−1

,

(9)

while

det Γ = detΠ
1
= (−1)

((𝑛−1)(𝑛−2))/2

, (10)

and we have

det𝐴
𝑛
= (1 − 𝐽

𝑛+1
)
𝑛−1

+ (2𝐽
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

2𝐽
𝑘
(
1 − 𝐽
𝑛+1

2𝐽
𝑛

)

𝑘−1

.

(11)

The proof is completed.

Theorem 5. Let 𝐴
𝑛
= Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a circulant

matrix. If 𝑛 > 2, then 𝐴
𝑛
is an invertible matrix.

Proof. When 𝑛 = 3 in Theorem 4, then we have det𝐴
3
=

20 ̸= 0; hence 𝐴
3
is invertible. In the case 𝑛 > 3, since 𝐽

𝑛
=

(𝛼
𝑛

− 𝛽
𝑛

) / (𝛼 − 𝛽), where 𝛼 + 𝛽 = 1, 𝛼𝛽 = −2, we have

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑖=1

𝐽
𝑖
(𝜔
𝑘

)
𝑖−1

=
1

𝛼 − 𝛽

𝑛

∑

𝑖=1

(𝛼
𝑖

− 𝛽
𝑖

) (𝜔
𝑘

)
𝑖−1

=
1

𝛼 − 𝛽
[
𝛼 (1 − 𝛼

𝑛

)

1 − 𝛼𝜔𝑘
−
𝛽 (1 − 𝛽

𝑛

)

1 − 𝛽𝜔𝑘
]

=
1

𝛼 − 𝛽
[
(𝛼 − 𝛽) − (𝛼

𝑛+1

− 𝛽
𝑛+1

)

1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘

+
𝛼𝛽 (𝛼
𝑛

− 𝛽
𝑛

) 𝜔
𝑘

1 − (𝛼 + 𝛽)𝜔𝑘 + 𝛼𝛽𝜔2𝑘
]

=
1 − 𝐽
𝑛+1
− 2𝐽
𝑛
𝜔
𝑘

1 − 𝜔𝑘 − 2𝜔2𝑘
(𝑘 = 1, 2, . . . , 𝑛 − 1) .

(12)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓 (𝜔𝑙) = 0,
then we obtain 1− 𝐽

𝑛+1
−2𝐽
𝑛
𝜔
𝑙

= 0 for 1−𝜔𝑙 −2𝜔2𝑙 ̸= 0; thus,
𝜔
𝑙

= (1 − 𝐽
𝑛+1
) /2𝐽
𝑛
is a real number. While

𝜔
𝑙

= exp(2𝑙𝜋𝑖
𝑛
) = cos 2𝑙𝜋

𝑛
+ 𝑖 sin 2𝑙𝜋

𝑛
, (13)

sin(2𝑙𝜋/𝑛) = 0, so we have 𝜔𝑙 = −1 for 0 < 2𝑙𝜋/𝑛 < 2𝜋.
But 𝑥 = −1 is not the root of the equation 1 − 𝐽

𝑛+1
− 2𝐽
𝑛
𝑥 =

0 (𝑛 > 3). We obtain 𝑓 (𝜔𝑘) ̸= 0 for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 −
1), while 𝑓 (1) = ∑𝑛

𝑖=1
𝐽
𝑖
= − (1/2) (1 − 𝐽

𝑛+1
− 2𝐽
𝑛
) ̸= 0. By

Lemma 4 in [15], the proof is completed.

Lemma 6. Let the matrixG = [𝑔
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
be of the form

𝑔
𝑖𝑗
=

{{

{{

{

𝐽
1
− 𝐽
𝑛+1
, 𝑖 = 𝑗,

−2𝐽
𝑛
, 𝑖 = 𝑗 + 1,

0, otherwise
(14)

and then the inverseG−1 = [𝑔󸀠
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
is equal to

𝑔
󸀠

𝑖𝑗
=

{{

{{

{

(2𝐽
𝑛
)
𝑖−𝑗

(𝐽
1
− 𝐽
𝑛+1
)
𝑖−𝑗+1
, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(15)

Proof. Let 𝑐
𝑖𝑗
= ∑
𝑛−2

𝑘=1
𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
. Obviously, 𝑐

𝑖𝑗
= 0 for 𝑖 < 𝑗. In the

case 𝑖 = 𝑗, we obtain

𝑐
𝑖𝑖
= 𝑔
𝑖𝑖
𝑔
󸀠

𝑖𝑖
= (𝐽
1
− 𝐽
𝑛+1
) ⋅
1

𝐽
1
− 𝐽
𝑛+1

= 1. (16)

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑐
𝑖𝑗
=

𝑛−2

∑

𝑘=1

𝑔
𝑖𝑘
𝑔
󸀠

𝑘𝑗
= 𝑔
𝑖,𝑖−1
𝑔
󸀠

𝑖−1,𝑗
+ 𝑔
𝑖𝑖
𝑔
󸀠

𝑖𝑗

= (−2𝐽
𝑛
) ⋅
(2𝐽
𝑛
)
𝑖−𝑗−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖−𝑗

+ (𝐽
1
− 𝐽
𝑛+1
) ⋅
(2𝐽
𝑛
)
𝑖−𝑗

(𝐽
1
− 𝐽
𝑛+1
)
𝑖−𝑗+1
= 0.

(17)

Hence, we verifyGG−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verify G−1G = 𝐼

𝑛−2
. Thus,

the proof is completed.
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Theorem 7. Let 𝐴
𝑛
= Circ(𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) (𝑛 > 2) be a circu-

lant matrix; then one has

𝐴
−1

𝑛
=
1

𝛿
𝑛

Circ(𝑥󸀠
1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
) , (18)

where

𝑥
󸀠

1
= 1 + 2

𝑛−2

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
󸀠

2
= − 1 + 4

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
󸀠

𝑘
= −
2 (2𝐽
𝑛
)
𝑘−3

(𝐽
1
− 𝐽
𝑛+1
)
𝑘−2

, 𝑘 = 3, 4, . . . , 𝑛,

𝛿
𝑛
= 𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

.

(19)

Proof. Let

Π
2
=

(
(
(
(
(
(

(

1 −𝛿
󸀠

𝑛
2
𝛿
󸀠

𝑛

𝛿
𝑛

𝐽
𝑛−2
− 𝐽
𝑛−1
⋅ ⋅ ⋅ 2
𝛿
󸀠

𝑛

𝛿
𝑛

𝐽
1
− 𝐽
2

0 1 −2
𝐽
𝑛−2

𝛿
𝑛

⋅ ⋅ ⋅ −2
𝐽
1

𝛿
𝑛

0 0 1 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.

.

.

. d
.
.
.

0 0 0 ⋅ ⋅ ⋅ 1

)
)
)
)
)
)

)

, (20)

where

𝛿
𝑛
= 𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

,

𝛿
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

𝐽
𝑘+1
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

.

(21)

Then we have

Γ𝐴
𝑛
Π
1
Π
2
= D
1
⊕G, (22)

whereD
1
= diag (𝐽

1
, 𝛿
𝑛
) is a diagonal matrix, andD

1
⊕G is

the direct sum ofD
1
andG. If we denoteΠ = Π

1
Π
2
, then we

obtain

𝐴
−1

𝑛
= Π (D

−1

1
⊕G
−1

) Γ, (23)

since the last row entries of the matrix Π are 0, 1, −2(𝐽
𝑛−2
/

𝛿
𝑛
), −2(𝐽

𝑛−3
/𝛿
𝑛
), . . . , −2(𝐽

2
/𝛿
𝑛
), −2(𝐽

1
/𝛿
𝑛
). By Lemma 6, if we

let 𝐴−1
𝑛
= Circ(𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
), then its last row entries are

given by the following equations:

𝑥
2
= −
1

𝛿
𝑛

+
4

𝛿
𝑛

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
3
= −

2𝐽
1

𝛿
𝑛
(𝐽
1
− 𝐽
𝑛+1
)
,

𝑥
4
= −
2

𝛿
𝑛

2

∑

𝑖=1

𝐽
3−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
+
2𝐽
1

𝛿
𝑛
(𝐽
1
− 𝐽
𝑛+1
)
,

𝑥
5
= −
2

𝛿
𝑛

3

∑

𝑖=1

𝐽
4−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
+
2

𝛿
𝑛

2

∑

𝑖=1

𝐽
3−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

+
4𝐽
1

𝛿
𝑛
(𝐽
1
− 𝐽
𝑛+1
)
,

.

.

.

𝑥
𝑛
= −
2

𝛿
𝑛

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
+
2

𝛿
𝑛

𝑛−3

∑

𝑖=1

𝐽
𝑛−2−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

+
4

𝛿
𝑛

𝑛−4

∑

𝑖=1

𝐽
𝑛−3−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
1
=
1

𝛿
𝑛

+
2

𝛿
𝑛

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
+
4

𝛿
𝑛

𝑛−3

∑

𝑖=1

𝐽
𝑛−2−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
.

(24)

Let𝐶(𝑘)
𝑛
= ∑
𝑘

𝑖=1
(𝐽
𝑘+1−𝑖
(2𝐽
𝑛
)
𝑖−1

/ (𝐽
1
− 𝐽
𝑛+1
)
𝑖

), (𝑗 = 1, 2, . . . , 𝑛−
2); then we have

𝐶
(2)

𝑛
− 𝐶
(1)

𝑛

=

2

∑

𝑖=1

𝐽
3−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
−
𝐽
1

𝐽
1
− 𝐽
𝑛+1

=
2𝐽
𝑛

(𝐽
1
− 𝐽
𝑛+1
)
2
,

𝐶
(𝑛−2)

𝑛
+ 2𝐶
(𝑛−3)

𝑛

=

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
+ 2

𝑛−3

∑

𝑖=1

𝐽
𝑛−2−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

=
𝐽
1
(2𝐽
𝑛
)
𝑛−3

(𝐽
1
− 𝐽
𝑛+1
)
𝑛−2
+

𝑛−3

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

=

𝑛−2

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝐶
(𝑘+2)

𝑛
− 𝐶
(𝑘+1)

𝑛
− 2𝐶
(𝑘)

𝑛

=

𝑘+2

∑

𝑖=1

𝐽
𝑘+3−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
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−

𝑘+1

∑

𝑖=1

𝐽
𝑘+2−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
− 2

𝑘

∑

𝑖=1

𝐽
𝑘+1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

=
𝐽
2
(2𝐽
𝑛
)
𝑘

(𝐽
1
− 𝐽
𝑛+1
)
𝑘+1

+
𝐽
1
(2𝐽
𝑛
)
𝑘+1

(𝐽
1
− 𝐽
𝑛+1
)
𝑘+2

−
𝐽
1
(2𝐽
𝑛
)
𝑘

(𝐽
1
− 𝐽
𝑛+1
)
𝑘+1

+

𝑘

∑

𝑖=1

(𝐽
𝑘+3−𝑖
− 𝐽
𝑘+2−𝑖
− 2𝐽
𝑘+1−𝑖
) (2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖

=
(2𝐽
𝑛
)
𝑘+1

(𝐽
1
− 𝐽
𝑛+1
)
𝑘+2
(𝑘 = 1, 2, . . . , 𝑛 − 4) .

(25)

We obtain

𝑥
1
=
1 + 2 (𝐶

(𝑛−2)

𝑛
+ 2𝐶
(𝑛−3)

𝑛
)

𝛿
𝑛

,

𝑥
2
=
4𝐶
(𝑛−2)

𝑛
− 1

𝛿
𝑛

,

𝑥
3
= −
2𝐶
(1)

𝑛

𝛿
𝑛

,

𝑥
4
= −
2 (𝐶
(2)

𝑛
− 𝐶
(1)

𝑛
)

𝛿
𝑛

,

𝑥
𝑘
= −
2 (𝐶
(𝑘−2)

𝑛
− 𝐶
(𝑘−3)

𝑛
− 2𝐶
(𝑘−4)

𝑛
)

𝛿
𝑛

,

𝑘 = 5, 6, . . . , 𝑛,

𝐴
−1

𝑛
=
1

𝛿
𝑛

Circ (𝑥󸀠
1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑛
) ,

(26)

where

𝑥
󸀠

1
= 1 + 2

𝑛−2

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
󸀠

2
= −1 + 4

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑥
󸀠

𝑘
= −
2 (2𝐽
𝑛
)
𝑘−3

(𝐽
1
− 𝐽
𝑛+1
)
𝑘−2

, 𝑘 = 3, 4, . . . , 𝑛.

(27)

The proof is completed.

3. Circulant Matrix with the
Jacobsthal-Lucas Numbers

In this section, let 𝐵
𝑛
= Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a circulant

matrix. Firstly, we give a determinant formula for the matrix

𝐵
𝑛
. Then, we prove that 𝐵

𝑛
is an invertible matrix for any

positive integer 𝑛, and finally we find the inverse of thematrix
𝐵
𝑛
.

Theorem 8. Let 𝐵
𝑛
= Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a circulant ma-

trix; then one has

det𝐵
𝑛
= (1 − 𝑗

𝑛+1
)
𝑛−1

+ (2𝑗
𝑛
− 4)
𝑛−2

×

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
1 − 𝑗
𝑛+1

2𝑗
𝑛
− 4
)

𝑘−1

,

(28)

where 𝑗
𝑛
is the 𝑛th Jacobsthal-Lucas number.

Proof. Obviously, when 𝑛 = 1, det𝐵
1
= 1 satisfies the formula

(28). When 𝑛 > 1, let

Σ =

(
(
(
(
(
(

(

1

−5 1

−2 1 −1

0 0 1 −1 −2

.

.

. c c c
0 1 c c
0 1 −1 c 0

0 1 −1 −2

)
)
)
)
)
)

)

,

Ω
1
=

(
(
(
(
(
(
(
(
(

(

1 0 0 ⋅ ⋅ ⋅ 0 0

0 (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−2

0 ⋅ ⋅ ⋅ 0 1

0 (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−3

0 ⋅ ⋅ ⋅ 1 0

.

.

.
.
.
.

.

.

. d
.
.
.
.
.
.

0
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

1 ⋅ ⋅ ⋅ 0 0

0 1 0 ⋅ ⋅ ⋅ 0 0

)
)
)
)
)
)
)
)
)

)

(29)

be two 𝑛 × 𝑛matrices; then the product Σ𝐵
𝑛
Ω
1
has the form

(
(

(

𝑗
1
𝛾
󸀠

𝑛
𝑗
𝑛−1
⋅ ⋅ ⋅ 𝑗

3
𝑗
2

0 𝛾
𝑛
𝑗
𝑛
− 5𝑗
𝑛−1
⋅ ⋅ ⋅ 𝑗
4
− 5𝑗
3
𝑗
3
− 5𝑗
2

0 0 𝑗
1
− 𝑗
𝑛+1

0 0 4 − 2𝑗
𝑛

d 0

.

.

.
.
.
. d d

0 0 4 − 2𝑗
𝑛
𝑗
1
− 𝑗
𝑛+1

)
)

)

, (30)

where

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛
+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

,

𝛾
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

𝑗
𝑘+1
(
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(31)
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We obtain

detΣ det𝐵
𝑛
detΩ
1

= 𝑗
1
× [𝑗
1
− 5𝑗
𝑛
+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
)

× (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

] × (𝑗
1
− 𝑗
𝑛+1
)
𝑛−2

= 𝑗
1
× [𝑗
1
− 𝑗
𝑛+1
+

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
)

× (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

] × (𝑗
1
− 𝑗
𝑛+1
)
𝑛−2

= (1 − 𝑗
𝑛+1
)
𝑛−1

+ (2𝑗
𝑛
− 4)
𝑛−2

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
)

× (
1 − 𝑗
𝑛+1

2𝑗
𝑛
− 4
)

𝑘−1

,

(32)

while

detΣ = detΩ
1
= (−1)

((𝑛−1)(𝑛−2))/2

, (33)

and we have

det𝐵
𝑛
= (1 − 𝑗

𝑛+1
)
𝑛−1

+ (2𝑗
𝑛
− 4)
𝑛−2

×

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
1 − 𝑗
𝑛+1

2𝑗
𝑛
− 4
)

𝑘−1

.

(34)

Theorem 9. Let 𝐵
𝑛
= Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a circulant ma-

trix; then 𝐵
𝑛
is invertible for any positive integer 𝑛.

Proof. Since 𝑗
𝑛
= 𝛼
𝑛

+𝛽
𝑛, where 𝛼+𝛽 = 1, 𝛼𝛽 = −2. We have

𝑓 (𝜔
𝑘

) =

𝑛

∑

𝑖=1

𝑗
𝑖
(𝜔
𝑘

)
𝑖−1

=

𝑛

∑

𝑖=1

(𝛼
𝑖

+ 𝛽
𝑖

) (𝜔
𝑘

)
𝑖−1

=
𝛼 (1 − 𝛼

𝑛

)

1 − 𝛼𝜔𝑘
+
𝛽 (1 − 𝛽

𝑛

)

1 − 𝛽𝜔𝑘

=
(𝛼 + 𝛽) − 2𝛼𝛽𝜔

𝑘

− (𝛼
𝑛+1

+ 𝛽
𝑛+1

)

1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘

+
𝛼𝛽 (𝛼
𝑛

+ 𝛽
𝑛

) 𝜔
𝑘

1 − (𝛼 + 𝛽) 𝜔𝑘 + 𝛼𝛽𝜔2𝑘

=
1 − 𝑗
𝑛+1
+ (4 − 2𝑗

𝑛
) 𝜔
𝑘

1 − 𝜔𝑘 − 2𝜔2𝑘
,

𝑘 = 1, 2, . . . , 𝑛 − 1.

(35)

If there exists 𝜔𝑙 (𝑙 = 1, 2, . . . , 𝑛 − 1) such that 𝑓 (𝜔𝑙) = 0, we
obtain 1 − 𝑗

𝑛+1
+ (4 − 2𝑗

𝑛
) 𝜔
𝑙

= 0 for 1 − 𝜔𝑙 − 2𝜔2𝑙 ̸= 0; thus,
𝜔
𝑙

= (1 − 𝑗
𝑛+1
) / (2𝑗

𝑛
− 4) is a real number. While

𝜔
𝑙

= exp(2𝑙𝜋𝑖
𝑛
) = cos 2𝑙𝜋

𝑛
+ 𝑖 sin 2𝑙𝜋

𝑛
, (36)

sin(2𝑙𝜋/𝑛) = 0, so we have 𝜔𝑙 = −1 for 0 < 2𝑙𝜋/𝑛 <
2𝜋. But 𝑥 = −1 is not the root of the equation 1 − 𝑗

𝑛+1
+

(4 − 2𝑗
𝑛
) 𝑥 = 0 for any positive integer 𝑛. We obtain𝑓 (𝜔𝑘) ̸=

0 for any 𝜔𝑘 (𝑘 = 1, 2, . . . , 𝑛 − 1), while 𝑓 (1) = ∑𝑛
𝑖=1
𝑗
𝑖
=

− (1/2) (5 − 𝑗
𝑛+1
− 2𝑗
𝑛
) ̸= 0. By Lemma 4 in [15], the proof

is completed.

Lemma 10. Let the matrix H = [ℎ
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
be of the form

ℎ
𝑖𝑗
=

{{

{{

{

𝑗
1
− 𝑗
𝑛+1
, 𝑖 = 𝑗,

4 − 2𝑗
𝑛
, 𝑖 = 𝑗 + 1,

0, otherwise
(37)

and then the inverseH−1 = [ℎ󸀠
𝑖𝑗
]
𝑛−2

𝑖,𝑗=1
of the matrixH is equal to

ℎ
󸀠

𝑖𝑗
=

{{

{{

{

(2𝑗
𝑛
− 4)
𝑖−𝑗

(𝑗
1
− 𝑗
𝑛+1
)
𝑖−𝑗+1
, 𝑖 ≥ 𝑗,

0, 𝑖 < 𝑗.

(38)

Proof. Let 𝑟
𝑖𝑗
= ∑
𝑛−2

𝑘=1
ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
. Obviously, 𝑟

𝑖𝑗
= 0 for 𝑖 < 𝑗. In the

case 𝑖 = 𝑗, we obtain

𝑟
𝑖𝑖
= ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑖
= (𝑗
1
− 𝑗
𝑛+1
) ⋅
1

𝑗
1
− 𝑗
𝑛+1

= 1. (39)

For 𝑖 ≥ 𝑗 + 1, we obtain

𝑟
𝑖𝑗
=

𝑛−2

∑

𝑘=1

ℎ
𝑖𝑘
ℎ
󸀠

𝑘𝑗
= ℎ
𝑖,𝑖−1
ℎ
󸀠

𝑖−1,𝑗
+ ℎ
𝑖𝑖
ℎ
󸀠

𝑖𝑗

= (4 − 2𝑗
𝑛
) ⋅
(2𝑗
𝑛
− 4)
𝑖−𝑗−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖−𝑗
+ (𝑗
1
− 𝑗
𝑛+1
)

×
(2𝑗
𝑛
− 4)
𝑖−𝑗

(𝑗
1
− 𝑗
𝑛+1
)
𝑖−𝑗+1
= 0.

(40)

Hence, we verify HH−1 = 𝐼
𝑛−2

, where 𝐼
𝑛−2

is (𝑛 − 2) × (𝑛 − 2)
identity matrix. Similarly, we can verify H−1H = 𝐼

𝑛−2
. Thus,

the proof is completed.

Theorem 11. Let 𝐵
𝑛
= Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a circulant ma-

trix; then we have

𝐵
−1

𝑛
=
1

𝛾
𝑛

Circ(𝑦󸀠
1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) , (41)
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where

𝑦
󸀠

1
= 1 +

𝑛−2

∑

𝑖=1

(𝑗
𝑛+2−𝑖
− 5𝑗
𝑛+1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
󸀠

2
= − 5 + 2

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
󸀠

𝑘
=
18 (2𝑗

𝑛
− 4)
𝑘−3

(𝑗
1
− 𝑗
𝑛+1
)
𝑘−2

, 𝑘 = 3, 4, . . . , 𝑛,

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛
+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(42)

Proof. Let

Ω
2
=
(
(

(

1 −𝛾
󸀠

𝑛
𝜔
13
⋅ ⋅ ⋅ 𝜔
1𝑛

0 1 𝜔
23
⋅ ⋅ ⋅ 𝜔
2𝑛

0 0 1 ⋅ ⋅ ⋅ 0

0 0 0 ⋅ ⋅ ⋅ 0

.

.

.
.
.
.
.
.
. d

.

.

.

0 0 0 ⋅ ⋅ ⋅ 1

)
)

)

, (43)

where

𝜔
1𝑗
=
𝛾
󸀠

𝑛
(𝑗
𝑛+3−𝑗
− 5𝑗
𝑛+2−𝑗
)

𝛾
𝑛

− 𝑗
𝑛+2−𝑗
,

𝜔
2𝑗
= −
𝑗
𝑛+3−𝑗
− 5𝑗
𝑛+2−𝑗

𝛾
𝑛

,

𝑗 = 3, 4, . . . , 𝑛,

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛
+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

,

𝛾
󸀠

𝑛
=

𝑛−1

∑

𝑘=1

𝑗
𝑘+1
(
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(44)

We have

Σ𝐵
𝑛
Ω
1
Ω
2
= D
2
⊕ H, (45)

where D
2
= diag (𝑗

1
, 𝛾
𝑛
) is a diagonal matrix and D

2
⊕ H is

the direct sum ofD
2
andH. If we denoteΩ = Ω

1
Ω
2
, then we

obtain

𝐵
−1

𝑛
= Ω(D

−1

2
⊕ H
−1

) Σ, (46)

since the last row entries of thematrixΩ are 0, 1, (5𝑗
𝑛−1
− 𝑗
𝑛
) /

𝛾
𝑛
, (5𝑗
𝑛−2
− 𝑗
𝑛−1
) /𝛾
𝑛
, . . . , (5𝑗

2
− 𝑗
3
) /𝛾
𝑛
. By Lemma 10, if we

let 𝐵−1
𝑛
= Circ (𝑦

1
, 𝑦
2
, . . . , 𝑦

𝑛
), then its last row entries are

given by the following equations:

𝑦
2
= −
5

𝛾
𝑛

+
2

𝛾
𝑛

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
3
= −
𝑗
3
− 5𝑗
2

𝛾
𝑛
(𝑗
1
− 𝑗
𝑛+1
)
,

𝑦
4
=
𝑗
3
− 5𝑗
2

𝛾
𝑛
(𝑗
1
− 𝑗
𝑛+1
)

−
1

𝛾
𝑛

2

∑

𝑖=1

(𝑗
5−𝑖
− 5𝑗
4−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
5
=
2 (𝑗
3
− 5𝑗
2
)

𝛾
𝑛
(𝑗
1
− 𝑗
𝑛+1
)

+
1

𝛾
𝑛

2

∑

𝑖=1

(𝑗
5−𝑖
− 5𝑗
4−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

−
1

𝛾
𝑛

3

∑

𝑖=1

(𝑗
6−𝑖
− 5𝑗
5−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

.

.

.

𝑦
𝑛
=
2

𝛾
𝑛

𝑛−4

∑

𝑖=1

(𝑗
𝑛−1−𝑖
− 5𝑗
𝑛−2−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+
1

𝛾
𝑛

𝑛−3

∑

𝑖=1

(𝑗
𝑛−𝑖
− 5𝑗
𝑛−1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

−
1

𝛾
𝑛

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
1
=
1

𝛾
𝑛

+
2

𝛾
𝑛

𝑛−3

∑

𝑖=1

(𝑗
𝑛−𝑖
− 5𝑗
𝑛−1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+
1

𝛾
𝑛

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

.

(47)

Let

𝐷
(𝑘)

𝑛
=

𝑘

∑

𝑖=1

(𝑗
𝑘+3−𝑖
− 5𝑗
𝑘+2−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

(𝑗 = 1, 2, . . . , 𝑛 − 2)

(48)

and we have

𝐷
(1)

𝑛
− 𝐷
(2)

𝑛

=
𝑗
3
− 5𝑗
2

𝑗
1
− 𝑗
𝑛+1

−

2

∑

𝑖=1

(𝑗
5−𝑖
− 5𝑗
4−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖
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=
18 (2𝑗

𝑛
− 4)

(𝑗
1
− 𝑗
𝑛+1
)
2
,

2𝐷
(𝑛−3)

𝑛
+ 𝐷
(𝑛−2)

𝑛

= 2

𝑛−3

∑

𝑖=1

(𝑗
𝑛−𝑖
− 5𝑗
𝑛−𝑖−1
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

= 2

𝑛−3

∑

𝑖=1

(𝑗
𝑛−𝑖
− 5𝑗
𝑛−𝑖−1
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+

𝑛−3

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

=

𝑛−3

∑

𝑖=1

(𝑗
𝑛+2
− 𝑖) − 5𝑗

𝑛+1−𝑖
(2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+
(𝑗
3
− 5𝑗
2
) (2𝑗
𝑛
− 4)
𝑛−3

(𝑗
1
− 𝑗
𝑛+1
)
𝑛−2

=

𝑛−2

∑

𝑖=1

(𝑗
𝑛+2−𝑖
− 5𝑗
𝑛+1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑛−2

,

2𝐷
(𝑘)

𝑛
+ 𝐷
(𝑘+1)

𝑛
− 𝐷
(𝑘+2)

𝑛

= 2

𝑘

∑

𝑖=1

(𝑗
𝑘+3−𝑖
− 5𝑗
𝑘+2−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+

𝑘+1

∑

𝑖=1

(𝑗
𝑘+4−𝑖
− 5𝑗
𝑘+3−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

−

𝑘+2

∑

𝑖=1

(𝑗
𝑘+5−𝑖
− 5𝑗
𝑘+4−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

=

𝑘

∑

𝑖=1

[
(2𝑗
𝑘+3−𝑖
− 10𝑗
𝑘+2−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

+
(𝑗
𝑘+4−𝑖
− 5𝑗
𝑘+3−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

−
(𝑗
𝑘+5−𝑖
− 5𝑗
𝑘+4−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

]

+
(𝑗
3
− 5𝑗
2
) (2𝑗
𝑛
− 4)
𝑘

(𝑗
1
− 𝑗
𝑛+1
)
𝑘+1

−
(𝑗
4
− 5𝑗
3
) (2𝑗
𝑛
− 4)
𝑘

(𝑗
1
− 𝑗
𝑛+1
)
𝑘+1

−
(𝑗
3
− 5𝑗
2
) (2𝑗
𝑛
− 4)
𝑘+1

(𝑗
1
− 𝑗
𝑛+1
)
𝑘+2

= −
18 (2𝑗

𝑛
− 4)
𝑘+1

(𝑗
1
− 𝑗
𝑛+1
)
𝑘+2

(𝑗 = 1, 2, . . . , 𝑛 − 4) .

(49)

We obtain

𝑦
1
=
1 + 2𝐷

(𝑛−3)

𝑛
+ 𝐷
(𝑛−2)

𝑛

𝛾
𝑛

,

𝑦
2
=
2𝐷
(𝑛−2)

𝑛
− 5

𝛾
𝑛

,

𝑦
3
= −
𝐷
(1)

𝑛

𝛾
𝑛

,

𝑦
4
= −
𝐷
(2)

𝑛
− 𝐷
(1)

𝑛

𝛾
𝑛

,

𝑦
𝑘
= −
𝐷
(𝑖−2)

𝑛
− 𝐷
(𝑖−3)

𝑛
− 2𝐷
(𝑖−4)

𝑛

𝛾
𝑛

, 𝑘 = 5, 6, . . . , 𝑛,

𝐵
−1

𝑛
=
1

𝛾
𝑛

Circ (𝑦󸀠
1
, 𝑦
󸀠

2
, . . . , 𝑦

󸀠

𝑛
) ,

(50)

where

𝑦
󸀠

1
= 1 +

𝑛−2

∑

𝑖=1

(𝑗
𝑛+2−𝑖
− 5𝑗
𝑛+1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
󸀠

2
= −5 + 2

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑦
󸀠

𝑘
=
18 (2𝑗

𝑛
− 4)
𝑘−3

(𝑗
1
− 𝑗
𝑛+1
)
𝑘−2

, 𝑘 = 3, 4, . . . , 𝑛,

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛

+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(51)

4. Left Circulant Matrix with the Jacobsthal
and Jacobsthal-Lucas Numbers

In this section, let 𝐴󸀠
𝑛
= LCirc (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) and 𝐵󸀠

𝑛
=

LCirc (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛
) be two left circulant matrices. By using

the obtained conclusions, we give the determinant for the
matrices 𝐴󸀠

𝑛
and 𝐵󸀠

𝑛
. Then, we prove that 𝐴󸀠

𝑛
is an invertible

matrix for 𝑛 > 2 and𝐵󸀠
𝑛
is an invertiblematrix for any positive

integer 𝑛. The inverses of the matrices 𝐴󸀠
𝑛
and 𝐵󸀠

𝑛
are also

presented.
According to Lemma 5 in [15] and Theorems 4, 5, and 7,

we can obtain the following theorems.
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Theorem 12. Let 𝐴󸀠
𝑛
= LCirc (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a left circulant

matrix; then one can prove that

det𝐴󸀠
𝑛
= (−1)

((𝑛−1)(𝑛−2))/2

× [(1 − 𝐽
𝑛+1
)
𝑛−1

+ (2𝐽
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

2𝐽
𝑘
(
1 − 𝐽
𝑛+1

2𝐽
𝑛

)

𝑘−1

] .

(52)

Theorem 13. Let 𝐴󸀠
𝑛
= LCirc (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a left circulant

matrix; if 𝑛 > 2, then 𝐴󸀠
𝑛
is an invertible matrix.

Theorem 14. Let 𝐴󸀠
𝑛
= LCirc(𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
), (𝑛 > 2) be a left

circulant matrix; then one has

𝐴
󸀠

𝑛

−1

=
1

𝛿
𝑛

LCirc(𝑧
1
, 𝑧
2
, . . . , 𝑧

𝑛
) , (53)

where

𝑧
1
= 1 + 2

𝑛−2

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝑧
𝑘
= −
2 (2𝐽
𝑛
)
𝑛−1−𝑘

(𝐽
1
− 𝐽
𝑛+1
)
𝑛−𝑘

, 𝑘 = 2, 3, . . . , 𝑛 − 1,

𝑧
𝑛
= −1 + 4

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝛿
𝑛
= 𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

.

(54)

By Lemma 5 in [15] and Theorems 8, 9, and 11, the
following conclusions can be obtained.

Theorem 15. Let 𝐵󸀠
𝑛
= LCirc (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a left circulant

matrix; then one has

det𝐵󸀠
𝑛
= (−1)

((𝑛−1)(𝑛−2))/2

× [(1 − 𝑗
𝑛+1
)
𝑛−1

+ (2𝑗
𝑛
− 4)
𝑛−2

×

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
1 − 𝑗
𝑛+1

2𝑗
𝑛
− 4
)

𝑘−1

] ,

(55)

where 𝑗
𝑛
is the 𝑛th Jacobsthal-Lucas number.

Theorem 16. Let 𝐵󸀠
𝑛
= LCirc (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a left circulant

matrix; then 𝐵󸀠
𝑛
is invertible for any positive integer 𝑛.

Theorem 17. Let 𝐵󸀠
𝑛
= LCirc (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a left circulant

matrix; then one has

𝐵
󸀠

𝑛

−1

=
1

𝛾
𝑛

LCirc(𝑧󸀠
1
, 𝑧
󸀠

2
, . . . , 𝑧

󸀠

𝑛
) , (56)

where

𝑧
󸀠

1
= 1 +

𝑛−2

∑

𝑖=1

(𝑗
𝑛+2−𝑖
− 5𝑗
𝑛+1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝑧
󸀠

𝑘
=
18 (2𝑗

𝑛
− 4)
𝑛−1−𝑘

(𝑗
1
− 𝑗
𝑛+1
)
𝑛−𝑘

, 𝑘 = 2, 3, . . . , 𝑛 − 1,

𝑧
󸀠

𝑛
= −5 + 2

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛

+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(57)

5. 𝑔-Circulant Matrix with the Jacobsthal and
Jacobsthal-Lucas Numbers

In this section, let 𝐴
𝑔,𝑛
= 𝑔-Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) and 𝐵

𝑔,𝑛
=

𝑔-Circ (𝑗
1
, 𝑗
2
, . . . , 𝑗

𝑛
) be two 𝑔-circulant matrices. By using

the obtained conclusions, we give a determinant formula for
the matrices 𝐴

𝑔,𝑛
and 𝐵

𝑔,𝑛
. Then, we prove that 𝐴

𝑔,𝑛
is an

invertible matrix for 𝑛 > 2 and 𝐵
𝑔,𝑛

is an invertible matrix
for any positive integer 𝑛 if (𝑛, 𝑔) = 1. The inverses of the
matrices 𝐴

𝑔,𝑛
and 𝐵

𝑔,𝑛
are also presented.

From Lemmas 6 and 7 in [15] and Theorems 4, 5, and 7,
we deduce the following results.

Theorem 18. Let 𝐴
𝑔,𝑛
= 𝑔-Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a 𝑔-

circulant matrix. Then one has

det𝐴
𝑔,𝑛
= detQ

𝑔

⋅ [(1 − 𝐽
𝑛+1
)
𝑛−1

+ (2𝐽
𝑛
)
𝑛−2

𝑛−1

∑

𝑘=1

2𝐽
𝑘
(
1 − 𝐽
𝑛+1

2𝐽
𝑛

)

𝑘−1

] ,

(58)

where 𝐽
𝑛
is the 𝑛th Jacobsthal number.

Theorem 19. Let 𝐴
𝑔,𝑛
= 𝑔-Circ (𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) be a 𝑔-circu-

lant matrix and (𝑛, 𝑔) = 1, when 𝑛 > 2, 𝐴
𝑔,𝑛

is an invertible
matrix.

Theorem 20. Let 𝐴
𝑔,𝑛
= 𝑔-Circ(𝐽

1
, 𝐽
2
, . . . , 𝐽

𝑛
) (𝑛 > 2) be a

𝑔-circulant matrix and (𝑛, 𝑔) = 1; one has

𝐴
−1

𝑔,𝑛
=
1

𝛿
𝑛

Circ(𝜆
1
, 𝜆
2
, . . . , 𝜆

𝑛
)Q
𝑇

𝑔
, (59)
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where

𝜆
1
= 1 + 2

𝑛−2

∑

𝑖=1

𝐽
𝑛−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝜆
2
= −1 + 4

𝑛−2

∑

𝑖=1

𝐽
𝑛−1−𝑖
(2𝐽
𝑛
)
𝑖−1

(𝐽
1
− 𝐽
𝑛+1
)
𝑖
,

𝜆
𝑘
= −
2 (2𝐽
𝑛
)
𝑘−3

(𝐽
1
− 𝐽
𝑛+1
)
𝑘−2

, 𝑘 = 3, 4, . . . , 𝑛,

𝛿
𝑛
= 𝐽
1
− 𝐽
𝑛
+

𝑛−2

∑

𝑘=1

2𝐽
𝑘
(
2𝐽
𝑛

𝐽
1
− 𝐽
𝑛+1

)

𝑛−(𝑘+1)

.

(60)

Taking Lemmas 6 and 7 in [15] andTheorems 8, 9, and 11
into account, we have the following theorems.

Theorem21. Let𝐵
𝑔,𝑛
= 𝑔-Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a𝑔-circulant

matrix; then one has

det𝐵
𝑔,𝑛
= detQ

𝑔

⋅ [(1 − 𝑗
𝑛+1
)
𝑛−1

+ (2𝑗
𝑛
− 4)
𝑛−2

×

𝑛−1

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
1 − 𝑗
𝑛+1

2𝑗
𝑛
− 4
)

𝑘−1

] ,

(61)

where 𝑗
𝑛
is the 𝑛th Jacobsthal-Lucas number.

Theorem 22. Let 𝐵
𝑔,𝑛
= 𝑔-Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a 𝑔-circu-

lant matrix and (𝑛, 𝑔) = 1; then 𝐵
𝑔,𝑛

is invertible for any
positive integer 𝑛.

Theorem 23. Let 𝐵
𝑔,𝑛
= 𝑔-Circ (𝑗

1
, 𝑗
2
, . . . , 𝑗

𝑛
) be a 𝑔-circu-

lant matrix and (𝑛, 𝑔) = 1; then one has

𝐵
−1

𝑔,𝑛
=
1

𝛾
𝑛

Circ(𝜆󸀠
1
, 𝜆
󸀠

2
, . . . , 𝜆

󸀠

𝑛
)Q
𝑇

𝑔
, (62)

where

𝜆
󸀠

1
= 1 +

𝑛−2

∑

𝑖=1

(𝑗
𝑛+2−𝑖
− 5𝑗
𝑛+1−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝜆
󸀠

𝑘
=
18 (2𝑗

𝑛
− 4)
𝑛−1−𝑘

(𝑗
1
− 𝑗
𝑛+1
)
𝑛−𝑘

, 𝑘 = 2, 3, . . . , 𝑛 − 1,

𝜆
󸀠

𝑛
= −5 + 2

𝑛−2

∑

𝑖=1

(𝑗
𝑛+1−𝑖
− 5𝑗
𝑛−𝑖
) (2𝑗
𝑛
− 4)
𝑖−1

(𝑗
1
− 𝑗
𝑛+1
)
𝑖

,

𝛾
𝑛
= 𝑗
1
− 5𝑗
𝑛

+

𝑛−2

∑

𝑘=1

(𝑗
𝑘+2
− 5𝑗
𝑘+1
) (
2𝑗
𝑛
− 4

𝑗
1
− 𝑗
𝑛+1

)

𝑛−(𝑘+1)

.

(63)

6. Conclusion

This paper obtains better results for the determinants and
inverses of circulant type matrices by some properties of
Jacobsthal and Jacobsthal-Lucas numbers. The reason we
focus our attentions on circulant type matrices is to explore
the application of circulant typematrices in solving fractional
order differential equations.
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