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This paper studies feature selection for support vector machine (SVM). By the use of the 𝐿
1/2

regularization technique, we propose
a new model 𝐿

1/2
-SVM. To solve this nonconvex and non-Lipschitz optimization problem, we first transform it into an equivalent

quadratic constrained optimizationmodel with linear objective function and then develop an interior point algorithm.We establish
the convergence of the proposed algorithm.Our experimentswith artificial data and real data demonstrate that the𝐿

1/2
-SVMmodel

works well and the proposed algorithm is more effective than some popular methods in selecting relevant features and improving
classification performance.

1. Introduction

Feature selection plays an important role in solving the
classification problems with high dimension features, such
as text categorization [1, 2], gene expression array analysis
[3–5], and combinatorial chemistry [6, 7]. The advantages
of feature selection include (i) ignoring noisy or irrelevant
features would prevent overfitting and improve the gener-
alization performance; (ii) a sparse classifier can reduce the
computation cost; (iii) a small set of important features is
desirable for interpretability.

We address the embedded feature selection methods
in the context of linear support vector machines (SVMs).
Existing feature selection methods embedded in SVMs fall
into three approaches [8]. In the first approach, some greedy
search strategies are applied to iteratively adding or removing
features from the data. Guyon et al. [3] developed a recursive
feature elimination (RFE) algorithm, which has shown good
performance on gene selection for microarray data. Begin-
ning with the full feature subset, SVM-RFE trains a SVM at
each iteration, and then eliminates the feature that decreases
the margin the least. Rakotomamonjy et al. [9] extended this
method by using other ranking criteria including the radius
margin bound and the span-estimate.

The second approach is to optimize a scaling parameter
vector 𝜎 ∈ [0, 1]

𝑛 that indicates the importance of each
feature. Weston et al. [10] proposed an iterative method to
optimize the scaling parameters by minimizing the bounds
on leave-one-out error. Peleg andMeir [11] learned the scaling
factors based on the globalminimization of a data-dependent
generalization error bound.

The third category of approaches is to minimize the
number of features by adding a sparsity term to the SVM
formulation. Though standard SVM based on ‖𝑤‖

2
can be

solved easily by convex quadratic programming, its solution
may not be a desirable sparse solution. A popular way to deal
with this problem is the use of 𝐿

𝑝
regularization technique,

which results in a 𝐿
𝑝
-SVM. It is to minimize ‖𝑤‖

𝑝
, subject to

some linear constraints, where 𝑝 ∈ [0, 1]. When 𝑝 ∈ (0, 1],

‖𝑤‖𝑝 = (

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨𝑤𝑖
󵄨󵄨󵄨󵄨

𝑝

)

1/𝑝

. (1)

When 𝑝 = 0, ‖𝑤‖
0

= ∑
𝑚

𝑗=1
𝐼
(𝑤𝑗 ̸= 0)

. The 𝐿
0
-SVM can

find the sparsest classifier by minimizing ‖𝑤‖
0
, the number

of nonzero elements in 𝑤. However, it is discrete and NP-
hard. From computational point of view, it is very difficult
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to develop efficient numerical methods to solve the problem.
A widely used technique in dealing with the 𝐿

0
-SVM is to

use a smoothing technique so that the discrete model is
approached by a smooth problem [4, 12, 13]. However, as
the function ‖𝑤‖

0
is not even continuous, it is not desirable

that a smoothing technique based method would work well.
Chan et al. [14] explored a convex relaxation to the cardinality
constraint andobtained a relaxed convex problem that is close
to but different from the previous 𝐿

0
-SVM. An alternative

method is to minimize the convex envelope of the ‖𝑤‖
0
,

such as 𝐿
1
-SVM. The 𝐿

1
-SVM is a convex problem and

can yield sparse solution. It can be equivalent to a linear
programming and hence can be solved efficiently. Indeed
the 𝐿

1
regularization has become quite welcome in SVM

[12, 15, 16] and is well known as the LASSO [17] in the
statistics literature. However, the 𝐿

1
regularization problem

often leads to suboptimal sparsity in reality [18]. In many
cases, the solutions yielded from 𝐿

1
-SVM are less sparse than

those of 𝐿
0
-SVM. The 𝐿

𝑝
problem with 0 < 𝑝 < 1 can find

sparser solutions than the 𝐿
1
problem, which was evidenced

in extensive computational [19–21]. It has become a welcome
strategy in sparse SVM [22–27].

In this paper, we focus on the 𝐿
1/2

regularization and
propose a novel 𝐿

1/2
-SVM. Recently, Xu et al. [28] justified

that the sparsity-promotion ability of the 𝐿
1/2

problem was
strongest among the 𝐿

𝑝
minimization problems with all 𝑝 ∈

[1/2, 1) and similar in 𝑝 ∈ (0, 1/2]. So the 𝐿
1/2

problem can
be taken as a representative of 𝐿

𝑝
(0 < 𝑝 < 1) problems.

However, as proved by Ge et al. [29], finding the global
minimal value of the 𝐿

1/2
problemwas still strongly NP-hard.

But computing a local minimizer of the problem could be
done in polynomial time. Our contributions of this paper are
twofold. One is to derive a smooth constrained optimization
reformulation to the 𝐿

1/2
-SVM.The objective function of the

problem is a linear function and the constraints are quadratic
and linear. We will establish the equivalence between the
constrained problem and the 𝐿

1/2
-SVM. We will also show

the existence of the KKT condition of the constrained
problem. Our second contribution is to develop an interior
point method to solve the constrained optimization reformu-
lation and establish its global convergence. We will also test
and verify the effectiveness of the proposed method using
artificial data and real data.

The rest of this paper is organized as follows. In Section 2,
we first briefly introduce the model of the standard SVM
(𝐿
2
-SVM) and the sparse regularization SVMs. We then

reformulate the 𝐿
1/2

-SVM into a smooth constrained opti-
mization problem. We propose an interior point method
to solve the constrained optimization reformulation and
establish its global convergence in Section 3. In Section 4,
we do numerical experiments to test the proposed method.
Section 5 gives the conclusive remarks.

2. A Smooth Constrained Optimization
Reformulation to the 𝐿

1/2
-SVM

In this section, after simply reviewing the model of the stan-
dard SVM (𝐿

2
-SVM) and the sparse regularization SVMs,

we derive an equivalent smooth optimization problem to the

𝐿
1/2

-SVM model. The smooth optimization problem is to
minimize a linear function subject to some simple quadratic
constraints and linear constraints.

2.1. Standard SVM. In a two-class classification problem, we
are given a training data set 𝐷 = (𝑥

𝑖
; 𝑦
𝑖
)
𝑛

𝑖=1
, where 𝑥

𝑖
∈ 𝑅
𝑚 is

the feature vector and 𝑦
𝑖
∈ {0, 1} is the class label. The linear

classifier is to construct the following decision function:

𝑓 (𝑥) = 𝑤
𝑇
𝑥 + 𝑏, (2)

where 𝑤 = (𝑤
1
, 𝑤
2
, . . . , 𝑤

𝑚
) is the weight vector and 𝑏 is the

bias. The prediction label is +1 if 𝑓(𝑥) > 0 and −1 otherwise.
The standard SVM (𝐿

2
-SVM) [30] aims to find the separating

hyperplane 𝑓(𝑥) = 0 between two classes with maximal
margin 2/‖w‖

2

2
and minimal training errors, which leads to

the following convex optimization problem:

min 1

2
‖𝑤‖
2

2
+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
𝑖 = 1, . . . , 𝑛, 𝜉

𝑖
≥ 0,

(3)

where ‖𝑤‖
2

= (∑
𝑚

𝑗=1
𝑤
2

𝑗
)
1/2 is the 𝐿

2
norm of 𝑤, 𝜉

𝑖
is the

loss function to allow training errors for data that may not
be linearly separable, and 𝐶 is a user-specified parameter to
balance themargin and the losses. As the problem is a convex
quadratic program, it can be solved by existingmethods, such
as the interior point method and active set method efficiently.

2.2. Sparse SVM. The 𝐿
2
-SVM is a nonsparse regularizer in

the sense that the learned decision hyperplane often utilizes
all the features. In practice, peoples prefer to sparse SVM so
that only a few features are used to make a decision. For this
purposes, the following 𝐿

𝑝
-SVM becomes very welcome:

min ‖𝑤‖
𝑝

𝑝
+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

s.t. 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
𝑖 = 1, . . . , 𝑛 , 𝜉

𝑖
≥ 0,

(4)

where 𝑝 ∈ [0, 1]. ‖𝑤‖
0
stands for the number of nonzero

elements of 𝑤, and for 𝑝 ∈ (0, 1], ‖𝑤‖
𝑝
is defined by (1).

Problem (4) is obtained by replacing 𝐿
2
penalty (‖𝑤‖

2

2
) by 𝐿

𝑝

penalty (‖𝑤‖
𝑝

𝑝
) in (3). The standard SVM (3) corresponds to

the model (4) with 𝑝 = 2.
Figure 1 plots the 𝐿

𝑝
penalty in one dimension. We can

see from the figure that the smaller 𝑝 is, the larger penalties
are imposed on the small coefficients (|𝑤| < 1).Therefore, the
𝐿
𝑝
penalties with 𝑝 < 1 may achieve sparser solution than

the 𝐿
1
penalty. In addition, the 𝐿

1
imposes large penalties

on large coefficients, which may lead to biased estimation for
large coefficients. Consequently, the 𝐿

𝑝
(0 < 𝑝 < 1) penalties

become attractive due to their good properties in sparsity,
unbiasedness [31] and oracle [32]. We are particularly inter-
ested in the 𝐿

1/2
penalty. Recently, Xu et al. [21] revealed the

representative role of the 𝐿
1/2

penalty in the 𝐿
𝑝
regularization

with 𝑝 ∈ (0, 1). We will apply 𝐿
1/2

penalty to SVM to perform
feature selection and classification jointly.



Journal of Applied Mathematics 3

0 1 2
0

1

2

3

4

W

L
p

pe
na

lty

p = 2

p = 1

p = 0.5

−2 −1.5 −1 −0.5

3.5

2.5

1.5

1.5

0.5

0.5

Figure 1: 𝐿
𝑝
penalty in one dimension.

2.3. 𝐿
1/2

-SVM Model. We pay particular attention to the
𝐿
1/2

-SVM, namely, problem (4) with 𝑝 = 1/2. We will derive
a smooth constrained optimization reformulation to the𝐿

1/2
-

SVM so that it is relatively easy to design numerical methods.
We first specify the 𝐿

1/2
-SVM:

min
𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
𝑗

󵄨󵄨󵄨󵄨󵄨

1/2

+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖
≜ 𝜙 (𝑤, 𝜉, 𝑏)

s.t. 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑛,

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛.

(5)

Denote by 𝑢 = (𝑤, 𝜉, 𝑏) andD the feasible region of the pro-
blem; that is,

D = {(𝑤, 𝜉, 𝑏) | 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛} .

(6)

Then the 𝐿
1/2

-SVM can be written as an impact form

min𝜙 (𝑢) , 𝑢 ∈ D. (7)

It is a nonconvex and non-Lipschitz problem. Due to the
existence of the term |𝑤

𝑖
|
1/2, the objective function is not even

directionally differentiable at a point with some𝑤
𝑖
= 0, which

makes the problem very difficult to solve. Existing numerical
methods that are very efficient for solving smooth problem
could not be used directly. One possible way to develop
numerical methods for solving (7) is to smoothing the term
|𝑤
𝑗
|
1/2 using some smoothing function such as 𝜙

𝜖
(𝑤
𝑗
) =

(𝑤
2

𝑗
+ 𝜖
2
)
1/4 with some 𝜖 > 0. However, it is easy to see that

the derivative of 𝜙
𝜖
(𝑤
𝑗
) will be unbounded as 𝑤

𝑗
→ 0 and

𝜖 → 0. Consequently, it is not desirable that the smoothing
function based numerical methods could work well.

Recently, Tian and Yang [33] proposed an interior point
𝐿
1/2

-penalty functionmethod to solve general nonlinear pro-
gramming problems by using a quadratic relaxation scheme
for their 𝐿

1/2
-lower order penalty problems. We will follow

the idea of [33] to develop an interior point method for
solving the 𝐿

1/2
-SVM. To this end, in the next subsection, we

reformulate problem (7) to a smooth constrained optimiza-
tion problem.

2.4. A Reformulation to the 𝐿
1/2

-SVM Model. Consider the
following constrained optimization problem:

min
𝑚

∑

𝑗=1

𝑡
𝑗
+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖
≜ 𝑓 (𝑤, 𝜉, 𝑡, 𝑏)

s.t. 𝑡
2

𝑗
− 𝑤
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑚,

𝑡
2

𝑗
+ 𝑤
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑚,

𝑡
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑚,

𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑛,

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛.

(8)

It is obtained by letting 𝑡
𝑗
= |𝑤
𝑗
|
1/2 in the objective function

and adding constraints 𝑡
2

𝑗
− 𝑤
𝑗

≥ 0 and 𝑡
2

𝑗
+ 𝑤
𝑗

≥ 0,
𝑗 = 1, . . . , 𝑚, in (7). Denote by F the feasible region of the
problem; that is,

F = {(𝑤, 𝜉, 𝑡, 𝑏) | 𝑡
2

𝑗
− 𝑤
𝑗
≥ 0, 𝑡

2

𝑗
+ 𝑤
𝑗
≥ 0,

𝑡
𝑗
≥ 0, 𝑗 = 1, . . . , 𝑚}

∩ {(𝑤, 𝜉, 𝑡, 𝑏) | 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
,

𝜉
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑛} .

(9)

Let 𝑧 = (𝑤, 𝜉, 𝑡, 𝑏). Then the above problem can be written as

min𝑓 (𝑧) , 𝑧 ∈ F. (10)

The following theorem establishes the equivalence
between the 𝐿

1/2
-SVM and (10).

Theorem 1. If 𝑢∗ = (𝑤
∗
, 𝜉
∗
, 𝑏
∗
) ∈ 𝑅
𝑚+𝑛+1 is a solution of the

𝐿
1/2

− 𝑆𝑉𝑀 (7), then 𝑧
∗

= (𝑤
∗
, 𝜉
∗
, |𝑤
∗
|
1/2

, 𝑏
∗
) ∈ 𝑅

𝑚+𝑛+𝑚+1

is a solution of the optimization problem (10). Conversely, if
(𝑤
∗
, 𝜉
∗
, 𝑡
∗
, 𝑏
∗
) is a solution of the optimization problem (10),

then (𝑤
∗
, 𝜉
∗
, 𝑏
∗
) is a solution of the 𝐿

1/2
-𝑆𝑉𝑀 (7).

Proof. Let 𝑢∗ = (𝑤
∗
, 𝜉
∗
, 𝑏
∗
) be a solution of the 𝐿

1/2
-SVM

(7) and let 𝑧̄ = (𝑤̄, ̄𝜉, ̄𝑡, 𝑏̄) be a solution of the constrained
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optimization problem (10). It is clear that 𝑧
∗

= (𝑤
∗
, 𝜉
∗
,

|𝑤
∗
|
1/2

, 𝑏
∗
) ∈ F. Moreover, we have ̄𝑡

2

𝑗
≥ |𝑤̄

𝑗
|, ∀𝑗 =

1, 2, . . . , 𝑚, and hence

𝑓 (𝑧̄) =

𝑚

∑

𝑗=1

̄𝑡
𝑗
+ 𝐶

𝑛

∑

𝑖=1

̄𝜉
𝑖
≥

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤̄
𝑗

󵄨󵄨󵄨󵄨󵄨

1/2

+ 𝐶

𝑛

∑

𝑖=1

̄𝜉
𝑖

≥

𝑚

∑

𝑗=1

󵄨󵄨󵄨󵄨󵄨
𝑤
∗

𝑗

󵄨󵄨󵄨󵄨󵄨

1/2

+ 𝐶

𝑛

∑

𝑖=1

𝜉
∗

𝑖
= 𝜙 (𝑢

∗
) .

(11)

Since 𝑧∗ ∈ F, we have

𝜙 (𝑢
∗
) = 𝑓 (𝑧

∗
) ≥ 𝑓 (𝑧̄) . (12)

This together with (11) implies that 𝑓(𝑧̄) = 𝜙(𝑢
∗
). The proof

is complete.

It is clear that the constraint functions of (10) are convex.
Consequently, at any feasible point, the set of all feasible
directions is the same as the set of all linearized feasible
directions.

As a result, the KKT point exists. The KKT system of
the problem (10) can be written as the following system of
nonlinear equations:

𝑅 (𝑤, 𝜉, 𝑡, 𝑏, 𝜆) =

(
(
(
(
(
(
(
(
(
(
(

(

𝜆
(1)

− 𝜆
(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆
(4)

𝐶 ∗ 𝑒
𝑛
− 𝜆
(4)

− 𝜆
(5)

𝑒
𝑚
− 2𝑇𝜆

(1)
− 2𝑇𝜆

(2)
− 𝜆
(3)

𝑦
𝑇
𝜆
(4)

min {𝑡
2

𝑗
− 𝑤
𝑗
, 𝜆
(1)

𝑗
}
𝑗=1,2,...,𝑚

min {𝑡
2

𝑗
+ 𝑤
𝑗
, 𝜆
(2)

𝑗
}
𝑗=1,2,...,𝑚

min {𝑡
𝑗
, 𝜆
(3)

𝑗
}
𝑗=1,2,...,𝑚

min {𝑝
𝑖
, 𝜆
(4)

𝑖
}
𝑖=1,2,...,𝑛

min {𝜉
𝑖
, 𝜆
(5)

𝑖
}
𝑖=1,2,...,𝑛

)
)
)
)
)
)
)
)
)
)
)

)

= 0,

(13)

where 𝜆 = (𝜆
(1)

, 𝜆
(2)

, 𝜆
(3)

, 𝜆
(4)

, 𝜆
(5)

) are the Lagrangian
multipliers, 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑇, 𝑌 = diag(𝑦) is diagonal

matrix and 𝑝
𝑖
= 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) − (1 − 𝜉

𝑖
), 𝑖 = 1, 2, . . . , 𝑛.

For the sake of simplicity, the properties of the reformu-
lation to 𝐿

1/2
-SVM are shown in Appendix A.

3. An Interior Point Method

In this section, we develop an interior point method to solve
the equivalent constrained problem (10) of the 𝐿

1/2
-SVM (7).

3.1. Auxiliary Function. Following the idea of the interior
point method, the constrained problem (10) can be solved
by minimizing a sequence of logarithmic barrier functions as
follows:

min Φ
𝜇
(𝑤, 𝜉, 𝑡, 𝑏)

≜

𝑚

∑

𝑗=1

𝑡
𝑗
+ 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖

− 𝜇

𝑚

∑

𝑗=1

[log (𝑡2
𝑗
− 𝑤
𝑗
) + log (𝑡2

𝑗
+ 𝑤
𝑗
) + log 𝑡

𝑗
]

− 𝜇

𝑛

∑

𝑖=1

(log 𝑝
𝑖
+ log 𝜉

𝑖
)

s.t. 𝑡
2

𝑗
− 𝑤
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑡
2

𝑗
+ 𝑤
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑡
𝑗
> 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑝
𝑖
= 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) + 𝜉

𝑖
− 1 > 0, 𝑖 = 1, 2, . . . , 𝑛,

𝜉
𝑖
> 0, 𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑛,

(14)

where 𝜇 is the barrier parameter, converging to zero from
above.

The KKT system of problem (14) is the following system
of linear equations:

𝜆
(1)

− 𝜆
(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆
(4)

= 0,

𝐶 ∗ 𝑒
𝑛
− 𝜆
(4)

− 𝜆
(5)

= 0,

𝑒
𝑚
− 2𝑇𝜆

(1)
− 2𝑇𝜆

(2)
− 𝜆
(3)

= 0,

𝑦
𝑇
𝜆
(4)

= 0,

(𝑇
2
− 𝑊)𝜆

(1)
− 𝜇𝑒
𝑚

= 0,

(𝑇
2
+ 𝑊)𝜆

(2)
− 𝜇𝑒
𝑚

= 0,

𝑇𝜆
(3)

− 𝜇𝑒
𝑚

= 0,

𝑃𝜆
(4)

− 𝜇𝑒
𝑛
= 0,

Ξ𝜆
(5)

− 𝜇𝑒
𝑛
= 0,

(15)

where 𝜆 = (𝜆
(1)

, 𝜆
(2)

, 𝜆
(3)

, 𝜆
(4)

, 𝜆
(5)

) are the Lagrangianmulti-
pliers, 𝑇 = diag(𝑡), 𝑊 = diag(𝑤), Ξ = diag(𝜉), and 𝑃 =

diag(𝑌(𝑋𝑤+𝑏∗𝑒
𝑛
)+𝜉−𝑒

𝑛
) are diagonalmatrices, and 𝑒

𝑚
∈ 𝑅
𝑚

and 𝑒
𝑛
∈ 𝑅
𝑛 stand for the vector whose elements are all ones.

3.2. Newton’s Method. We apply Newton’s method to solve
the nonlinear system (15) in variables 𝑤, 𝜉, 𝑡, 𝑏, and 𝜆. The
subproblem of the method is the following system of linear
equations:

𝑀 =

(
(
(
(
(
(
(
(

(

Δ𝑤

Δ𝜉

Δ𝑡

Δ𝑏

Δ𝜆
(1)

Δ𝜆
(2)

Δ𝜆
(3)

Δ𝜆
(4)

Δ𝜆
(5)

)
)
)
)
)
)
)
)

)

= −

(
(
(
(
(
(
(
(
(

(

𝜆
(1)

− 𝜆
(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆
(4)

𝐶 ∗ 𝑒
𝑛
− 𝜆
(4)

− 𝜆
(5)

𝑒
𝑚
− 2𝑇𝜆

(1)
− 2𝑇𝜆

(2)
− 𝜆
(3)

𝑒
𝑇

𝑛
𝑌𝜆
(4)

(𝑇
2
− 𝑊)𝜆

(1)
− 𝜇𝑒
𝑚

(𝑇
2
+ 𝑊)𝜆

(2)
− 𝜇𝑒
𝑚

𝑇𝜆
(3)

− 𝜇𝑒
𝑚

𝑃𝜆
(4)

− 𝜇𝑒
𝑛

Ξ𝜆
(5)

− 𝜇𝑒
𝑛

)
)
)
)
)
)
)
)
)

)

,

(16)

where 𝑀 is the Jacobian of the left function in (15) and takes
the form
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𝑀 =

(
(
(
(
(
(
(

(

0 0 0 0 𝐼 −𝐼 0 −𝑋
𝑇
𝑌
𝑇

0

0 0 0 0 0 0 0 −𝐼 −𝐼

0 0 −2 (𝐷
1
+ 𝐷
2
) 0 −2𝑇 −2𝑇 −𝐼 0 0

0 0 0 0 0 0 0 𝑦
𝑇

0

−𝐷
1

0 2𝑇𝐷
1

0 𝑇
2
− 𝑊 0 0 0 0

𝐷
2

0 2𝑇𝐷
2

0 0 𝑇
2
+ 𝑊 0 0 0

0 0 𝐷
3

0 0 0 𝑇 0 0

𝐷
4
𝑌𝑋 𝐷

4
0 𝐷

4
𝑦 0 0 0 𝑃 0

0 𝐷
5

0 0 0 0 0 0 Ξ

)
)
)
)
)
)
)

)

, (17)

where 𝐷
1

= diag(𝜆(1)), 𝐷
2

= diag(𝜆(2)), 𝐷
3

= diag(𝜆(3)),
𝐷
4
= diag(𝜆(4)), and𝐷

5
= diag(𝜆(5)).

We can rewrite (16) as

(𝜆
(1)

+ Δ𝜆
(1)

) − (𝜆
(2)

+ Δ𝜆
(2)

) − 𝑋
𝑇
𝑌
𝑇
(𝜆
(4)

+ Δ𝜆
(4)

) = 0,

(𝜆
(4)

+ Δ𝜆
(4)

) + (𝜆
(5)

+ Δ𝜆
(5)

) = 𝐶 ∗ 𝑒
𝑛
,

2 (𝐷
1
+ 𝐷
2
) Δ𝑡 + 2𝑇 (𝜆

(1)
+ Δ𝜆
(1)

)

+ 2𝑇 (𝜆
(2)

+ Δ𝜆
(2)

) + (𝜆
(3)

+ Δ𝜆
(3)

) = 𝑒
𝑚
,

𝑦
𝑇
(𝜆
(4)

+ Δ𝜆
(4)

) = 0,

−𝐷
1
Δ𝑤 + 2𝑇𝐷

1
Δ𝑡 + (𝑇

2
− 𝑊) (𝜆

(1)
+ Δ𝜆
(1)

) = 𝜇𝑒
𝑚
,

𝐷
2
Δ𝑤 + 2𝑇𝐷

2
Δ𝑡 + (𝑇

2
+ 𝑊) (𝜆

(2)
+ Δ𝜆
(2)

) = 𝜇𝑒
𝑚
,

𝐷
3
Δ𝑡 + 𝑇 (𝜆

(3)
+ Δ𝜆
(3)

) = 𝜇𝑒
𝑚
,

𝐷
4
𝑌𝑋Δ𝑤 + 𝐷

4
Δ𝜉 + 𝐷

4
𝑦 ∗ Δ𝑏 + 𝑃 (𝜆

(4)
+ Δ𝜆
(4)

) = 𝜇𝑒
𝑛
,

𝐷
5
Δ𝜉 + Ξ (𝜆

(5)
+ Δ𝜆
(5)

) = 𝜇𝑒
𝑛
.

(18)

It follows from the last five equations that vector 𝜆̂ ≜ 𝜆 + Δ𝜆

can be expressed as

𝜆̂
(1)

= (𝑇
2
− 𝑊)
−1

(𝜇𝑒
𝑚
+ 𝐷
1
Δ𝑤 − 2𝑇𝐷

1
Δ𝑡) ,

𝜆̂
(2)

= (𝑇
2
+ 𝑊)
−1

(𝜇𝑒
𝑚
− 𝐷
2
Δ𝑤 − 2𝑇𝐷

2
Δ𝑡) ,

𝜆̂
(3)

= 𝑇
−1

(𝜇𝑒
𝑚
− 𝐷
3
Δ𝑡) ,

𝜆̂
(4)

= 𝑃
−1

(𝜇𝑒
𝑛
− 𝐷
4
𝑌𝑋Δ𝑤 − 𝐷

4
Δ𝜉 − 𝐷

4
𝑦 ∗ Δ𝑏) ,

𝜆̂
(5)

= Ξ
−1

(𝜇𝑒
𝑛
− 𝐷
5
Δ𝜉) .

(19)

Substituting (19) into the first four equations of (18), we
obtain

𝑆(

Δ𝑤

Δ𝜉

Δ𝑡

Δ𝑏

)

=

(
(
(

(

−𝜇(𝑇
2
− 𝑊)
−1

𝑒
𝑚
+ 𝜇(𝑇

2
+ 𝑊)
−1

𝑒
𝑚

+𝑋
𝑇
𝑌
𝑇
𝑃
−1
𝑒
𝑛

−𝐶 ∗ 𝑒
𝑛
+ 𝜇𝑃
−1
𝑒
𝑛
+ 𝜇Ξ
−1
𝑒
𝑛

−𝑒
𝑚
+ 2𝜇𝑇(𝑇

2
− 𝑊)
−1

𝑒
𝑚

+2𝜇𝑇(𝑇
2
+ 𝑊)
−1

𝑒
𝑚
+ 𝜇𝑇
−1
𝑒
𝑚

𝜇𝑦
𝑇
𝑃
−1
𝑒
𝑛

)
)
)

)

,

(20)

where matrix 𝑆 takes the form

𝑆 = (

𝑆
11

𝑆
12

𝑆
13

𝑆
14

𝑆
21

𝑆
22

𝑆
23

𝑆
24

𝑆
31

𝑆
32

𝑆
33

𝑆
34

𝑆
41

𝑆
42

𝑆
43

𝑆
44

), (21)

with blocks

𝑆
11

= 𝑈 + 𝑉 + 𝑋
𝑇
𝑌
𝑇
𝑃
−1
𝐷
4
𝑌𝑋,

𝑆
12

= 𝑋
𝑇
𝑌
𝑇
𝑃
−1
𝐷
4
,

𝑆
13

= −2 (𝑈 − 𝑉)𝑇, 𝑆
14

= 𝑋
𝑇
𝑌
𝑇
𝑃
−1
𝐷
4
𝑦,

𝑆
21

= 𝑃
−1
𝐷
4
𝑌𝑋,

𝑆
22

= 𝑃
−1
𝐷
4
+ Ξ
−1
𝐷
5
,

𝑆
23

= 0, 𝑆
24

= 𝑃
−1
𝐷
4
𝑦,
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𝑆
31

= −2 (𝑈 − 𝑉)𝑇, 𝑆
32

= 0,

𝑆
33

= 4𝑇 (𝑈 + 𝑉)𝑇 + 𝑇
−1
𝐷
3
− 2 (𝐷

1
+ 𝐷
2
) , 𝑆

34
= 0,

𝑆
41

= 𝑦
𝑇
𝑃
−1
𝐷
4
𝑌𝑋, 𝑆

42
= 𝑦
𝑇
𝑃
−1
𝐷
4
,

𝑆
43

= 0, 𝑆
44

= 𝑦
𝑇
𝑃
−1
𝐷
4
𝑦,

(22)

and 𝑈 = (𝑇
2
− 𝑊)
−1
𝐷
1
and 𝑉 = (𝑇

2
+ 𝑊)
−1
𝐷
2
.

3.3.The Interior PointerAlgorithm. Let 𝑧 = (𝑤, 𝜉, 𝑡, 𝑏) and𝜆 =

(𝜆
(1)

, 𝜆
(2)

, 𝜆
(3)

, 𝜆
(4)

, 𝜆
(5)

); we first present the interior pointer
algorithm to solve the barrier problem (14), and then discuss
the details of the algorithm.

Algorithm 2. The interior pointer algorithm (IPA) is as
follows.

Step 0. Given tolerance 𝜖
𝜇
, set 𝜏

1
∈ (0, (1/2)), 𝑙 > 0,

𝛾
1
> 1, 𝛽 ∈ (0, 1). Let 𝑘 = 0.

Step 1. Stop if KKT condition (15) holds.

Step 2. Compute Δ𝑧
𝑘 from (20) and 𝜆̂

𝑘+1 from (19).
Compute 𝑧

𝑘+1
= 𝑧
𝑘
+ 𝛼
𝑘
Δ𝑧
𝑘. Update the Lagrangian

multipliers to obtain 𝜆
𝑘+1.

Step 3. Let 𝑘 := 𝑘 + 1. Go to Step 1.

In Step 2, a step length 𝛼
𝑘 is used to calculate 𝑧

𝑘+1.
We estimate 𝛼

𝑘 by Armijo line search [34], in which 𝛼
𝑘

=

max{ ̄𝛽
𝑗
| 𝑗 = 0, 1, 2, . . .} for some ̄𝛽 ∈ (0, 1) and satisfies the

following inequalities:

(𝑡
𝑘+1

)
2

− 𝑤
𝑘+1

> 0,

(𝑡
𝑘+1

)
2

+ 𝑤
𝑘+1

> 0,

𝑡
𝑘+1

> 0,

Φ
𝜇
(𝑧
𝑘+1

) − Φ
𝜇
(𝑧
𝑘
)

≤ 𝜏
1
𝛼
𝑘
(∇𝑤Φ

𝜇
(𝑧
𝑘
)
𝑇

Δ𝑤
𝑘

+ ∇
𝑡
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑡
𝑘

+∇
𝜉
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝜉
𝑘
+ ∇
𝑏
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑏
𝑘
) ,

(23)

where 𝜏
1
∈ (0, 1/2).

To avoid ill-conditioned growth of 𝜆̂𝑘 and guarantee the
strict dual feasibility, the Lagrangian multipliers 𝜆

𝑘 should

be sufficiently positive and bounded from above. Following
a similar idea of [33], we first update the dual multipliers by

𝜆̄
(1)(𝑘+1)

𝑖

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

min{𝑙,
𝜇

(𝑡
𝑘

𝑖
)
2

− 𝑤
𝑘

𝑖

} , if 𝜆̂(1)(𝑘+1)
𝑖

< min{𝑙,
𝜇

(𝑡
𝑘

𝑖
)
2

− 𝑤
𝑘

𝑖

} ,

𝜆̂
(1)(𝑘+1)

𝑖
, if min{𝑙,

𝜇

(𝑡
𝑘

𝑖
)
2

− x𝑘
𝑖

}

≤ 𝜆̂
(1)(𝑘+1)

𝑖
≤

𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

− 𝑤
𝑘

𝑖

,

𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

− 𝑤
𝑘

𝑖

, if 𝜆̂(1)(𝑘+1)
𝑖

>
𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

− 𝑤
𝑘

𝑖

,

𝜆̄
(2)(𝑘+1)

𝑖

=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

min{𝑙,
𝜇

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

} , if 𝜆̂(2)(𝑘+1)
𝑖

< min{𝑙,
𝜇

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

} ,

𝜆̂
(2)(𝑘+1)

𝑖
, if min{𝑙,

𝜇

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

}

≤ 𝜆̂
(2)(𝑘+1)

𝑖
≤

𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

,

𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

, if 𝜆̂(2)(𝑘+1)
𝑖

>
𝜇𝛾
1

(𝑡
𝑘

𝑖
)
2

+ 𝑤
𝑘

𝑖

,

𝜆̄
(3)(𝑘+1)

𝑖
=

{{{{{{{{{{{{

{{{{{{{{{{{{

{

min{𝑙,
𝜇

𝑡
𝑘

𝑖

} , if 𝜆̂(3)(𝑘+1)
𝑖

< min{𝑙,
𝜇

𝑡
𝑘

𝑖

} ,

𝜆̂
(3)(𝑘+1)

𝑖
, if min{𝑙,

𝜇

𝑡
𝑘

𝑖

}

≤ 𝜆̂
(3)(𝑘+1)

𝑖
≤

𝜇𝛾
1

𝑡
𝑘

𝑖

,

𝜇𝛾
1

𝑡
𝑘

𝑖

, if 𝜆̂(3)(𝑘+1)
𝑖

>
𝜇𝛾
1

𝑡
𝑘

𝑖

,

𝜆̄
(4)(𝑘+1)

𝑖
=

{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{

{

min{𝑙,
𝜇

𝑝
𝑘

𝑖

} , if 𝜆̂(4)(𝑘+1)
𝑖

< min{𝑙,
𝜇

𝑝
𝑘

𝑖

} ,

𝜆̂
(4)(𝑘+1)

𝑖
, if min{𝑙,

𝜇

𝑝
𝑘

𝑖

}

≤ 𝜆̂
(4)(𝑘+1)

𝑖
≤

𝜇𝛾
1

𝑝
𝑘

𝑖

,

𝜇𝛾
1

𝑝
𝑘

𝑖

, if 𝜆̂(4)(𝑘+1)
𝑖

>
𝜇𝛾
1

𝑝
𝑘

𝑖

,

(24)
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where 𝑝
𝑖
= 𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) + 𝜉

𝑖
− 1;

𝜆̄
(5)(𝑘+1)

𝑖
=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

min{𝑙,
𝜇

𝜉
𝑘

𝑖

} , if 𝜆̂(5)(𝑘+1)
𝑖

< min{𝑙,
𝜇

𝜉
𝑘

𝑖

} ,

𝜆̂
(5)(𝑘+1)

𝑖
, if min{𝑙,

𝜇

𝜉
𝑘

𝑖

}

≤ 𝜆̂
(5)(𝑘+1)

𝑖
≤

𝜇𝛾
1

𝜉
𝑘

𝑖

,

𝜇𝛾
1

𝜉
𝑘

𝑖

, if 𝜆̂(5)(𝑘+1)
𝑖

>
𝜇𝛾
1

𝜉
𝑘

𝑖

,

(25)

where the parameters 𝑙 and 𝛾
1
satisfy 0 < 𝑙, 𝛾

1
> 1.

Since positive definiteness of the matrix 𝑆 is demanded in
this method, the Lagrangian multipliers 𝜆̄

𝑘+1 should satisfy
the following condition:

𝜆
(3)

− 2 (𝜆
(1)

+ 𝜆
(2)

) 𝑡 ≥ 0. (26)

For the sake of simplicity, the proof is given in Appendix B.
Therefore, if 𝜆̄𝑘+1 satisfies (26), we let 𝜆𝑘+1 = 𝜆̄

𝑘+1. Other-
wise, we would further update it by the following setting:

𝜆
(1)(𝑘+1)

= 𝛾
2
𝜆̄
(1)(𝑘+1)

, 𝜆
(2)(𝑘+1)

= 𝛾
2
𝜆̄
(2)(𝑘+1)

,

𝜆
(3)(𝑘+1)

= 𝛾
3
𝜆̄
(3)(𝑘+1)

,

(27)

where constants 𝛾
2
∈ (0, 1) and 𝛾

3
≥ 1 satisfy

𝛾
3

𝛾
2

= max
𝑖∈𝐸

{

2𝑡
𝑘+1

𝑖
(𝜆̄
(1)(𝑘+1)

𝑖
+ 𝜆̄
(2)(𝑘+1)

𝑖
)

𝜆̄
(3)(𝑘+1)

𝑖

} , (28)

with 𝐸 = {1, 2, . . . , 𝑛}. It is not difficult to see that the vector
(𝜆̄
(1)(𝑘+1)

, 𝜆̄
(2)(𝑘+1)

, 𝜆̄
(3)(𝑘+1)

) determined by (27) satisfies (26).
In practice, the KKT conditions (15) are allowed to be

satisfied within a tolerance 𝜖
𝜇
. It turns to be that the iterative

process stops, while the following inequalities meet:

Res (𝑧, 𝜆, 𝜇) =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝜆
(1)

− 𝜆
(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆
(4)

𝐶 ∗ 𝑒
𝑛
− 𝜆
(4)

− 𝜆
(5)

𝑒
𝑚
− 2𝑇𝜆

(1)
− 2𝑇𝜆

(2)
− 𝜆
(3)

𝑒
𝑇

𝑛
𝑌𝜆
(4)

(𝑇
2
− 𝑊)𝜆

(1)
− 𝜇𝑒
𝑚

(𝑇
2
+ 𝑊)𝜆

(2)
− 𝜇𝑒
𝑚

𝑇𝜆
(3)

− 𝜇𝑒
𝑚

𝑃𝜆
(4)

− 𝜇𝑒
𝑛

Ξ𝜆
(5)

− 𝜇𝑒
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

< 𝜖
𝜇
, (29)

𝜆 ≥ −𝜖
𝜇
𝑒, (30)

where 𝜖
𝜇
is related to the current barrier parameter 𝜇, and

satisfies 𝜖
𝜇
↓ 0 as 𝜇 → 0.

Since functionΦ
𝜇
in (14) is convex, we have the following

lemma which shows that Algorithm 2 is well defined (the
proof is given in Appendix B).

Lemma 3. Let 𝑧𝑘 be strictly feasible for problem (10). If Δ𝑧
𝑘
=

0, then (23) is satisfied for all 𝛼
𝑘

≥ 0. If Δ𝑧
𝑘

̸= 0, then there
exists a 𝛼̄

𝑘
∈ (0, 1] such that (23) holds for all 𝛼

𝑘
∈ (0, 𝛼̄

𝑘
].

The proposed interior point method successively solves
the barrier subproblem (14) with a decreasing sequence {𝜇

𝑘
}.

We simply reduce both 𝜖
𝜇
and 𝜇 by a constant factor 𝛽 ∈

(0, 1). Finally, we test optimality for problem (10) by means
of the residual norm ‖Res(𝑧, 𝜆̂, 0)‖.

Here, we present the whole algorithm to solve the 𝐿
1/2

-
SVM problem(10)

Algorithm 4. Algorithm for solving 𝐿
1/2

-SVM problem is as
follows.

Step 0. Set 𝑤0 ∈ 𝑅
𝑚
, 𝑏
0
∈ 𝑅, 𝜉

0
∈ 𝑅
𝑛, 𝜆0 = 𝜆̂

0
> 0,

𝑡
0

𝑖
≥ √|𝑤

0

𝑖
| + (1/2), 𝑖 ∈ {1, 2, . . . , 𝑚}. Given constants

𝜇
0
> 0, 𝜖
𝜇0

> 0, 𝛽 ∈ (0, 1) and ̄𝜖 > 0, let 𝑗 = 0.

Step 1. Stop if Res(𝑧𝑗, 𝜆̂𝑗, 0) ≤ ̄𝜖 and 𝜆̂
𝑗
≥ 0.

Step 2. Starting from (𝑧
𝑗
, 𝜆
𝑗
), apply Algorithm 2 to

solve (14) with barrier parameter 𝜇
𝑗
and stopping

tolerance 𝜖
𝜇𝑗
. Set 𝑧𝑗+1 = 𝑧

𝑗,𝑘, 𝜆̂𝑗+1 = 𝜆̂
𝑗,𝑘, and 𝜆

𝑗+1
=

𝜆
𝑗,𝑘.

Step 3. Set 𝜇
𝑗+1

= 𝛽𝜇
𝑗
and 𝜖
𝜇𝑗+1

= 𝛽𝜖
𝜇𝑗
. Let 𝑗 := 𝑗 + 1

and go to Step 1.

In Algorithm 4, the index 𝑗 denotes an outer iteration,
while 𝑘 denotes the last inner iteration of Algorithm 2.

The convergence of the proposed interior point method
can be proved. We list the theorem here and give the proof in
Appendix C.

Theorem 5. Let {(𝑧𝑘, 𝜆𝑘)} be generated by Algorithm 2. Then,
any limit point of the sequence {(𝑧

𝑘
, 𝜆̂
𝑘
)} generated by

Algorithm 2 satisfies the first-order optimality conditions (15).

Theorem 6. Let {(𝑧
𝑗
, 𝜆̂
𝑗
)} be generated by Algorithm 4 by

ignoring its termination condition. Then the following state-
ments are true.

(i) The limit point of {(𝑧𝑗, 𝜆̂𝑗)} satisfies the first order opti-
mality condition (13).

(ii) The limit point 𝑧
∗ of the convergent subsequence

{𝑧
𝑗
}J ⊆ {𝑧

𝑗
} with unbounded multipliers {𝜆̂

𝑗
}J is a

Fritz-John point [35] of problem (10).

4. Experiments

In this section, we tested the constrained optimization refor-
mulation to the 𝐿

1/2
-SVM and the proposed interior point

method. We compared the performance of the 𝐿
1/2

-SVM
with 𝐿

2
-SVM [30], 𝐿

1
-SVM [12], and 𝐿

0
-SVM [12] on

artificial data and ten UCI data sets (http://archive.ics.uci
.edu/ml/). These four problems were solved in primal, refer-
encing the machine learning toolbox Spider (http://people
.kyb.tuebingen.mpg.de/spider/). The 𝐿

2
-SVM and 𝐿

1
-SVM

were solved directly by quadratic programming and linear
programming, respectively. To the NP-hard problem 𝐿

0
-

SVM, a commonly cited approximation method Feature
Selection Concave (FSV) [12] was applied and then the FSV
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problem was solved by a Successive Linear Approximation
(SLA) algorithm. All the experiments were run in the
personal computer (1.6 GHz of CPU, 4GB of RAM) with
MATLAB R2010b on 64 bit Windows 7.

In the proposed interior point method (Algorithms 2 and
4), we set the parameters as ̄𝛽 = 0.6, 𝜏

1
= 0.5, 𝑙 = 0.00001,

𝛾
1

= 100000, and 𝛽 = 0.5. The balance parameter 𝐶 was
selected by 5-fold cross-validation on training set over the
range {2

−10, 2−9, . . . , 210}. After training, the weights that did
not satisfy the criteria |𝑤

𝑗
|/max

𝑖
(|𝑤
𝑖
|) ≥ 10

4 [14] were set to
zero.Then the cardinality of the hyperplane was computed as
the number of the nonzero weights.

4.1. Artificial Data. First, we took an artificial binary linear
classification problem as an example. The problem is similar
to that in [13]. The probability of 𝑦 = 1 or −1 is equal. The
first 6 features are relevant but redundant. In 70% samples,
the first three features {𝑥

1
, 𝑥
2
, 𝑥
3
}were drawn as 𝑥

𝑖
= 𝑦𝑁(𝑖, 1)

and the second three features {𝑥
4
, 𝑥
5
, 𝑥
6
} as 𝑥

𝑖
= 𝑁(0, 1).

Otherwise, the first three were drawn as 𝑥
𝑖
= 𝑁(0, 1) and the

second three as 𝑥
𝑖
= 𝑦𝑁(𝑖 − 3, 1). The rest features are noise

𝑥
𝑖
= 𝑁(0, 20), 𝑖 = 7, . . . , 𝑚. Here,𝑚 is the dimension of input

features. The inputs were scaled to mean zero and standard
deviation. In each trial, 500 points were generated for testing
and the average results were estimated over 30 trials.

In the first experiment, we consider the cases with the
fixed feature size 𝑚 = 30 and different training sample sizes
𝑛 = 10, 20, . . . , 100. The average results over the 30 trials
are shown in Table 1 and Figure 2. Figure 2 (left) plots the
average cardinality of each classifier. Since the artificial data
sets have 2 relevant and nonredundant features, the ideal
average cardinality is 2. Figure 2 (left) shows that the three
sparse SVMs, 𝐿

1
-SVM, 𝐿

1/2
-SVM, and 𝐿

0
-SVM, can achieve

sparse solution, while the 𝐿
2
-SVM almost uses full features

in each data set. Furthermore, the solutions of 𝐿
1/2

-SVM
and 𝐿

0
-SVM are much sparser than 𝐿

1
-SVM. As shown in

Table 1, the 𝐿
1
-SVM selects more than 6 features in all cases,

which implies that some redundant or irrelevant features
are selected. The average cardinalities of 𝐿

1/2
-SVM and 𝐿

0
-

SVM are similar and close to 2. However, when 𝑛 = 10

and 20, the 𝐿
0
-SVM has the average cardinalities of 1.42

and 1.87, respectively. It means that the 𝐿
0
-SVM sometimes

selects only one feature in low sample data set and maybe
ignores some really relevant feature. Consequently, with the
cardinalities between 2.05 and 2.9, 𝐿

1/2
-SVM has the more

reliable solution than 𝐿
0
-SVM. In short, as far as the number

of selected features is concerned, the 𝐿
1/2

-SVM behaves
better than the other three methods.

Figure 2 (right) plots the trend of the prediction accuracy
versus the size of the training sample. The classification
performance of all methods is generally improved with the
increasing of the training sample size 𝑛. 𝐿

1
-SVM has the best

prediction performance in all cases and a slightly better than
𝐿
1/2

-SVM. 𝐿
1/2

-SVM shows more accuracy in classification
than 𝐿

2
-SVM and 𝐿

0
-SVM, especially in the case of 𝑛 =

10, . . . , 50. As shown in Table 1, when there are only 10 train-
ing samples, the average accuracy of 𝐿

1/2
-SVM is 88.05%,

while the results of 𝐿
2
-SVM and 𝐿

0
-SVM are 84.65% and

77.65%, respectively. Compared with 𝐿
2
-SVM and 𝐿

0
-SVM,

𝐿
1/2

-SVM has the average accuracy increased by 3.4% and
10.4%, respectively, as can be explained in what follows. To
the 𝐿
2
-SVM, all features are selected without discrimination,

and the prediction would bemisled by the irrelevant features.
To the 𝐿

0
-SVM, few features are selected, and some relevant

features are not included, which would put negative impact
on the prediction result. As the tradeoff between𝐿

2
-SVMand

𝐿
0
-SVM, 𝐿

1/2
-SVM has better performance than the two.

The average results over ten artificial data sets in the first
experiment are shown in the bottom of Table 1. On average,
the accuracy of 𝐿

1/2
-SVM is 0.87% lower than the 𝐿

1
-SVM,

while the features selected by 𝐿
1/2

-SVM are 74.14% less than
𝐿
1
-SVM. It indicates that the 𝐿

1/2
-SVM can achieve much

sparser solution than 𝐿
1
-SVM with little cost of accuracy.

Moreover, the average accuracy of 𝐿
1/2

-SVMover 10 data sets
is 2.22% higher than 𝐿

0
-SVM with the similar cardinality.

To sum up, the 𝐿
1/2

-SVM provides the best balance between
accuracy and sparsity among the three sparse SVMs.

To further evaluate the feature selection performance of
𝐿
1/2

-SVM, we investigate whether the features are correctly
selected. For the𝐿

2
-SVM is not designed for feature selection,

it is not included in this comparison. Since our artificial data
sets have 2 best features (𝑥

3
, 𝑥
6
), the best result should have

the two features (𝑥
3
, 𝑥
6
) ranking on the top according to their

absolute values of weights |𝑤
𝑗
|. In the experiment, we select

the top 2 features with the maximal |𝑤
𝑗
| for each method

and calculate the frequency that the top 2 features are 𝑥
3

and 𝑥
6
in 30 runs. The results are listed in Table 2. When the

training sample size is too small, it is difficult to discriminate
the two most important features for all sparse SVMs. For
example, when 𝑛 = 10, the selected frequencies of 𝐿

1
-SVM,

𝐿
0
-SVM, and 𝐿

1/2
-SVM are 7, 3, and 9, respectively. When 𝑛

increases, all methods tend to make more correct selection.
Moreover, Table 2 shows that the 𝐿

1/2
-SVM outperforms the

other two methods in all cases. For example, when 𝑛 = 100,
the selected frequencies of 𝐿

1
-SVM and𝐿

0
-SVM are 22 and

25, respectively, and the result of 𝐿
1/2

-SVM is 27. The 𝐿
1
-

SVMselects toomany redundant or irrelevant features, which
may influence the ranking in some extent. Therefore, 𝐿

1
-

SVM is not so good as 𝐿
1/2

-SVM at distinguishing the critical
features. The 𝐿

0
-SVM has the lower hit frequency than 𝐿

1/2
-

SVM, which is probably due to the excessive small feature
subset it obtained. Above all, Tables 1 and 2 and Figure 2
clearly show that the 𝐿

1/2
-SVM is a promising sparsity driven

classification method.
In the second simulation, we consider the cases with

various dimensions of feature space 𝑚 = 20, 40, . . . , 180, 200

and the fixed training sample size 𝑛 = 100. The average
results over 30 trials are shown in Figure 3 and Table 3. Since
there are only 6 relevant features yet, the larger 𝑚 means
the more noisy features. Figure 3 (left) shows that as the
dimension increases from 20 to 200, the number of features
selected by 𝐿

1
-SVM increases from 8.26 to 23.1. However, the

cardinalities of 𝐿
1/2

-SVM and 𝐿
0
-SVM keep stable (from 2.2

to 2.95). It indicates that the 𝐿
1/2

-SVM and 𝐿
0
-SVM aremore

suitable for feature selection than 𝐿
1
-SVM.

Figure 3 (right) shows thatwith the increasing of the noise
features, the accuracy of 𝐿

2
-SVM drops significantly (from

98.68% to 87.47%). On the contrary, to the other three sparse
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Figure 2: Results comparison on 10 artificial data sets with various training samples.

Table 1: Results comparison on 10 artificial data sets with various training sample sizes.

𝑛
𝐿
2
-SVM 𝐿

1
-SVM 𝐿

0
-SVM 𝐿

1/2
-SVM

Card Acc Card Acc Card Acc Card Acc
10 29.97 84.65 6.93 88.55 1.43 77.65 2.25 88.05
20 30.00 92.21 8.83 96.79 1.87 93.17 2.35 95.50
30 30.00 94.27 8.47 98.23 2.03 94.67 2.05 97.41
40 29.97 95.99 9.00 98.75 2.07 95.39 2.10 97.75
50 30.00 96.61 9.50 98.91 2.13 96.57 2.45 97.68
60 29.97 97.25 10.00 98.94 2.20 97.61 2.45 97.98
70 30.00 97.41 11.00 98.98 2.20 97.56 2.40 98.23
80 30.00 97.68 10.03 99.09 2.23 97.61 2.60 98.50
90 29.97 97.89 9.20 99.21 2.30 97.41 2.90 98.30
100 30.00 98.13 10.27 99.09 2.50 97.93 2.55 98.36
On average 29.99 95.21 9.32 97.65 2.10 94.56 2.41 96.78
“𝑛” is the number of training samples, “Card” represents the number of selected features, and “Acc” is the classification accuracy.

Table 2: Frequency of the most important features (𝑥
3
, 𝑥
6
) ranked on top 2 in 30 runs.

𝑛 10 20 30 40 50 60 70 80 90 100
𝐿
1
-SVM 7 14 16 18 22 23 20 22 21 22

𝐿
0
-SVM 3 11 12 15 19 22 22 23 22 25

𝐿
1/2
-SVM 9 16 19 24 24 23 27 26 26 27

Table 3: Average results over 10 artificial data sets with varies dimension.

𝐿
2
-SVM 𝐿

1
-SVM 𝐿

0
-SVM 𝐿

1/2
-SVM

Cardinality 109.95 15.85 2.38 2.41
Accuracy 92.93 99.07 97.76 98.26
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Table 4: Feature selection performance comparison on UCI data sets (Cardinality).

No. UCI Data Set 𝑛 𝑚
𝐿
2
-SVM 𝐿

1
-SVM 𝐿

0
-SVM 𝐿

1/2
-SVM

Mean Std Mean Std Mean Std Mean Std
1 Pima diabetes 768 8 8.00 0.00 7.40 0.89 6.20 1.10 7.60 1.52
2 Breast Cancer 683 9 9.00 0.00 8.60 1.22 6.40 2.07 8.40 1.67
3 Wine (3) 178 13 13.00 0.00 9.73 0.69 3.73 0.28 4.07 0.49
4 Image (7) 2100 19 19.00 0.00 8.20 0.53 3.66 0.97 5.11 0.62
5 SPECT 267 22 22.00 0.00 17.40 5.27 9.80 4.27 9 1.17
6 WDBC 569 30 30.00 0.00 9.80 1.52 9.00 3.03 5.60 2.05
7 Ionosphere 351 34 33.20 0.45 25.00 3.35 24.60 10.21 21.80 8.44
8 SPECTF 267 44 44.00 0.00 38.80 10.98 24.00 11.32 25.60 7.75
9 Sonar 208 60 60.00 0.00 31.40 13.05 27.00 7.18 13.60 10.06
10 Musk1 476 166 166.00 0.00 85.80 18.85 48.60 4.28 41 14.16

Average cardinality 40.50 40.42 24.21 16.30 14.18

Table 5: Classification performance comparison on UCI data sets (accuaracy).

No. UCI Data Set 𝐿
2
-SVM 𝐿

1
-SVM 𝐿

0
-SVM 𝐿

1/2
-SVM

Mean Std Mean Std Mean Std Mean Std
1 Pima diabetes 76.99 3.47 76.73 0.85 76.73 2.94 77.12 1.52
2 Breast cancer 96.18 2.23 97.06 0.96 96.32 1.38 96.47 1.59
3 Wine (3) 97.71 3.73 98.29 1.28 93.14 2.39 97.14 2.56
4 Image (7) 88.94 1.49 91.27 1.77 86.67 4.58 91.36 1.94
5 SPECT 83.40 2.15 78.49 2.31 78.11 3.38 82.34 5.10
6 WDBC 96.11 2.11 96.46 1.31 95.58 1.15 96.46 1.31
7 Ionosphere 83.43 5.44 88.00 3.70 84.57 5.38 87.43 5.94
8 SPECTF 78.49 3.91 74.34 4.50 73.87 3.25 78.49 1.89
9 Sonar 73.66 5.29 75.61 5.82 74.15 7.98 76.10 4.35
10 Musk1 84.84 1.73 82.11 2.42 76.00 5.64 82.32 3.38

Average accuracy 85.97 85.84 83.51 86.52

SVMs, there is little change in the accuracy. It reveals that
SVMs can benefit from the features reduction.

Table 3 shows the average results over all data sets in
the second experiment. On average, the solution of 𝐿

1/2
-

SVM yields much sparser than 𝐿
1
-SVM and a slightly better

accuracy than 𝐿
0
-SVM.

4.2. UCI Data Sets. We further tested the reformulation and
the proposed interior point methods to 𝐿

1/2
-SVM on 10 UCI

data sets [36]. There are 8 binary classification problems and
2multiclass problems (wine, image). Each feature of the input
data was normalized to zero mean and unit variance, and the
instances with missing value were deleted.Then, the data was
randomly split into training set (80%) and testing set (20%).
For the two multiclass problems, a one-against-rest method
was applied to construct a binary classifier for each class. We
repeated the training and testing procedure 10 times, and the
average results were shown in Tables 4 and 5 and Figure 4.

Tables 4 and 5 summarize the feature selection and
classification performance of the numerical experiments on
UCI data sets, respectively. Here, 𝑛 is the numbers of samples
and 𝑚 is the number of the input features. For the two

multiclass data sets, the numbers of the classes are marked
behind their names. Sparsity is defined as card/𝑚 and the
small value of sparsity is preferred.The data sets are arranged
in descending order according to the dimension. The lowest
cardinality and the best accuracy rate for each problem are
bolded.

As shown in Tables 4 and 5, the three sparse SVMs can
encourage sparsity in all data sets, while remaining roughly
identical accuracy with 𝐿

2
-SVM. Among the three sparse

methods, the 𝐿
1/2

-SVM has the lowest cardinality (14.18)
and the highest classification accuracy (86.52%) on average.
While the 𝐿

1
-SVM has the worst feature selection perform-

ance with the highest average cardinality (24.21), and the
𝐿
0
-SVM has the lowest average classification accuracy

(83.51%).
Figure 4 plots the sparsity (left) and classification accu-

racy (right) of each classifier on UCI data sets. In three data
sets (6, 9, 10), the 𝐿

1/2
-SVM has the best performance both

in feature selection and classification among the three sparse
SVMs. Compared with 𝐿

1
-SVM, 𝐿

1/2
-SVM can achieve

sparser solution in nine data sets. For example, in the data
set “8 SPECTF,” the features selected by 𝐿

1/2
-SVM are 34%
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Figure 3: Results comparison on artificial data set with various dimensions.

less than 𝐿
1
-SVM, at the same time, the accuracy of 𝐿

1/2
-

SVM is 4.1% higher than 𝐿
1
-SVM. In most data sets (4,

5, 6, 9, 10), the cardinality of 𝐿
1/2

-SVM drops significantly
(at least 37%) with the equal or a slightly better result in
accuracy. Only in the data set “3 Wine,” the accuracy of
𝐿
1/2

-SVM is decreased by 1.1%, but the sparsity provided by
𝐿
1/2

-SVM leads to 58.2% improvement over 𝐿
1
-SVM. In the

rest three data sets (1, 2, 7), the two methods have similar
results in feature selection and classification. As seen above,
the 𝐿

1/2
-SVM can provide lower dimension representation

than 𝐿
1
-SVM with the competitive prediction perform-

ance.
Figure 4 (right) shows that, compared with 𝐿

0
-SVM,

𝐿
1/2

-SVM has the classification accuracy improved in all
data sets. For instance, in four data sets (3, 4, 8, 10), the
classification accuracy of 𝐿

1/2
-SVM is at least 4.0% higher

than 𝐿
0
-SVM. Especially in the data set “10Musk,” 𝐿

1/2
-SVM

gives a 6.3% rise in accuracy over 𝐿
0
-SVM. Meanwhile, it

can be observed from Figure 4 (left) that 𝐿
1/2

-SVM selects
fewer feature than 𝐿

0
-SVM in five data sets (5, 6, 7, 9, 10). For

example, in the data sets 6 and 9, the cardinalities of 𝐿
1/2

-
SVM are 37.8% and 49.6% less than 𝐿

0
-SVM, respectively.

In summary, 𝐿
1/2

-SVM presents better classification perfor-
mance than 𝐿

0
-SVM, while it is effective in choosing relevant

features.

5. Conclusions

In this paper, we proposed a 𝐿
1/2

regularization technique
for simultaneous feature selection and classification in the
SVM.We have reformulated the 𝐿

1/2
-SVM into an equivalent

smooth constrained optimization problem. The problem

possesses a very simple structure and is relatively easy to
develop numerical methods. By the use of this interesting
reformulation, we proposed an interior point method and
established its convergence. Our numerical results supported
the reformulation and the proposed method. The 𝐿

1/2
-

SVM can get more sparsity solution than 𝐿
1
-SVM with

the comparable classification accuracy. Furthermore, the
𝐿
1/2

-SVM can achieve more accuracy classification results
than 𝐿

0
-SVM (FSV).

Inspired by the good performance of the smooth opti-
mization reformulation of 𝐿

1/2
-SVM, there are some inter-

esting topics deserving further research. For examples, to
develop more efficient algorithms for solving the reformu-
lation, to study nonlinear 𝐿

1/2
-SVM, and to explore varies

applications of the 𝐿
1/2

-SVM and further validate its effective
are interesting research topics. Some of them are under our
current investigation.

Appendix

A. Properties of the Reformulation to
𝐿
1/2

-SVM

Let 𝐷 be set of all feasible points of the problem (10). For
any 𝑧 ∈ 𝐷, we let 𝐹𝐷(𝑧,𝐷) and 𝐿𝐹𝐷(𝑧,𝐷) be the set of all
feasible directions and linearized feasible directions of 𝐷 at
𝑧. Since the constraint functions of (10) are all convex, we
immediately have the following lemma.

Lemma A.1. For any feasible point 𝑧 of (10), one has
𝐹𝐷 (𝑧,𝐷) = 𝐿𝐹𝐷 (𝑧,𝐷) . (A.1)
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Figure 4: Results comparison on UCI data sets.

Based on the above Lemma, we can easily derive a first
order necessary condition for (10). The Lagrangian function
of (10) is

𝐿 (𝑤, 𝑡, 𝜉, 𝑏, 𝜆, 𝜇, ], 𝑝, 𝑞)

= 𝐶

𝑛

∑

𝑖=1

𝜉
𝑖
+

𝑚

∑

𝑗=1

𝑡
𝑗
−

𝑚

∑

𝑗=1

𝜆
𝑗
(𝑡
2

𝑗
− 𝑤
𝑗
) −

𝑚

∑

𝑗=1

𝜇
𝑗
(𝑡
2

𝑗
+ 𝑤
𝑗
)

−

𝑚

∑

𝑗=1

]
𝑗
𝑡
𝑗
−

𝑛

∑

𝑖=1

𝑝
𝑖
(𝑦
𝑖
𝑤
𝑇
𝑥
𝑖
+ 𝑦
𝑖
𝑏 + 𝜉
𝑖
− 1) −

𝑛

∑

𝑖=1

𝑞
𝑖
𝜉
𝑖
,

(A.2)

where 𝜆, 𝜇, ], 𝑝, 𝑞 are the Lagrangian multipliers. By the use
of Lemma A.1, we immediately have the following theorem
about the first order necessary condition.

Theorem A.2. Let (𝑤, 𝑡, 𝜉, 𝑏) be a local solution of (10). Then
there are Lagrangian multipliers (𝜆, 𝜇, ], 𝑝, 𝑞) ∈ 𝑅

𝑚+𝑚+𝑚+𝑛+𝑛

such that the following KKT conditions hold:

𝜕𝐿

𝜕𝑤
= 𝜆
𝑗
− 𝜇
𝑗
− 𝑝
𝑖

𝑛

∑

𝑖=1

𝑦
𝑖
𝑥
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛,

𝜕𝐿

𝜕𝑡
= 1 − 2𝜆

𝑗
𝑡
𝑗
− 2𝜇
𝑗
𝑡
𝑗
− ]
𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑚,

𝜕𝐿

𝜕𝜉
= 𝐶 − 𝑝

𝑖
− 𝑞
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛,

𝜕𝐿

𝜕𝑏
=

𝑛

∑

𝑖=1

𝑝
𝑖
𝑦
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛,

𝜆
𝑗
≥ 0, 𝑡

2

𝑗
− 𝑤
𝑗
≥ 0, 𝜆

𝑗
(𝑡
2

𝑗
− 𝑤
𝑗
) = 0,

𝑗 = 1, 2, . . . , 𝑚,

𝜇
𝑗
≥ 0, 𝑡

2

𝑗
+ 𝑤
𝑗
≥ 0, 𝜇

𝑗
(𝑡
2

𝑗
+ 𝑤
𝑗
) = 0,

𝑗 = 1, 2, . . . , 𝑚,

]
𝑗
≥ 0, 𝑡

𝑗
≥ 0 ]

𝑗
𝑡
𝑗
= 0, 𝑗 = 1, 2, . . . , 𝑚,

𝑝
𝑖
≥ 0, 𝑦

𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) + 𝜉

𝑖
− 1 ≥ 0,

𝑝
𝑖
(𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) + 𝜉

𝑖
− 1) = 0, 𝑖 = 1, 2, . . . , 𝑛,

𝑞
𝑖
≥ 0, 𝜉

𝑖
≥ 0, 𝑞

𝑖
𝜉
𝑖
= 0, 𝑖 = 1, 2, . . . , 𝑛.

(A.3)

The following theorem shows that the level set will be
bounded.

Theorem A.3. For any given constant 𝑐 > 0, the level set

𝑊
𝑐
= 𝑧 = {(𝑤, 𝑡, 𝜉) | 𝑓 (𝑧) ≤ 𝑐} ∩ 𝐷 (A.4)

is bounded.

Proof. For any (𝑤, 𝑡, 𝜉) ∈ Ω
𝑐
, we have

𝑚

∑

𝑖

𝑡
𝑖
+ 𝐶

𝑛

∑

𝑗

𝜉
𝑗
≤ 𝑐. (A.5)
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Combining with 𝑡
𝑖
≥ 0, 𝑖 = 1, . . . , 𝑚, and 𝜉

𝑗
≥ 0, 𝑗 = 1, . . . , 𝑛,

we have

0 ≤ 𝑡
𝑖
≤ 𝑐, 𝑖 = 1, . . . , 𝑚,

0 ≤ 𝜉
𝑗
≤

𝑐

𝐶
, 𝑗 = 1, . . . , 𝑛.

(A.6)

Moreover, for any (𝑤, 𝑡, 𝜉) ∈ 𝐷,

󵄨󵄨󵄨󵄨𝑤𝑖
󵄨󵄨󵄨󵄨 ≤ 𝑡
2

𝑖
, 𝑖 = 1, . . . , 𝑛. (A.7)

Consequently, 𝑤, 𝑡, 𝜉 are bounded. What is more, from the
condition

𝑦
𝑖
(𝑤
𝑇
𝑥
𝑖
+ 𝑏) ≥ 1 − 𝜉

𝑖
, 𝑖 = 1, . . . , 𝑚, (A.8)

we have

𝑤
𝑇
𝑥
𝑖
+ 𝑏 ≥ 1 − 𝜉

𝑖
, if 𝑦

𝑖
= 1, 𝑖 = 1, . . . , 𝑚,

𝑤
𝑇
𝑥
𝑖
+ 𝑏 ≤ −1 + 𝜉

𝑖
, if 𝑦

𝑖
= −1, 𝑖 = 1, . . . , 𝑚.

(A.9)

Thus if the feasible region𝐷 is not empty, then we have

max
𝑦𝑖=1

(1 − 𝜉
𝑖
− 𝑤
𝑇
𝑥
𝑖
) ≤ 𝑏 ≤ min

𝑦𝑖=−1

(−1 + 𝜉
𝑖
− 𝑤
𝑇
𝑥
𝑖
) . (A.10)

Hence 𝑏 is also bounded. The proof is complete.

B. Proof of Lemma 3

Lemma 3 (see Section 3) shows that Algorithm 2 is well
defined.We first introduce the following proposition to show
that the matrix 𝑆 defined by (21) is always positive definite
which ensures Algorithm 2 to be well defined.

Proposition B.1. Let the inequality (26) hold; then the matrix
𝑆 defined by (21) is positive definite.

Proof. By an elementary deduction, we have for any V(1) ∈

𝑅
𝑚, V(2) ∈ 𝑅

𝑛, V(3) ∈ 𝑅
𝑚, V(4) ∈ 𝑅 with (V(1), V(2), V(3), V(4)) ̸= 0

(V(1)𝑇, V(2)𝑇, V(3)𝑇, V(4)𝑇) 𝑆(

V(1)

V(2)

V(3)

V(4)
)

= V(1)𝑇𝑆
11
V(1) + V(1)𝑇𝑆

12
V(2) + V(1)𝑇𝑆

13
V(3)

+ V(1)𝑇𝑆
14
V(4) + V(2)𝑇𝑆

21
V(1) + V(2)𝑇𝑆

22
V(2)

+ V(2)𝑇𝑆
23
V(3) + V(2)𝑇𝑆

24
V(4)

+ V(3)𝑇𝑆
31
V(1) + V(3)𝑇𝑆

32
V(2)

+ V(3)𝑇𝑆
33
V(3) + V(3)𝑇𝑆

34
V(4)

+ V(4)𝑇𝑆
41
V(1) + V(4)𝑇𝑆

42
V(2)

+ V(4)𝑇𝑆
43
V(3) + V(4)𝑇𝑆

44
V(4)

= V(1)𝑇 (𝑈 + 𝑉 + 𝑋
𝑇
𝑌
𝑇
𝑃
−1
𝐷
4
𝑌𝑋) V(1)

+ V(1)𝑇 (𝑋𝑇𝑌𝑇𝑃−1𝐷
4
) V(2)

+ V(1)𝑇 (−2 (𝑈 − 𝑉)𝑇) V(3)

+ V(1)𝑇 (𝑋𝑇𝑌𝑇𝑃−1𝐷
4
𝑦) V(4)

+ V(2)𝑇𝑃−1𝐷
4
𝑌𝑋V(1) + V(2)𝑇 (𝑃−1𝐷

4
+ Ξ
−1
𝐷
5
) V(2)

+ V(2)𝑇𝑃−1𝐷
4
𝑦V(4)

− 2V(3)𝑇 (𝑈 − 𝑉)𝑇V(1)

+ V(3)𝑇 (4𝑇 (𝑈 + 𝑉)𝑇 + 𝑇
−1
𝐷
3
− 2 (𝐷

1
+ 𝐷
2
)) V(3)

+ V(4)𝑇𝑦𝑇𝑃−1𝐷
4
𝑌𝑋V(1)

+ V(4)𝑇𝑦𝑇𝑃−1𝐷
4
V(2) + V(4)𝑇𝑦𝑇𝑃−1𝐷

4
𝑦V(4)

= V(1)𝑇𝑈V(1) − 4V(3)𝑇𝑈𝑇V(1) + 4V(3)𝑇𝑇𝑈𝑇V(3)

+ V(1)𝑇𝑉V(1) + 4V(3)𝑇𝑉𝑇V(1) + 4V(3)𝑇𝑇𝑉𝑇V(3)

+ V(2)𝑇Ξ−1𝐷
5
V(2) + V(3)𝑇 (𝑇−1𝐷

3
− 2𝐷
1
− 2𝐷
2
) V(3)

+ (𝑌𝑋V(1) + V(2) + V(4)𝑦)
𝑇

𝑃
−1
𝐷
4

× (𝑌𝑋V(1) + V(2) + V(4)𝑦)

= 𝑒
𝑇

𝑚
𝑈(𝐷V

1
− 2𝑇𝐷V

3
)
2

𝑒
𝑚
+ 𝑒
𝑇

𝑚
𝑉(𝐷V

1
+ 2𝑇𝐷V

3
)
2

𝑒
𝑚

+ V(2)𝑇Ξ−1𝐷
5
V(2)

+ V(3)𝑇 (𝑇−1𝐷
3
− 2𝐷
1
− 2𝐷
2
) V(3)

+ (𝑌𝑋V(1) + V(2) + V(4)𝑦)
𝑇

𝑃
−1
𝐷
4
(𝑌𝑋V(1) + V(2) + V(4)𝑦)

> 0,

(B.1)

where 𝐷V
1
= diag(V(1)), 𝐷V

2
= diag(V(2)), 𝐷V

3
= diag(V(3)),

and𝐷V
4
= diag(V(4)).
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B.1. Proof of Lemma 3

Proof. It is easy to see that if Δ𝑧
𝑘
= 0, which implies that (23)

holds for all 𝛼
𝑘
≥ 0.

Suppose Δ𝑧
𝑘

̸= 0. We have

∇
𝑤
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑤
𝑘
+ ∇
𝑡
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑡
𝑘

+ ∇
𝜉
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝜉
𝑘
+ ∇
𝑏
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑏
𝑘

= − (Δ𝑤
𝑘𝑇

, Δ𝜉
𝑘𝑇

, Δ𝑡
𝑘𝑇

, Δ𝑏
𝑘
) 𝑆(

Δ𝑤
𝑘

Δ𝜉
𝑘

Δ𝑡
𝑘

Δ𝑏
𝑘

).

(B.2)

Since matrix 𝑆 is positive definite and Δ𝑧
𝑘

̸= 0, the last
equation implies

∇
𝑤
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑤
𝑘
+ ∇
𝑡
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑡
𝑘

+ ∇
𝜉
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝜉
𝑘
+ ∇
𝑏
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑏
𝑘
< 0.

(B.3)

Consequently, there exists a 𝛼̄
𝑘
∈ (0, 𝛼̂

𝑘
] such that the fourth

inequality in (23) is satisfied for all 𝛼
𝑘
∈ (0, 𝛼̄

𝑘
].

On the other hand, since (𝑥
𝑘
, 𝑡
𝑘
) is strictly feasible, the

point (𝑥𝑘, 𝑡𝑘) + 𝛼(Δ𝑥, 𝑡
𝑘
, Δ𝑡
𝑘
) will be feasible for all 𝛼 > 0

sufficiently small. The proof is complete.

C. Convergence Analysis

This appendix is devoted to the global convergence of the
interior point method. We first show the convergence of
Algorithm 2 when a fixed 𝜇 is applied to the barrier subprob-
lem (14).

Lemma C.1. Let {(𝑧𝑘, 𝜆𝑘)} be generated by Algorithm 2. Then
{𝑧
𝑘
} are strictly feasible for problem (10) and the Lagrangian

multipliers {𝜆𝑘} are bounded from above.

Proof. For the sake of convenience, we use 𝑔
𝑖
(𝑧), 𝑖 =

1, 2, . . . , 3𝑚 + 2𝑛, to denote the constraint functions of the
constrained problem (10).

We first show that {𝑧𝑘} are strictly feasible. Suppose on
the contrary that there exists an infinite index subset K and
an index 𝑖 ∈ {1, 2, . . . , 3𝑚 + 2𝑛} such that {𝑔

𝑖
(𝑧
𝑘
)}K ↓ 0.

By the definition of Φ
𝜇
(𝑧) and 𝑓(𝑧) = ∑

𝑚

𝑗=1
𝑡
𝑖
+ 𝐶∑

𝑛

𝑖=1
𝜉
𝑖

being bounded from below in the feasible set, it must hold
that {Φ

𝜇
(𝑧
𝑘
)}K → ∞.

However, the line search rule implies that the sequence
{Φ
𝜇
(𝑧
𝑘
)} is decreasing. So, we get a contradiction. Conse-

quently, for any 𝑖 ∈ {1, 2, . . . , 3𝑚+2𝑛}, {𝑔
𝑖
(𝑥
𝑘
, 𝑡
𝑘
)} is bounded

away from zero. The boundedness of {𝜆𝑘} then follows from
(24)–(27).

Lemma C.2. Let {(𝑧𝑘, 𝜆𝑘)} and {(Δ𝑧
𝑘
, 𝜆̂
𝑘+1

)} be generated by
Algorithm 2. If {𝑧𝑘}K is a convergent subsequence of {𝑧𝑘}, then
the sequence {(Δ𝑧

𝑘
, 𝜆̂
𝑘+1

)}K is bounded.

Proof. Again, we use 𝑔
𝑖
(𝑧), 𝑖 = 1, 2, . . . , 3𝑚+2𝑛 to denote the

constraint functions of the constrained problem (10).
We suppose on the contrary that there exists an infinite

subsetK󸀠 ⊆ K such that the subsequence {‖(Δ𝑧
𝑘
, 𝜆̂
𝑘+1

)‖}K󸀠

tends to infinity. Let {𝑧
𝑘
}K󸀠 → 𝑧

∗. It follows from
Lemma C.1 that there is an infinite subset K̄ ⊆ K󸀠 such that
{𝜆
𝑘
}K̄ → 𝜆

∗ and 𝑔
𝑖
(𝑧
∗
) > 0, ∀𝑖 ∈ {1, 2, . . . , 3𝑚 + 2𝑛}. Thus,

we have

𝑆
𝑘
󳨀→ 𝑆
∗
, (C.1)

as 𝑘 → ∞ with 𝑘 ∈ K̄. By Proposition B.1, 𝑆∗ is positive
definite. Since the right hand size of (18) is bounded and
continuous, the unboundedness of {(Δ𝑧

𝑘
, 𝜆̂
𝑘+1

)}K̄ implies
that the limit of the coefficient matrices of (18) is singular,
which yields a contradiction. The proof is complete.

Lemma C.3. Let {(𝑧𝑘, 𝜆𝑘)} and {(Δ𝑧
𝑘
, 𝜆̂
𝑘+1

)} be generated by
Algorithm 2. If {𝑧𝑘}K is a convergent subsequence of {𝑧𝑘}, then
one has {Δ𝑧

𝑘
}K → 0.

Proof. It follows from Lemma C.1 that the sequence {Δ𝑧
𝑘
}K

is bounded. Suppose on the contrary that there exists an
infinite subsetK󸀠 ⊆ K such that {Δ𝑧

𝑘
}K󸀠 → Δ𝑧

∗
̸= 0. Since

subsequences {𝑧
𝑘
}K󸀠 , {𝜆

𝑘
}K󸀠 and {𝜆̂

𝑘
}K󸀠 are all bounded,

there are points 𝑧
∗, 𝜆∗, and 𝜆̂

∗, as well as an infinite index
set K̄ ⊆ K󸀠 such that {𝑧𝑘}K̄ → 𝑧

∗, {𝜆𝑘}K̄ → 𝜆
∗, and

{𝜆̂
𝑘
}K̄ → 𝜆̂

∗. By Lemma C.1, we have 𝑔
𝑖
(𝑧
∗
) > 0, ∀𝑖 ∈

{1, 2, . . . , 3𝑚 + 2𝑛}. Similar to the proof of Lemma 3, it is not
difficult to get

∇
𝑤
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑤
∗
+ ∇
𝑡
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑡
∗

+ ∇
𝜉
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝜉
∗
+ ∇
𝑏
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑏
∗

= − (Δ𝑤
∗𝑇

, Δ𝜉
∗𝑇

, Δ𝑡
∗𝑇

, Δ𝑏
∗
) 𝑆(

Δ𝑤
∗

Δ𝜉
∗

Δ𝑡
∗

Δ𝑏
∗

) < 0.

(C.2)

Since 𝑔
𝑖
(𝑧
∗
) > 0, ∀𝑖 ∈ {1, 2, . . . , 3𝑚 + 2𝑛}, there exists a

𝛼̄ ∈ (0, 1], such that, for all 𝛼 ∈ (0, 𝛼̄],

𝑔
𝑖
(𝑧
∗
+ 𝛼Δ𝑧

∗
) > 0, ∀𝑖 ∈ {1, 2, . . . , 3𝑛} . (C.3)

Taking into account 𝜏
1
∈ (0, 1/2), we claim that there exists

a 𝛼̂ ∈ (0, 𝛼̄] such that the following inequality holds for all
𝛼 ∈ (0, 𝛼̂]:

Φ
𝜇
(𝑧
∗
+ 𝛼Δ𝑧

∗
) − Φ
𝜇
(𝑧
∗
) ≤ 1.1𝜏

1
𝛼∇
𝑧
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑧
∗
. (C.4)

Let 𝑚
∗

= min{𝑗 | ̄𝛽
𝑗
∈ (0, 𝛼̂], 𝑗 = 0, 1, . . .} and 𝛼

∗
= ̄𝛽
𝑚∗ .

It follows from (C.3) that the following inequality is satisfied
for all 𝑘 ∈ K̄ sufficient large and any 𝑖 ∈ {1, 2, . . . , 3𝑚 + 2𝑛},

𝑔
𝑖
(𝑧
𝑘
+ 𝛼
∗
Δ𝑧
𝑘
) > 0. (C.5)
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Moreover, we have

Φ
𝜇
(𝑧
𝑘
+ 𝛼
∗
Δ𝑧
𝑘
) − Φ
𝜇
(𝑧
𝑘
)

= Φ
𝜇
(𝑧
∗
+ 𝛼
∗
Δ𝑧
∗
) − Φ
𝜇
(𝑧
∗
)

+ Φ
𝜇
(𝑧
𝑘
+ 𝛼
∗
Δ𝑧
𝑘
) − Φ
𝜇
(𝑧
∗
+ 𝛼
∗
Δ𝑧
∗
)

+ Φ
𝜇
(𝑧
∗
) − Φ
𝜇
(𝑧
𝑘
)

≤ 1.05𝜏
1
𝛼
∗
∇
𝑧
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑧
∗

≤ 𝜏
1
𝛼
∗
∇
𝑧
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑧
𝑘
.

(C.6)

By the backtracking line search rule, the last inequality
together with (C.5) yields the inequality𝛼

𝑘
≥ 𝛼
∗
for all 𝑘 ∈ K̄

large enough. Consequently, when 𝑘 ∈ K̄ is sufficiently large,
we have from (23) and (C.3) that

Φ
𝜇
(𝑧
𝑘+1

) ≤ Φ
𝜇
(𝑧
𝑘
) + 𝜏
1
𝛼
𝑘
∇
𝑧
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑧
𝑘

≤ Φ
𝜇
(𝑧
𝑘
) + 𝜏
1
𝛼
∗
∇
𝑧
Φ
𝜇
(𝑧
𝑘
)
𝑇

Δ𝑧
𝑘

≤ Φ
𝜇
(𝑧
𝑘
) +

1

2
𝜏
1
𝛼
∗
∇
𝑧
Φ
𝜇
(𝑧
∗
)
𝑇

Δ𝑧
∗
.

(C.7)

This shows that {Φ
𝜇
(𝑧
𝑘
)}K̄ → −∞, contradicting with the

fact that {Φ
𝜇
(𝑧
𝑘
)}K is bounded from below. The proof is

complete.

Then, we will establish the convergence of Algorithms 2
and 4, that is, Theorems 5 and 6 in Section 3.

C.1. Proof of Theorem 5

Proof. We let (𝑧∗, 𝜆̂∗) be a limit point of {(𝑧𝑘, 𝜆̂𝑘)} and the
subsequence {(𝑧𝑘, 𝜆̂𝑘)}K converges to (𝑧

∗
, 𝜆̂
∗
).

Recall that (Δ𝑧
𝑘
, 𝜆̂
𝑘
) are the solution of (18) with (𝑧, 𝜆) =

(𝑧
𝑘
, 𝜆
𝑘
). Taking limits in both sides of (18) with (𝑧, 𝜆) =

(𝑧
𝑘
, 𝜆
𝑘
), as 𝑘 → ∞with 𝑘 ∈ K, by the use of Lemma C.1, we

obtain

𝜆̂
∗(1)

− 𝜆̂
∗(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆̂
∗(4)

= 0,

𝐶 ∗ 𝑒
𝑛
− 𝜆̂
∗(4)

− 𝜆̂
∗(5)

= 0,

𝑒
𝑚
− 2𝑇
∗
𝜆̂
∗(1)

− 2𝑇
∗
𝜆̂
∗(2)

− 𝜆̂
∗(3)

= 0,

𝑦
𝑇
𝜆̂
∗(4)

= 0,

(𝑇
∗2

− 𝑊
∗
) 𝜆̂
∗(1)

− 𝜇𝑒
𝑚

= 0,

(𝑇
∗2

+ 𝑊
∗
) 𝜆̂
∗(2)

− 𝜇𝑒
𝑚

= 0,

𝑇
∗
𝜆̂
∗(3)

− 𝜇𝑒
𝑚

= 0,

𝑃
∗
𝜆̂
∗(4)

− 𝜇𝑒
𝑛
= 0,

Ξ
∗
𝜆̂
∗(5)

− 𝜇𝑒
𝑛
= 0.

(C.8)

This shows that {(𝑧∗, 𝜆̂∗)} satisfies the first-order optimality
conditions (15).

C.2. Proof of Theorem 6

Proof. (i) Without loss of generality, we suppose that the
bounded subsequence {(𝑧

𝑗
, 𝜆̂
𝑗
)}J converges to some point

(𝑧
∗
, 𝜆̂
∗
). It is clear that 𝑧∗ is a feasible point of (10). Since

{𝜇
𝑗
, 𝜖
𝜇𝑗
} → 0, it follows from (29) and (30) that

{Res (𝑧𝑗, 𝜆̂𝑗, 𝜇
𝑗
)}

J
󳨀→ Res (𝑧∗, 𝜆̂∗, 0) = 0,

{𝜆̂
𝑗
}
J

󳨀→ 𝜆̂
∗
≥ 0.

(C.9)

Consequently, the (𝑧∗, 𝜆̂∗) satisfies the KKT conditions (13).
(ii) Let 𝜉

𝑗
= max{‖𝜆̂𝑗‖

∞
, 1} and 𝜆̄

𝑗
= 𝜉
−1

𝑗
𝜆̂
𝑗. Obviously,

{𝜆̄
𝑗
} is bounded. Hence, there exists an infinite subsetJ󸀠 ⊆ J

such that {𝜆̄𝑗}󸀠J → 𝜆̄ ̸= 0 and ‖𝜆̄
𝑗
‖
∞

= 1 for large 𝑗 ∈ J.
From (30) we know that 𝜆̄ ≥ 0. Dividing both sides of the
first inequality of (18) with (𝑧, 𝜆) = (𝑧

𝑘
, 𝜆
𝑘
) by 𝜉
𝑗
, then taking

limits as 𝑗 → ∞ with 𝑗 ∈ J, we get

𝜆̄
(1)

− 𝜆̄
(2)

− 𝑋
𝑇
𝑌
𝑇
𝜆̄
(4)

= 0,

𝜆̄
(4)

+ 𝜆̄
(5)

= 0,

2𝑇
∗
𝜆̄
(1)

+ 2𝑇
∗
𝜆̄
(2)

+ 𝜆̄
(3)

= 0,

𝑦
𝑇
𝜆̄
(4)

= 0,

(𝑇
∗2

− 𝑊
∗
) 𝜆̄
(1)

= 0,

(𝑇
∗2

+ 𝑊
∗
) 𝜆̄
(2)

= 0,

𝑇
∗
𝜆̄
(3)

= 0,

𝑃
∗
𝜆̄
(4)

= 0,

Ξ
∗
𝜆̄
(5)

= 0.

(C.10)

Since 𝑧
∗ is feasible, the above equations has shown that 𝑧∗ is

a Fritz-John point of problem (10).
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