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A computer virus model with infection delay and recovery delay is considered. The sufficient conditions for the global stability of
the virus infection equilibrium are established. We show that the time delay can destabilize the virus infection equilibrium and
give rise to Hopf bifurcations and stable periodic orbits. By the normal form and center manifold theory, the direction of the
Hopf bifurcation and stability of the bifurcating periodic orbits are determined. Numerical simulations are provided to support our
theoretical conclusions.

1. Introduction

In recent years, the computer networks have become more
and more popular, and people can find many useful things
through computer networks. However, computer virus flows
and spoils the correct operation of computer. As the computer
networks become necessary tools in our daily life, computer
virus becomes a major threat [1].

Cohen [2] found that there is high similarity between
biological virus and computer virus. By the Kermack and
McKendrick SIR epidemic model [3], the computer virus
models were proposed in [4–7] which analyzed the spread of
computer virus by epidemiological models. The model is as
follows:

d𝑆 (𝑡)
d𝑡

= 𝑏 − 𝛽𝑆 (𝑡) 𝐼 (𝑡) − 𝜇𝑆 (𝑡) ,

d𝐼 (𝑡)
d𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡) − (𝜇 + 𝛾) 𝐼 (𝑡) ,

d𝑅 (𝑡)
d𝑡

= 𝛾𝐼 (𝑡) − 𝜇𝑅 (𝑡) ,

(1)

where 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡) denote susceptible, infected, and
recovered computers, respectively. Here we assume that all
the computers connect to the network. 𝑏 is the rate at which
external computers are connected to the network, 𝛾 is the

recovery rate of infected computers because of the antivirus
ability of the network,𝛽 is the infection rate, and𝜇 is the death
rate of the classes 𝑆(𝑡), 𝐼(𝑡), and 𝑅(𝑡).

Dong et al. [8] considered the effect of immunization on
susceptible state and exposed state by a delayed computer
virus model. Zhang et al. [9] studied an impulse model for
computer viruses and established the global dynamics of the
model. Yang et al. [10] analyzed a computer virus model
with graded cure rates and showed that the global dynamics
are determined by the basic reproduction number. Then we
can understand and control the computer virus propagation
using the mathematical models.

Since there is a period of time fromvirus entering a host to
active state [11], there exists an infection delay from infected
to infectious computers. Similarly, there is a recovery delay
from recovered to susceptible computers. Then the model is

d𝑆 (𝑡)
d𝑡

= 𝑏 − 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏
1
) 𝑒
−𝜇𝜏
1 + ]𝑅 (𝑡 − 𝜏

2
) − 𝜇𝑆 (𝑡) ,

d𝐼 (𝑡)
d𝑡

= 𝛽𝑆 (𝑡) 𝐼 (𝑡 − 𝜏
1
) 𝑒
−𝜇𝜏
1 − (𝜇 + 𝛾) 𝐼 (𝑡) ,

d𝑅 (𝑡)
d𝑡

= 𝛾𝐼 (𝑡) − ]𝑅 (𝑡 − 𝜏
2
) − 𝜇𝑅 (𝑡) ,

(2)
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where 0 < 𝑒
−𝜇𝜏
1 ≤ 1 is the survival probability of the

infected computers, 𝜏
1
is the infection delay, and ] is the rate

at which one recovered computer reverts to the susceptible
one. 𝑅(𝑡 − 𝜏

2
) denotes that a recovered computer moves into

the susceptible class after time 𝜏
2
.

Ren et al. [12] obtained that the virus-free equilibrium is
globally asymptotically stable when 𝑅

0
< 1. When 𝑅

0
> 1, we

make a lot of improvement in the results in [12]. Compared
to [12], we show that the virus infection equilibrium is always
locally asymptotically stable for 𝜏

1
> 0 and 𝜏

2
= 0, and Hopf

bifurcation does not exist. For 𝜏
1
> 0 and 𝜏

2
> 0, Ren et al. [12]

constructed a Lyapunov function by linearized equations of
𝐸
∗ and obtained the sufficient conditions for global stability

of the virus infection equilibrium. Obviously, this is inappro-
priate. Then we construct a suitable Lyapunov function and
obtain the sufficient conditions of global stability for the virus
infection equilibrium when 𝜏

1
> 0 and 𝜏

2
> 0. Furthermore,

for 𝜏
1
= 0 and 𝜏

2
> 0, we study the direction of the Hopf

bifurcation and stability of the bifurcating periodic orbits by
the normal form and center manifold theory, and numerical
simulations are given to support the theoretical conclusions.

Then we can control the computer virus propagation
using the epidemiological threshold value. There are many
research works about epidemiological models; see [13–23]
and the references therein. For example, Ma et al. [24]
analyzed the global stability of a SIR epidemic model with
a time delay. Wang and Zhao [25] obtained the basic
reproduction number of reaction-diffusion epidemic models
with compartmental structure and considered the influence
of spatial heterogeneity and population mobility on disease
transmission by a spatial model. The methods used here
are Lyapunov functions, normal form, and center manifold
theory. There are many research papers using the method
of constructing Lyapunov functions [26–33]. In addition, we
would like to refer to some excellent articles about stability
and bifurcation; see [34–44].

The paper is organized as follows. In Section 2, the exis-
tence of equilibria is discussed and characteristic equation is
given. In Section 3, we establish the local stability of the virus
infection equilibrium 𝐸

∗ for 𝜏
1
> 0 and 𝜏

2
= 0. In Section 4,

for 𝜏
1
= 0 and 𝜏

2
> 0, we consider the local stability of 𝐸∗ and

existence of local Hopf bifurcation, and the direction of Hopf
bifurcation and stability of the bifurcating periodic solutions
are considered. In Section 5, for 𝜏

1
> 0 and 𝜏

2
> 0, global

stability of the virus infection equilibrium is obtained. Finally,
we finish the paper with conclusions.

2. Preliminaries

The initial conditions are

𝑆 (𝜃) = 𝜑
1
(𝜃) ≥ 0,

𝐼 (𝜃) = 𝜑
2
(𝜃) ≥ 0,

𝑅 (𝜃) = 𝜑
3
(𝜃) ≥ 0,

𝜃 ∈ [−𝜏, 0] ,

(3)

where 𝜏 = max{𝜏
1
, 𝜏
2
} and 𝜑 = (𝜑

1
, 𝜑
2
, 𝜑
3
) ∈ C([−𝜏, 0],R3)

with 𝜑
𝑖
(0) > 0 (𝑖 = 1, 2, 3). We denote by 𝑋 = C([−𝜏, 0],R3)

the Banach space of continuous functions mapping the
internal [−𝜏, 0] into R3 equipped with the sup-norm ‖𝜑‖ =

sup
𝜃∈[−𝜏,0]

|𝜑(𝜃)| for 𝜑 ∈ 𝑋.
From the standard theory of functional differential equa-

tion [45], for all 𝜑 ∈ 𝑋, there is a unique solution
(𝑆(𝑡, 𝜑), 𝐼(𝑡, 𝜑), 𝑅(𝑡, 𝜑)) with 𝜑

𝑖
(0) > 0 (𝑖 = 1, 2, 3) of the

system (2). By themethod of [13], under the initial conditions
(3), all solutions of system (2) are positive and ultimately
bounded in R × 𝑋 × 𝑋. The feasible region of system (2) is

Γ = {(𝑆, 𝐼, 𝑅) : 𝑆 ≥ 0, 𝐼 ≥ 0, 𝑅 ≥ 0, 𝑆 + 𝐼 + 𝑅 ≤
𝑏

𝜇
}

(4)

which is the positively invariant set with respect to system (2).
System (2) always has a virus-free equilibrium 𝐸

0
=

(𝑆
0
, 0, 0) with 𝑆

0
= 𝑏/𝜇. In addition, system (2) has a

virus infection equilibrium 𝐸
∗

= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
). The basic

reproduction number is defined [12] as

𝑅
0
=
𝛽𝑒
−𝜇𝜏
1𝑆
0

𝜇 + 𝛾
. (5)

The virus-free equilibrium 𝐸
0
always exists. The coordinates

of the virus infection equilibrium 𝐸
∗
= (𝑆
∗
, 𝐼
∗
, 𝑅
∗
) are given

by

𝑆
∗
=

𝑏

𝜇𝑅
0

, 𝐼
∗
=

𝑏 (𝑅
0
− 1) (𝜇 + ])

𝑅
0
[(𝜇 + 𝛾) (𝜇 + ]) − 𝛾]]

,

𝑅
∗
=

𝛾𝑏 (𝑅
0
− 1)

𝑅
0
[(𝜇 + 𝛾) (𝜇 + ]) − 𝛾]]

.

(6)

Thus, 𝐸∗ exists in the interior of Γ if and only if 𝑅
0
> 1.

Let 𝑥(𝑡) = 𝑆(𝑡)−𝑆
∗, 𝑦(𝑡) = 𝐼(𝑡)− 𝐼

∗, and 𝑧(𝑡) = 𝑅(𝑡)−𝑅
∗.

Then system (2) becomes

�̇� (𝑡) = −𝜇𝑥 (𝑡) − 𝛽𝐼
∗
𝑒
−𝜇𝜏
1𝑥 (𝑡) − 𝛽𝑆

∗
𝑒
−𝜇𝜏
1𝑦 (𝑡 − 𝜏

1
)

+ ]𝑧 (𝑡 − 𝜏
2
) − 𝛽𝑒

−𝜇𝜏
1𝑥 (𝑡) 𝑦 (𝑡 − 𝜏

1
) ,

̇𝑦 (𝑡) = 𝛽𝐼
∗
𝑒
−𝜇𝜏
1𝑥 (𝑡) − (𝜇 + 𝛾) 𝑦 (𝑡) + 𝛽𝑆

∗
𝑒
−𝜇𝜏
1𝑦 (𝑡 − 𝜏

1
)

+ 𝛽𝑒
−𝜇𝜏
1𝑥 (𝑡) 𝑦 (𝑡 − 𝜏

1
) ,

�̇� (𝑡) = 𝛾𝑦 (𝑡) − 𝜇𝑧 (𝑡) − ]𝑧 (𝑡 − 𝜏
2
) .

(7)

The characteristic equation of system (7) at (0, 0, 0) is

(𝜆 + 𝜇) [𝜆
2
+ 𝜆 (2𝜇 + 𝛾 + 𝛽𝐼

∗
𝑒
−𝜇𝜏
1) + 𝜇

2
+ 𝛽𝐼
∗
𝛾𝑒
−𝜇𝜏
1

+𝜇𝛽𝐼
∗
𝑒
−𝜇𝜏
1 + 𝛾𝜇] + (𝜆 + 𝜇)

× [𝑒
−𝜆𝜏
1 (−𝛽𝑆

∗
𝑒
−𝜇𝜏
1𝜆 − 𝛽𝑆

∗
𝑒
−𝜇𝜏
1𝜇) + 𝑒

−𝜆𝜏
2

× (]𝜆 + 𝜇] + 𝛽𝐼∗]𝑒−𝜇𝜏1 + 𝛾]) ]

+ (𝜆 + 𝜇) [𝑒
−𝜆(𝜏
1
+𝜏
2
)
(−𝛽𝑆
∗]𝑒−𝜇𝜏1)] = 0.

(8)
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3. Local Stability of 𝐸∗ for 𝜏
1
> 0 and 𝜏

2
= 0

Consider 𝜏
1
> 0 and 𝜏

2
= 0; then (8) becomes

(𝜆 + 𝜇) [𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ 𝑒
−𝜆𝜏
1 (𝑞
1
𝜆 + 𝑞
0
)] = 0, (9)

where
𝑝
1
= (𝜇 + 𝛾) + (𝜇 + ]) + 𝛽𝐼∗𝑒−𝜇𝜏1 ,

𝑝
0
= (𝜇 + 𝛾) (𝜇 + ]) + (𝜇 + 𝛾 + ]) 𝛽𝐼∗𝑒−𝜇𝜏1 ,

𝑞
1
= − 𝛽𝑆

∗
𝑒
−𝜇𝜏
1 ,

𝑞
0
= − (𝜇 + ]) 𝛽𝑆∗𝑒−𝜇𝜏1 .

(10)

Since 𝜆 = −𝜇 is a negative real root of (9), all other roots of
(9) are given by

𝜆
2
+ 𝑝
1
𝜆 + 𝑝
0
+ 𝑒
−𝜆𝜏
1 (𝑞
1
𝜆 + 𝑞
0
) = 0. (11)

If 𝜆 = 𝑖𝜔(𝜏
1
) (𝜔 > 0) is the purely imaginary root of (11),

then substituting 𝜆 = 𝑖𝜔 into (11) and separating the real and
imaginary parts yield

𝑝
1
𝜔 = 𝑞

0
sin𝜔𝜏

1
− 𝑞
1
𝜔 cos𝜔𝜏

1
,

𝜔
2
− 𝑝
0
= 𝑞
1
𝜔 sin𝜔𝜏

1
+ 𝑞
0
cos𝜔𝜏

1
.

(12)

Squaring and adding the two equations lead to

𝜔
4
+ (𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
) 𝜔
2
+ 𝑝
2

0
− 𝑞
2

0
= 0. (13)

Note that
𝑝
2

0
− 𝑞
2

0
= [2 (𝜇 + 𝛾) (𝜇 + ]) + (𝜇 + 𝛾 + ]) 𝛽𝐼∗𝑒−𝜇𝜏1]

× (𝜇 + 𝛾 + ]) 𝛽𝐼∗𝑒−𝜇𝜏1 > 0,

𝑝
2

1
− 2𝑝
0
− 𝑞
2

1
= (𝜇 + ])2 + (𝛽𝐼∗𝑒−𝜇𝜏1)2 + 2𝜇𝛽𝐼∗𝑒−𝜇𝜏1 > 0.

(14)

Therefore, the roots of (13) do not exist.Thus, the virus infec-
tion equilibrium 𝐸

∗ of system (2) is locally asymptotically
stable for 𝜏

1
> 0 and 𝜏

2
= 0. Then we obtain the following

result.

Theorem 1. Consider system (2). If 𝑅
0
> 1, then the virus

infection equilibrium𝐸
∗ is locally asymptotically stable for 𝜏

1
>

0 and 𝜏
2
= 0.

Remark 2. For 𝜏
1
> 0 and 𝜏

2
= 0, Ren et al. [12] showed that

the time delay 𝜏
1
can destabilize the infected equilibrium 𝐸

∗

leading toHopf bifurcations. However, we show that the virus
infection equilibrium 𝐸

∗ is always locally asymptotically
stable for 𝜏

1
> 0 and 𝜏

2
= 0, and Hopf bifurcation does not

exist.

We introduce a set of parameter values: 𝑏 = 0.2, 𝛽 = 0.3,
𝜇 = 0.1, 𝛾 = 0.2, ] = 0.5, and 𝜏

2
= 0. Consequently,

(a) 𝑅
0
= 1.8097 > 1 and 𝐸

∗
= (1.1052, 0.6711, 0.2237);

(b) 𝑅
0
= 1.6375 > 1 and 𝐸

∗
= (1.2214, 0.5840, 0.1947);

(c) 𝑅
0
= 1.4816 > 1 and 𝐸

∗
= (1.3499, 0.4876, 0.1625);

(d) 𝑅
0
= 1.2131 > 1 and 𝐸

∗
= (1.6487, 0.2635, 0.0878).

Figure 1 shows that the infection equilibrium 𝐸
∗ is locally

asymptotically stable.

4. Hopf Bifurcation for 𝜏
1
= 0 and 𝜏

2
> 0

Consider 𝜏
1
= 0 and 𝜏

2
> 0; then (8) becomes

(𝜆 + 𝜇) [𝜆
2
+ 𝑎
1
𝜆 + 𝑎
2
+ 𝑒
−𝜆𝜏
2 (𝑏
1
𝜆 + 𝑏
2
)] = 0, (15)

where

𝑎
1
= 2𝜇 + 𝛾 + 𝛽𝐼

∗
− 𝛽𝑆
∗
,

𝑎
2
= 𝜇 (𝜇 + 𝛾 + 𝛽𝐼

∗
− 𝛽𝑆
∗
) + 𝛽𝐼

∗
𝛾,

𝑏
1
= ],

𝑏
2
= ] (𝜇 + 𝛾 + 𝛽𝐼∗ − 𝛽𝑆∗) .

(16)

Obviously, 𝜆 = −𝜇 is always a negative real root of (15). Then
we consider

𝜆
2
+ 𝑎
1
𝜆 + 𝑎
2
+ 𝑒
−𝜆𝜏
2 (𝑏
1
𝜆 + 𝑏
2
) = 0. (17)

If 𝜆 = 𝑖𝜔(𝜏
2
) (𝜔 > 0) is the purely imaginary root of (17),

then substituting 𝜆 = 𝑖𝜔 into (17) and separating the real and
imaginary parts give

𝜔
2
− 𝑎
2
= 𝑏
2
cos𝜔𝜏

2
+ 𝑏
1
𝜔 sin𝜔𝜏

2
,

𝑎
1
𝜔 = 𝑏
2
sin𝜔𝜏

2
− 𝑏
1
𝜔 cos𝜔𝜏

2
.

(18)

Squaring and adding the two equations lead to

𝜔
4
+ (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) 𝜔
2
+ 𝑎
2

2
− 𝑏
2

2
= 0. (19)

Denote

𝑓 (𝑢) = 𝑢
2
+ (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) 𝑢 + 𝑎

2

2
− 𝑏
2

2
= 0. (20)

Let

Δ = (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
)
2

− 4 (𝑎
2

2
− 𝑏
2

2
) . (21)

Hence

(1) if Δ < 0, then (20) has no positive real roots;
(2) if 𝑎2

2
− 𝑏
2

2
< 0, since lim

𝑢→∞
𝑓(𝑢) = ∞, then (20) has

at least one positive real root;
(3) if Δ ≥ 0, then (20) has two real roots:

𝑢
1
=

− (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) + √Δ

2
,

𝑢
2
=

− (𝑎
2

1
− 2𝑎
2
− 𝑏
2

1
) − √Δ

2
;

(22)

if 𝑢
1
> 0, then (20) has a positive real root. If 𝑢

1
< 0,

then all roots of (20) are negative.

Let 𝑢
𝑖
(𝑖 = 1, 2) be the positive real roots such that 𝑓(𝑢) =

0 and 𝜔
𝑖
= √𝑢𝑖 (𝑖 = 1, 2). Denote

𝜏
𝑘

𝑖
=
𝜃 + 2𝑘𝜋

𝜔
𝑖

, 𝑖 = 1, 2, 𝑘 = 1, 2, . . . , 𝑛, (23)



4 Journal of Applied Mathematics

0 50 100 150 200 250 300
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

S

I

R

S
,I
,R

Time t

(a)

0
0

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

1.2

1.4

S

I

R

S
,I
,R

Time t

(b)

0
0

50 100 150 200 250 300

0.2

0.4

0.6

0.8

1

1.2

1.4

S

I

R

S
,I
,R

Time t

(c)

0
0

50 100 150 200 250 300

0.5

1.5

1

2

S

I

R

S
,I
,R

Time t

(d)

Figure 1: In the case of 𝜏
1
> 0 and 𝜏

2
= 0, numerical simulations for system (2). The initial values are 𝑆(0) = 1, 𝐼(0) = 1, and 𝑅(0) = 1. (a)

𝜏
1
= 1; (b) 𝜏

1
= 2; (c) 𝜏

1
= 3; (d) 𝜏

1
= 5. Other parameter values are given in the text, and the infection equilibrium is asymptotically stable.

where 𝜃 ∈ [0, 2𝜋] is determined by

cos 𝜃 =
(𝑏
2
− 𝑎
1
𝑏
1
) 𝜔
2

𝑖
− 𝑎
2
𝑏
2

𝑏
2

1
𝜔
2

𝑖
+ 𝑏
2

2

,

sin 𝜃 =
𝑏
1
𝜔
3

𝑖
+ (𝑎
1
𝑏
2
− 𝑎
2
𝑏
1
) 𝜔
𝑖

𝑏
2

1
𝜔
2

𝑖
+ 𝑏
2

2

, 𝑖 = 1, 2.

(24)

Define

𝜏
0
= min
1≤𝑖≤2

{𝜏
𝑘

𝑖
| 𝑓 (𝑢

𝑖
) = 0} , 𝜔

0
= 𝜔
𝑘
, 𝑘 = 1, 2, . . . , 𝑛.

(25)

Therefore, 𝜏
0
is the first value of 𝜏when a pair of characteristic

roots cross the imaginary axis at ±𝑖𝜔
0
.

Let 𝜆(𝜏
2
) = 𝛼(𝜏

2
) + 𝑖𝜔(𝜏

2
) be the root of (15) satisfying

𝛼(𝜏
𝑘

𝑖
) = 0 and 𝜔(𝜏𝑘

𝑖
) = 𝜔
0
. Differentiating (15) with respect to

𝜏
2
leads to

{
d𝜆
d𝜏
2

}

−1

=
2𝜆 + 𝑎

1

(𝑏
1
𝜆 + 𝑏
2
) 𝑒−𝜆𝜏2

+
𝑏
1

(𝑏
1
𝜆 + 𝑏
2
) 𝜆

−
𝜏
2

𝜆
.

(26)

From (18), we have

{
(dRe𝜆 (𝜏

2
))

d𝜏
2

}

−1

𝜏
2
=𝜏
0

=
2𝜔
2

0
+ 𝑎
2

1
− 2𝑎
2
− 𝑏
2

1

𝑏
2

1
𝜔
2

0
+ 𝑏
2

2

=

𝑓

(𝜔
2

0
)

𝑏
2

1
𝜔
2

0
+ 𝑏
2

2

.

(27)

Then

sign{
(dRe𝜆 (𝜏

2
))

d𝜏
2

}

−1

𝜏
2
=𝜏
0

= sign𝑓 (𝜔2
0
) . (28)

Thus, we obtain the following the result.
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Theorem 3. Consider system (2). In the case of 𝜏
1
= 0 and

𝜏
2
> 0,

(i) assume that one of the following two conditions holds:

(a) Δ < 0.
(b) Δ ≥ 0 and 𝑢

1
< 0.

Then the virus infection equilibrium 𝐸
∗ is locally

asymptotically stable for 𝜏
2
> 0;

(ii) in either case,

(a) 𝑎2
2
− 𝑏
2

2
< 0, or

(b) Δ ≥ 0 and 𝑢
1
> 0,

the virus infection equilibrium 𝐸
∗ is locally

asymptotically stable for 𝜏
2
∈ [0, 𝜏

0
). Further-

more, if 𝑓(𝜔2
0
) ̸= 0, then system (2) undergoes a

Hopf bifurcation at the virus infection equilib-
rium 𝐸

∗ when 𝜏
2
= 𝜏
0
.

From the above discussions, the sufficient conditions for
the existence of Hopf bifurcation were given for 𝜏

1
= 0 and

𝜏
2
> 0. Thus, under the conditions of Theorem 3, we will

study the direction of the Hopf bifurcation and the stability
of the bifurcating periodic orbits by normal form and center
manifold theory (see, e.g., [46]).

Fix 𝜏
1
= 0 and let 𝜏

2
= 𝜏
0
+ 𝜇
0
, then 𝜇

0
= 0 is the Hopf

bifurcation value, and system (47) is transformed into an FDE
in 𝐶 = 𝐶([−1, 0],R3) as

�̇� (𝑡) = 𝐿
𝜇
(𝑥
𝑡
) + 𝑓 (𝜇

0
, 𝑥
𝑡
) , (29)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃). Denote 𝐿

𝜇
: 𝐶 → R3 as

𝐿
𝜇
𝜑 = (𝜏

0
+ 𝜇
0
) 𝐴
1
𝜑 (0) + (𝜏

0
+ 𝜇
0
) 𝐴
2
𝜑 (−1) , (30)

where

𝐴
1
= (

−𝜇 − 𝛽𝐼
∗

−𝛽𝑆
∗

0

𝛽𝐼
∗

𝛽𝑆
∗
− (𝜇 + 𝛾) 0

0 𝛾 −𝜇

) ,

𝐴
2
= (

0 0 V
0 0 0

0 𝑝 −V
) ,

(31)

𝑓 (𝜇
0
, 𝜑) = (𝜏

0
+ 𝜇
0
)(

−𝛽𝜑
1
(0) 𝜑
2
(0)

𝛽𝜑
1
(0) 𝜑
2
(0)

0

) . (32)

Define

𝜂 (𝜃, 𝜇
0
) = (𝜏

0
+ 𝜇
0
) 𝐴
1
𝛿 (𝜃) − (𝜏

0
+ 𝜇
0
) 𝐴
2
𝛿 (𝜃 + 1) , (33)

where

𝛿 (𝜃) = {
0, 𝜃 ̸= 0,

1, 𝜃 = 0.
(34)

Then we can denote 𝐿
𝜇
as

𝐿
𝜇
𝜑 = ∫

0

−1

d𝜂 (𝜃, 𝜇
0
) 𝜑 (𝜃) , ∀𝜑 ∈ 𝐶 ([−1, 0] ,R

3
) . (35)

For 𝜑 ∈ 𝐶
1
([−1, 0],R3), we define

𝐴 (𝜇
0
) 𝜑 =

{{{{

{{{{

{

d𝜑 (𝜃)
d𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

d𝜂 (𝑠, 𝜇
0
) 𝜑 (𝑠) , 𝜃 = 0,

𝑅 (𝜇
0
) 𝜑 = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇
0
, 𝜑) , 𝜃 = 0.

(36)

Therefore, system (47) becomes

�̇�
𝑡
= 𝐴 (𝜇

0
) 𝑥
𝑡
+ 𝑅 (𝜇

0
) 𝑥
𝑡
, (37)

where 𝑥
𝑡
(𝜃) = 𝑥(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0). For 𝜓 ∈ ([0, 1], (R3)

∗
),

define

𝐴
∗
𝜓 (𝑠) =

{{{{{

{{{{{

{

−
d𝜑 (𝑠)
d𝑠

, 𝜃 ∈ [0, 1) ,

∫

0

−1

d𝜂𝑇 (𝑡, 0) 𝜓 (−𝑡) , 𝑠 = 0.

(38)

and a bilinear form

⟨𝜓 (𝑠) , 𝜑 (𝜃)⟩ = 𝜓 (0) 𝜑 (0)

− ∫

0

−1

∫

𝜃

𝜉=0

𝜓 (𝜉 − 𝜃) d𝜂 (𝜃) 𝜑 (𝜉) d𝜉,
(39)

where 𝜂(𝜃) = 𝜂(𝜃, 0). Hence, 𝐴(0) and 𝐴
∗ are adjoint

operators. By the above discussions, we know that ±𝑖𝜔
0
are

eigenvalues of 𝐴(0) and so they are also eigenvalues of 𝐴∗. It
can be easily proved that 𝑞(𝜃) = (1, 𝑞

2
, 𝑞
3
)
𝑇
𝑒
𝑖𝜔
0
𝜏
0
𝜃, 𝜃 ∈ [−1, 0)

is an eigenvector of𝐴(0) associated with the eigenvalue 𝑖𝜔
0
𝜏
0
,

and 𝑞∗(𝑠) = 𝐷(1, 𝑞
∗

2
, 𝑞
∗

3
)𝑒
𝑖𝜔
0
𝑠, 𝑠 ∈ (0, 1] is an eigenvector of𝐴∗

associated with the eigenvalue −𝑖𝜔
0
𝜏
0
. Denote

(1, 𝑞
2
, 𝑞
3
)
𝑇

= (1,
𝛽𝐼
∗

𝑖𝜔
0
− 𝛽𝑆∗ + 𝜇 + 𝛾

,

𝛾𝛽𝐼
∗

(𝑖𝜔
0
− 𝛽𝑆∗ + 𝜇 + 𝛾) (𝑖𝜔

0
+ 𝜇 + 𝑒−𝑖𝜔0𝜏0)

)

𝑇

,

(1, 𝑞
∗

2
, 𝑞
∗

3
) = (1,

𝛽𝐼
∗

−𝑖𝜔
0
+ 𝜇 + 𝛽𝐼∗

,
]𝑒𝑖𝜔0𝜏0

−𝑖𝜔
0
+ 𝜇 + ]𝑒𝑖𝜔0𝜏0

) ,

𝐷 = (1 + 𝑞
2
𝑞
∗

2
+ 𝑞
3
𝑞
∗

3
+ ]𝑞
3
(1 − 𝑞

∗

3
)𝜏
0
𝑒
𝑖𝜔
0
𝜏
0)
−1

,

(40)

where ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 1, ⟨𝑞∗(𝑠), 𝑞(𝜃)⟩ = 0.
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Following the procedure in [46], we obtain the following
coefficients:

𝑔
20
= 2𝜏
0
𝐷𝛽𝑞
2
(𝑞
∗

2
− 1) ,

𝑔
11
= 𝜏
0
𝐷𝛽 (𝑞

2
+ 𝑞
2
) (𝑞
∗

2
− 1) ,

𝑔
02
= 2𝜏
0
𝐷𝛽𝑞
2
(𝑞
∗

2
− 1) ,

𝑔
21
= 2𝜏
0
𝐷𝛽 (𝑞

∗

2
− 1)

× [
1

2
𝑊
1

20
(0) 𝑞
2
+𝑊
1

11
(0) 𝑞
2
+𝑊
2

11
(0) +

1

2
𝑊
2

20
(0)] ,

(41)

where

𝑊
20
(𝜃) =

𝑖𝑔
20

𝜔
0
𝜏
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜏
0
𝜃
+

𝑖𝑔
02

3𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
0
𝜃

+ 𝐸
1
𝑒
2𝑖𝜔
0
𝜏
0
𝜃
,

𝑊
11
(𝜃) = −

𝑖𝑔
11

𝜔
0
𝜏
0

𝑞 (0) 𝑒
𝑖𝜔
0
𝜏
0
𝜃
+
𝑖𝑔
11

𝜔
0
𝜏
0

𝑞 (0) 𝑒
−𝑖𝜔
0
𝜏
0
𝜃
+ 𝐸
2
,

𝐸
1
= 2𝐺
−1

1
(

−𝛽𝑞
2

𝛽𝑞
2

0

) ,

(42)

where
𝐺
1

= (

2𝑖𝜔
0
+ 𝜇 + 𝛽𝐼

∗
𝛽𝑆
∗

−]𝑒−2𝑖𝜔0𝜏0
−𝛽𝐼
∗

2𝑖𝜔
0
− 𝛽𝑆
∗
+ 𝜇 + 𝛾 0

0 −𝛾 2𝑖𝜔
0
+ 𝜇 + ]𝑒−2𝑖𝜔0𝜏0

) ,

(43)

𝐸
2
= 𝐺
−1

2
(

−𝛽 (𝑞
2
+ 𝑞
2
)

𝛽 (𝑞
2
+ 𝑞
2
)

0

) , (44)

where

𝐺
2
= (

𝜇 + 𝛽𝐼
∗

𝛽𝑆
∗

−]

−𝛽𝐼
∗

−𝛽𝑆
∗
+ 𝜇 + 𝛾 0

0 −𝛾 𝜇 + ]

). (45)

Then 𝑔
21
can be expressed definitely.

From (27), (40), and (41), we have

𝐶
1
(0) =

𝑖

2𝜔
0

(𝑔
11
𝑔
20
− 2

𝑔11


2

−

𝑔02


2

3
) +

𝑔
21

2
,

𝜇
2
= −

Re (𝐶
1
(0))

Re (𝜆 (𝜏
0
))
,

𝛽
2
= 2Re (𝐶

1
(0)) ,

𝑇
2
= −

Im (𝐶
1
(0)) + 𝜇

2
Im (𝜆


(𝜏
0
))

𝜔
0

.

(46)

Then we have the following result.

Theorem4. Assume that the conditions ofTheorem 3 (ii) hold.
Then 𝜇

2
determines the direction of the Hopf bifurcation: if

𝜇
2

> 0 (𝜇
2

< 0), then the Hopf bifurcation is forward
(backward) and the bifurcating periodic orbits exist for 𝜏

1
= 0

and 𝜏
2
> 𝜏
0
(𝜏
2
< 𝜏
0
); 𝛽
2
determines the stability of bifurcating

periodic orbits: the bifurcating orbits are asymptotically stable
(unstable) when 𝛽

2
< 0 (𝛽

2
> 0); and 𝑇

2
determines the

period of the bifurcating periodic orbits: the period increases
(decreases) when 𝑇

2
> 0 (𝑇

2
< 0).

We introduce a set of parameter values: 𝑏 = 0.8, 𝛽 = 0.3,
𝜇 = 0.1, 𝛾 = 0.2, and ] = 0.5. Consequently, 𝑅

0
= 8.0000 >

1 and 𝐸
∗

= (1.0000, 5.2500, 1.7500). We can obtain that
the conditions of Theorem 3 hold. When 𝜏

1
= 0, by direct

computation we get 𝜔
0
= 0.4660, 𝜏

0
= 4.6665, 𝐶

1
(0) =

−0.2217 − 0.0354𝑖, 𝛽
2
= −0.4434 < 0, and 𝜇

2
= 0.6722 >

0. By Theorem 3 we know that the stability of the infected
equilibrium 𝐸

∗ varies when 𝜏
2
increases and the infected

equilibrium 𝐸
∗ is asymptotically stable for 𝜏

2
∈ [0, 4.6665).

Figure 2 illustrates the results. By Theorem 4 we know that
the direction of the Hopf bifurcation is forward at 𝜏

2
= 𝜏
0
=

4.6665. AndFigure 3 illustrates the bifurcating periodic orbits
are asymptotically stable.

5. Global Asymptotic Stability

Thefollowing result shows the global stability of the virus-free
equilibrium.

Proposition 5 (see [12]). Consider the following.
If 𝑅
0
< 1, then the virus-free equilibrium of system (2) is

globally asymptotically stable for all 𝜏
1
> 0 and 𝜏

2
> 0.

Next we will prove the global stability of the virus
infection equilibrium of system (2). Let 𝑥(𝑡) = 𝑆(𝑡) − 𝑆

∗,
𝑦(𝑡) = 𝐼(𝑡)−𝐼

∗, and 𝑧(𝑡) = 𝑅(𝑡)−𝑅
∗.Then system (2) becomes

�̇� (𝑡) = − 𝜇𝑥 (𝑡) − 𝛽𝐼
∗
𝑒
−𝜇𝜏
1𝑥 (𝑡)

− 𝛽 (𝑥 (𝑡) + 𝑆
∗
) 𝑒
−𝜇𝜏
1𝑦 (𝑡 − 𝜏

1
) + ]𝑧 (𝑡 − 𝜏

2
) ,

̇𝑦 (𝑡) = 𝛽𝐼
∗
𝑒
−𝜇𝜏
1𝑥 (𝑡) − (𝜇 + 𝛾) 𝑦 (𝑡)

+ 𝛽 (𝑥 (𝑡) + 𝑆
∗
) 𝑒
−𝜇𝜏
1y (𝑡 − 𝜏

1
) ,

�̇� (𝑡) = 𝛾𝑦 (𝑡) − 𝜇𝑧 (𝑡) − ]𝑧 (𝑡 − 𝜏
2
) .

(47)

From system (2) with initial conditions (3), we know that
𝑥(𝑡)+𝑆

∗
= 𝑆(𝑡) ≤ 𝑏/𝜇(∀𝑡 ≥ 0). By themethod of constructing

Lyapunov function [47], we obtain the following result.

Theorem 6. Consider system (2) with initial conditions (3).
Assume that 𝑅

0
> 1, if

(H
1
) ] < 𝜇 <

1

2
𝛾 +𝑤]+ ], 2(𝑤 + 1)(𝜇 + 𝛾) > 𝛾 +𝑤]+

2𝛽𝑏

𝜇
,

where

𝑤 =
𝛽𝐼
∗
𝑒
−𝜇𝜏
1

2𝜇 + 𝛾
(48)
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Figure 2: Behavior and phase portrait of system (2) with 𝜏
1
= 0, 𝜏

2
= 4. The virus infection equilibrium is asymptotically stable.
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Figure 3: Behavior and phase portrait of system (2) with 𝜏
1
= 0, 𝜏

2
= 5. Hopf bifurcation occurs from the virus infection equilibrium.

holds, then the virus infection equilibrium 𝐸
∗ is globally

asymptotically stable for 𝜏
1
> 0 and 𝜏

2
> 0.

Proof. Define a Lyapunov function

𝑉
1
(𝑥, 𝑦, 𝑧) =

1

2
𝑤(𝑥 + 𝑦)

2

+
1

2
(𝑦
2
+ 𝑧
2
) . (49)

Differentiating 𝑉
1
(𝑥, 𝑦, 𝑧) along the solution of system (47),

we have
d𝑉
1
(𝑥, 𝑦, 𝑧)

d𝑡
|
(5.1)

= 𝑤 (𝑥 + 𝑦) (�̇� + ̇𝑦) + 𝑦 ̇𝑦 + 𝑧�̇�

= 𝑤 (𝑥 + 𝑦) [−𝜇𝑥 + ]𝑧 (𝑡 − 𝜏
2
) − (𝜇 + 𝛾) 𝑦]

+ 𝑦 [𝛽 (𝑥 (𝑡) + 𝑆
∗
) 𝑦 (𝑡 − 𝜏

1
) 𝑒
−𝜇𝜏
1]

+ 𝑦 [𝛽𝐼
∗
𝑒
−𝜇𝜏
1𝑥 − (𝜇 + 𝛾) 𝑦]

+ 𝑧 [𝛾𝑦 − 𝜇𝑧 − ]𝑧 (𝑡 − 𝜏
2
)]

= − 𝑤𝜇𝑥
2
− 𝑤𝜇𝑥𝑦 + 𝑤]𝑥𝑧 (𝑡 − 𝜏

2
)

+ 𝑤]𝑦𝑧 (𝑡 − 𝜏
2
) − 𝑤 (𝜇 + 𝛾) 𝑥𝑦

− 𝑤 (𝜇 + 𝛾) 𝑦
2
+ 𝛽 (𝑥 (𝑡) + 𝑆

∗
)

× 𝑦𝑦 (𝑡 − 𝜏
1
) 𝑒
−𝜇𝜏
1 + 𝛽𝐼

∗
𝑒
−𝜇𝜏
1𝑥𝑦
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− (𝜇 + 𝛾) 𝑦
2
+ 𝛾𝑦𝑧 − 𝜇𝑧

2
− ]𝑧𝑧 (𝑡 − 𝜏

2
)

= − 𝑤𝜇𝑥
2
− (𝑤 + 1) (𝜇 + 𝛾) 𝑦

2
− 𝜇𝑧
2

+ [𝛽𝐼
∗
𝑒
−𝜇𝜏
1 − 𝑤 (2𝜇 + 𝛾)] 𝑥𝑦 + 𝛾𝑦𝑧

+ 𝑤]𝑥𝑧 (𝑡 − 𝜏
2
) + 𝑤]𝑦𝑧 (𝑡 − 𝜏

2
) − 𝜇𝑧

2

+ 𝛽 (𝑥 (𝑡) + 𝑆
∗
) 𝑦𝑦 (𝑡 − 𝜏

1
) 𝑒
−𝜇𝜏
1 .

(50)

Since 𝑥(𝑡) + 𝑆
∗
= 𝑆(𝑡) ≤ 𝑏/𝜇 (∀𝑡 ≥ 0) and 𝛽𝐼∗𝑒−𝜇𝜏1 −𝑤(2𝜇+

𝛾) = 0, and by Cauchy-Schwartz inequality we obtain

d𝑉
1
(𝑥, 𝑦, 𝑧)

d𝑡
|
(5.1)

≤ −𝑤𝜇𝑥
2
− (𝑤 + 1) (𝜇 + 𝛾) 𝑦

2
− 𝜇𝑧
2

+ 𝛾𝑦𝑧 + 𝑤]𝑥𝑧 (𝑡 − 𝜏
2
) + 𝑤]𝑦𝑧 (𝑡 − 𝜏

2
)

− 𝜇𝑧
2
+ 𝛽

𝑏

𝜇
𝑦𝑦 (𝑡 − 𝜏

1
) 𝑒
−𝜇𝜏
1 ≤ −𝑤𝜇𝑥

2

− (𝑤 + 1) (𝜇 + 𝛾) 𝑦
2
− 𝜇𝑧
2
+
1

2
𝛾

× (𝑦
2
+ 𝑧
2
) +

1

2
𝑤] [𝑥2 + 𝑧2 (𝑡 − 𝜏

2
)]

+
1

2
𝑤] [𝑦2 + 𝑧2 (𝑡 − 𝜏

2
)]

+
1

2
] [𝑧2 + 𝑧2 (𝑡 − 𝜏

2
)]

+
𝑏𝛽𝑒
−𝜇𝜏
1

2𝜇
[𝑦
2
+ 𝑦
2
(𝑡 − 𝜏
1
)] .

(51)

Define

𝑉 (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
) = 𝑉
1
(𝑥, 𝑦, 𝑧) +

𝑏𝛽𝑒
−𝜇𝜏
1

2𝜇
∫

0

−𝜏
1

𝑦
2
(𝑡 + 𝜃) d𝜃

+ (𝑤] +
1

2
])∫
0

−𝜏
2

𝑧
2
(𝑡 + 𝜃) d𝜃.

(52)

Then

d𝑉 (𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)

d𝑡
|
(5.1)

=
d𝑉
1
(𝑥, 𝑦, 𝑧)

d𝑡
|
(5.1)

+
𝑏𝛽𝑒
−𝜇𝜏
1

2𝜇
[𝑦
2
− 𝑦
2
(𝑡 − 𝜏
1
)]

≤ − (𝑤𝜇 −
1

2
𝑤])𝑥2 − (𝜇 −

1

2
𝛾 − 𝑤] − ]) 𝑧2

− [(𝑤 + 1) (𝜇 + 𝛾) −
1

2
𝛾 −

1

2
𝑤] −

𝑏𝛽𝑒
−𝜇𝜏
1

2𝜇
] 𝑦
2
.

(53)
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Figure 4: Numerical simulations of system (2) with parameter
values: 𝑏 = 0.8, 𝛽 = 0.4, 𝜇 = 0.3, 𝛾 = 0.2, and ] = 0.2, and 𝐸∗ is
globally asymptotically stable.

Therefore, from (𝐻
1
) we obtain

𝑤𝜇 −
1

2
𝑤] > 0,

(𝑤 + 1) (𝜇 + 𝛾) −
1

2
𝛾 −

1

2
𝑤] −

𝑏𝛽𝑒
−𝜇𝜏
1

2𝜇
> 0,

𝜇 −
1

2
𝛾 − 𝑤] − ] > 0.

(54)

Thus, (𝐻
1
) ensures that d𝑉(𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)/d𝑡|
(5.1)

≤ 0, and
d𝑉(𝑥
𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)/d𝑡|
(5.1)

= 0 if and only if 𝑥 = 0, 𝑦 = 0,
and 𝑧 = 0. Then the only compact invariant set where
{d𝑉(𝑥

𝑡
, 𝑦
𝑡
, 𝑧
𝑡
)/d𝑡|
(5.1)

= 0} is the singleton {(0, 0, 0)}. By
LaSalle’s invariance principle [48], if 𝑅

0
> 1 and (𝐻

1
)

hold, then 𝐸
∗ is globally asymptotically stable. The proof is

completed.

Remark 7. For 𝜏
1
> 0 and 𝜏

2
> 0, Ren et al. constructed a Lya-

punov function by linearized equations [12, equations (37)].
Clearly, this is unreasonable. Thus, we define an appropriate
Lyapunov function and obtain the sufficient conditions of
global stability for the virus infection equilibrium 𝐸

∗.

We choose a set of parameter values: 𝑏 = 0.8, 𝛽 = 0.4,
𝜇 = 0.3, 𝛾 = 0.2, and ] = 0.2. Correspondingly, 𝑅

0
=

2.1333 > 1 and 𝐸
∗

= (1.2500, 1.0119, 0.4048). It can be
verified that the conditions of Theorem 6 are satisfied. For
𝜏
1
> 0 and 𝜏

2
> 0, we show that the infected equilibrium

𝐸
∗ is globally asymptotically stable in Figure 4. All of the

numerical simulations are carried out by MATLAB.

6. Conclusions

We consider a computer virusmodel with infection delay and
recovery delay. When 𝑅

0
< 1, the virus-free equilibrium of

system (2) is globally asymptotically stable and the virus fades
out from the network. When 𝑅

0
> 1, we obtain that the virus
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infection equilibrium is always locally asymptotically stable
for 𝜏
1
> 0 and 𝜏

2
= 0; for 𝜏

1
= 0 and 𝜏

2
> 0, we establish that

the time delay can destabilize the virus infection equilibrium
and give rise to Hopf bifurcations and stable periodic orbits.
For 𝜏
1
> 0 and 𝜏

2
> 0, we construct an appropriate Lyapunov

function and get that the infection equilibrium is globally
asymptotically stable under the sufficient conditions, and the
virus finally persists at a constant endemic equilibrium level.

Our results show that we can take measures to make the
basic reproduction number 𝑅

0
to be less than one leading to

the extinction of computer virus.Wemust take some effective
measures (such as the installation of antivirus software) to
decrease the infection rate 𝛽 and increase recovery rate 𝛾 of
the infected computers.

However, our results should be viewed carefully because
the model used in this paper is simplified and possibly does
not explain all relevant dynamics of computer virus.Then we
need more realistic computer virus models to study the real
network.
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