Hindawi Publishing Corporation
Abstract and Applied Analysis

Volume 2014, Article ID 858516, 10 pages
http://dx.doi.org/10.1155/2014/858516

Research Article

On an Inverse Boundary Value Problem for a Fourth Order
Elliptic Equation with Integral Condition

Yashar T. Mehraliyev

Baku State University, 1148 Baku, Azerbaijan

Correspondence should be addressed to Yashar T. Mehraliyev; yashar_aze@mail.ru

Received 22 December 2013; Accepted 16 February 2014; Published 24 March 2014

Academic Editor: Jaan Janno

Copyright © 2014 Yashar T. Mehraliyev. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

An inverse boundary value problem for a fourth order elliptic equation is investigated. At first the initial problem is reduced to
the equivalent problem for which the existence and uniqueness theorem of the solution is proved. Further, using these facts, the
existence and uniqueness of the classic solution of the initial problem are proved.

1. Introduction

The inverse problems are favorably developing section of
up-to-date mathematics. Recently, the inverse problems are
widely applied in various fields of science.

Different inverse problems for various types of partial
differential equations have been studied in many papers. First
of all we note the papers of Tikhonov [1], Lavrentev [2, 3],
Denisov [4], Ivanchov [5], and their followers.

The goal of our paper is to prove the uniqueness and
existence of the solution of a boundary value problem for a
fourth order elliptic equation with integral condition.

The inverse problems with an integral predetermination
condition for parabolic equations were investigated in [6-10].

In the papers [11-15] the inverse boundary value problems
were investigated for a second order elliptic equation in a
rectangular domain.

2. Problem Statement and Its Reduction to
Equivalent Problem

Consider the following equation:

Uy (6, 1) + Uy (1) =a () u(x,t) + f (x,1) 1)

in the domain Dy = {(x,t) : 0 < x < 1,0 <t < T} an inverse
boundary problem with the boundary conditions

u (x,T) = ¢ (%),
0<x<1),
(2)

0<t<T), (3)

u (x,0) = @, (x),
U (%,0) =@y (%), Uy (%,T) = @3 (x)

u,(0,t) =u, (1,t) = u,,, (0,t) =0,
the integral condition
1
J ulx,t)dx=0 (0<t<T), (4)
0
and with the additional condition

u(0,t)=h(t) (0<t<T), (5)

where f(x,t), ¢;(x) (i = 0,3), h(t) are the given functions
and u(x,t), a(t) are the required functions.

Definition 1. The classic solution of problems (1)-(5) is the
pair {u(x,t), a(t)} of the functions u(x, t) and a(t) possessing
the following properties:

(1) the function u(x, t) is continuous in D together with
all its derivatives contained in (1);
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(2) the function a(t) is continuous on [0, T'];

(3) all the conditions of (1)-(5) are satisfied in the
ordinary sense.

For investigating problems (1)-(5), at first consider the
following problem:

yWM) =am)yt) (0<t<T), (6)

yr (T) = 0, yrr 0) =0, ym (T) = 0,

7)

y(0) =0,

where a(t) € C[0, T] is a given function, y = y(t) is a desired
function, and under the solution of problems (6) and (7) we
will understand a function y(t) € C*[0, T satisfied in [0, T
equation (6) and conditions (7).

The following lemma is valid.

Lemma 2 (see [16,17]). Let the function a(t) € C[0, T] be such
that

||a(t)||C[O)T] < R = const. (8)

Furthermore,
2riRal, ©)
12

Then problems (6), (7) have only a trivial solution.

Alongside with inverse boundary value problem, con-
sider the following auxiliary inverse boundary value problem.
It is required to determine the pair {u(x,t),a(t)} of the
functions u(x,t) and a(t) possessing the properties (1) and
(2) of definition of the classic solution of problems (1)-(5)
from relations (1)-(3) and

u . (LH=0 (0<t<T), (10)
W () +u, ., (0,8) =a(®)h(t)+ f(0,5) (0<t<T).
(11)

The following lemma is valid.

Lemma 3. Let ¢,(x) € C[0,1] (i = 0,3)h(t) € c*lo, 1],
h(t)20 (0 < t < T), f(x,t) € C(Dy), let jol flx,t)dx =

0(0 <t < T),and let the following consistency conditions
be fulfilled:

[[otoax=0 (i=53), 1)

0
@, (0) =H (T),

@, (0) = K" (T).

¥ (0) = h(0),

@, (0)=Hh"(0),

(13)

Then the following statements are true.

(1) Each classic solution u(x,t), a(t) of problems (1)-(5) is
the solution of problems (1)-(3), (10), and (11) as well.
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(2) Each solution u(x, t), a(t) of problems (1)-(3), (10), and
(11) such that

5
ETWMmeq<L (14)

is the classic solution of problems (1)-(5).

Proof. Let u(x,t),a(t) be a solution of problems (1)-(5).
Integrating equation (1) with respect to x from 0 to 1, we have

d4 1
T J u(x,t)dx +u,,, (1,1) — ., (0,1)
’ (15)

0<t<T).

1

1
= a(t)I u(x,t)dx + J f(x,t)dx
0 0
Hence, by means of _[01 f(x,t)dx =0 (0 <t <T)and (3) we
obtain (10).

Substituting x = 0 in (1), we find

utttt (O> t) + uxxxx (O’ t) =a (t) u (O> t) + f (Os t)
(0<t<T).

Further assuming h(t) € C*[0,T] and differentiating (5)
four times, we have

Uypey 0,t) = h(4) ) ((0<t<T). (17)

Taking into account last relation and condition (5) in (16)
we obtain (11).

Now suppose that u(x,t),a(t) is a solution of problems
(1)-(3), (10), and (11); moreover, (14) is fulfilled. Then, taking
into account (3) and (10) in (15) we find

1

a* !
g | eesndx-a0 [[uwoac=o

0<t<T).
By (2) and (12), it is obvious that

1 1
J u(x,O)dxzj @ (x)dx =0,
0

0

1 1
J u, (x,T)dx = j @, (x)dx =0,

’ (19)

1 1
J ", (x,O)dsz ¢, (x)dx = 0,
0

1 1
j Uy (x,T)dx = J @; (x)dx = 0.
0 0

Since by Lemma 2, problems (18), (19) have only a trivial
solution, then fol u(x,t)dx = 0 (0 <t < T); that is, condition
(4) is fulfilled.

Further, from (11) and (16) we get

4
% w(0,8) —h(t) = a(t) u(0,£) - h(t) (20)

(0<t<T).
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By (2) and consistency conditions (13), we have

1 (0,0) = h(0) = ¢, (0) =k (0) = 0,
u, (0,T) = h' (T) = ¢, (0) = h' (T) =0,
(21)
u,; (0,0) = H" (T) = 9, (0) = K" (0) = 0,

u, (0, T) =" (T) = ¢, (0) - K" (T) = 0.

From (20) and (21), by Lemma3 we conclude that
condition (5) is fulfilled. The lemma is proved. O

3. Investigation of the Existence and
Uniqueness of the Classic Solution of the
Inverse Boundary Value Problem

We will look for the first component u(x,t) of the solution
u(x,t),a(t) of problems (1)-(3), (10), and (11) in the following
form:

u(x,t) = Zuk (t)ycosAx  (Ag = kn), (22)

k=0

where
1
u () = my, J u(x,t)cosAxdx (k=0,1,2,...), (23)
0

and moreover,

1, k=0
- 24
" {2, k=1,2,.... @)

Then applying the formal scheme of the Fourier method,
from (1), (2) we get

ul? () + Ajuy (6) = F (u,0)

(25)
(k=0,1,2,...;0<t<T),
g (0) = @gpe> w (T) = Py
ullcl (0) = @a> u}:{n (T) = s (26)
(k=0,1,2,...),

where

F (tu,a) = fi (t) +a(t)u, (1),

S @) =my Jl f (x,t) cos A x dx,
0

1
Qi :mkj @; (x) cos A x dx (i:(),_3;k:0,1,2,...).

0
(27)

From (25), (26) we obtain

1
Uy () = Qoo + 1o + <5t2 - tT) P20
15 1., T
+ (81‘ - ET t) @30 + J G, (t,7) F, (t;u) dT,
0

(28)

x {i [_ (4P;: + 1) (ch2pT + cos2p,T)
P
+ chpt cos p (2T - t)
+chp (2T —t) cos pkt] Pok

s (4p14< + 1) (ch2p T + cos2p,T)

P

+ % (chp (T —t)sinp, (T +1t)
Pk

+chp (T +t)sinp, (T —t)
—shp (T —t)cos p (T +1)

+shp (T +t) cos p, (T - t)) ] Pik
- [_i (- 26T) (49, +1)
P

2
x (ch2pT + cos2pT) = —
k

X (shpe (2T —t) sin pit + shpet (2T —t)

x sin pp 2T - t)) ] Dok

+ [—i (i - tT2) (4p4 + 1)
P\ 3 «
1
X (ch2pT + cos2p,T) + —
2p;
X (shpy (T —t)sinp (T +1)
—shp (T —t)cosp (T +1)

—shp (T +t) cos p, (T — t)) ] Qs

T
+ J Gy (t,7) F. (t51,0) dr} ,
0

(29)



where

G, (t, 1) =

G (t, 1)

o () [chp QT +t—7)sinp (t— 1)
+chp, QT —t —1)sinp, (t + 1)
—shp, (2T +t — 1) cos p, (t — T)
+shp, QT —t — 1) cos p (t + 1)
—chp (t+1)sinp, T -t - 1)
+chp (t—1)sinp, QT +t - 1)
—shp, (t+1)cosp T —t — 1)

—shp, (t—1)cosp, T +t - 1)],
tel0,1],

” I(T) [~ chp 2T -t + 1) sinp (t - 1)
+chp, QT —t — 1) sinpg (t + 1)
—shp, QT -t + 1) cos p, (t — 1)
+shp, QT —t— 1) cos p (t + 1)
—chp (t+1)sinp, QT -t - 1)
+chp (t—1)sinp, QT —t + 1)
—shp, (t+71)cosp, QT —t — 1)

+shp, (t — 1) cos p T -t +7)],
telr,T],

and moreover,

V2
a (T) = -8p; (ch2pT + cos2pT), py = 7,\k,

After substituting the expressions from (28), (29) into
(22), for determining the component of the solution of

problems (1)-(3), (10), and (11) we get

u(x,t)

1
= Qoo TP + (Etz - tT) P20

T

+ <1t3 - 1T2t> P30 + J G, (t,7) Fy (t;u) dt
6 2 0

(30)

(31)
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+ i { 1 {% [_ (4p14< + 1) (ch2pT + cos 2p,T)

k=1 ak (T)

+ chpyt cos p (2T — t)

+chp, (2T —t) cos pkt] Pok

+ [—2 (4pf‘< + 1) (ch2p T + cos 2p,T)
Pr

+ % (chp (T —t)sinp, (T +1t)
Pk

+chp (T +1t)sinp, (T —t)
—shp (T —t)cos p (T + 1)

+shp (T +t) cos p (T — t)) ] P1k

A R GRE [ 28Y
Pk

2
x (ch2pT + cos2pT) — =
Pk

X (shpe (2T —t) sin pt + shpt (2T —t)

x sin pp 2T - 1)) ] ok

+{“L<§—fﬁ)(g§+1)

Pr

1
X (ch2pT + cos2p,T) + —;
2p;

X (shpy (T —t)sinp (T +1)

—shp (T —t)cosp (T +1)

—shpy (T +t) cos p, (T — 1)) ] Pk

T
+ J G (t,7) F (T34, a) dTH» cos Apx,
0

(32)

where

F. (tu,a) = fr, 1) +a(t) u (t)
=my Jl (f (x,t) +a(t)u(x,t))cos Apx dx
0

(k=0,1,2,...).
(33)

Now, from (11) and (22) we have

a(t)=h'(t) {h“‘) ) - £ (0,1) +§ A (t)]». (34)

k=1
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For obtaining an equation for the second component a(t)
of the solution {u(x,t),a(t)} of problems (1)-(3), (10), and
(11), substitute expression (29) into (34):

a)=h" @) {h @) - £ 0,0}

+k§] k o (T)

X {3 [— (4p}§ + 1) (ch2pT + cos 2p,T)
Pk
+chpt cos p, 2T —t)

+chp, (2T —t) cos pkt] Pok
+ [—2 (4pg +1)
Pr

x (ch2p, T + cos 2p,T)

+ % (chp (T —t)sinp (T +1t)
P

+ chp (T +t)sinp (T —t)
—shp (T —t)cosp (T +1)

+shp (T +1)

x cos p (T — 1)) ] P1k

+ [_i( > o7 (4t +1)

x (ch2p, T + cos 2p,T) — %
i

X (shp, (2T —t) sin pit

+ shpt 2T —t)

xsin p 2T - 1)) ] Dok

3

+ [—i (% —tTZ) (4pg +1)

P

x (ch2p, T + cos 2p,T) + %
2p;
X (shp (T —t)sin p (T +1)
—shp (T —t)cosp (T +1t)

—shp, (T +1)

x cos p (T = 1)) | p3

T
+J G (t,7) F (T34, a) dT}} ,

0
(35)

where

E (tu,a) = fr (1) +a(t)u, (t)
=2 Jl (f (x,t) +a(t)u(x,t))cos\xdx (36)
0

(k=1,2,...).

Thus, problems (1)-(3), (10), and (11) were reduced to
systems (32), (35) with respect to the unknown functions
u(x,t) and a(t).

The following lemma is important for studying the
uniqueness of the solution of problems (1)-(3), (10), and (11).

Lemma 4. If {u(x,t),a(t)} is any solution of problems (1)-(3),
(10), and (11), then the function

1
u () = my L u(x,t)cosA xdx (k=0,1,2,...) (37)

satisfies systems (28), (29) in [0, T].

Proof. Let {u(x,t),a(t)} be any solution of problems (1)-(3),
(10), and (11). Then, having multiplied the both sides of (1)
by the function my cos A x (k = 0,1,2,...), integrating the
obtained equality with respect to x from 0 to 1, and using the
relations

1
my L uy, (x,t) cos A x dx

d* 1

= % (mk L u (x,t) cos )ka dx) — u](f) )
(k=0,1,2,...),

(38)

1
my J.o Uy rr (X, 1) cOS Apx dx

1
=X (mk J-o u (x,t) cos A x dx> = Ny (1)

(k=0,1,2,...),

we get that (25) is satisfied.
Similarly, from (2) we get that condition (26) is fulfilled.
Thus, u,(¢) (k=0,1,2,...)is a solution of problems (25),
(26). Hence, it directly follows that the function u,(¢) (k =
0,1,2,...) satisfies [0, T] in systems (28), (29). The lemma is
proved. O

Remark 5. From Lemma 4 it follows that for proving the
uniqueness of the solution of problems (1)-(3), (10), and (11),
it suffices to prove the uniqueness of the solution of systems
(32), (35).

In order to investigate problems (1)-(3), (10), and (11),
consider the following spaces.



Denote B;T the set of all the functions of the form

u(x,t) = Zuk (t)cos\x (A = 7k) (39)

k=0

considered in Dy, where each of the functions u(t) (k =

0,1,2,...)is continuous on [0, T] and
© ) 1/2
10 = a0l +  £08b Ol ) <0
k=1

(40)

In this set, we determine the operation of addition and
multiplication by the number (real) in the usual way: under
the zero element of this set we will understand the function
u(x,t) = 0 on Dy, and determine the norm in this set by the
following formula:

e, Ol = T (). (41)

Prove that all these spaces are Banach spaces. Indeed, the
validity of the first two axioms of the norms is obvious, and
validity of the third axiom of the norm is easily established
by means of the summation inequality of Minkovsky; con-
sequently, B T is a linear normalized space. Now prove its
completeness Let

u, (x,t) = iuk,n (t)coshx (n=1,2,...) (42)
k=0

be any sequence fundamental in B;)T. Then forany e > 0 there
exists a number #, such that

”un (X, t) - um (X, t)"BgT

= Yoy (£) = tho,, ()l oy

N NG (43)
+ (Z("i“”k,n () =t Dll o) ) <€

Vn,m > n,.

Consequently, for any fixed k (k = 1,2,...),
“uO,n (t) - uO,m (t)"C[O,T] <é&
(44)
[ttsep (8) = 11 (t)||C[O’T] <e Vn,mzx=n,.

This means that for the sequence {u, ,(t)},°; and for any
fixed k (k = 1,2,...), the sequences {u (1)}’ are funda-
mental in C[0,T] and consequently by the completeness of
C[0, T] they converge in the space C[0, T']:

Clo,T]
Uy, ) — uy () € C[0,T] as n — oo,
(45)
clo.1]
U, (1) — uy (t) € C[0,T] as n — oo.
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Further, by (43), for any fixed number N,

““0,:1 (t) — g, (t)"C[O,T]

12
( Z( s () =ty (t)”C[O,T] )2 ) <e  (46)

Vn, m 2 n,.

Using relations (45) and passing to limit as m — o0 in
(46), we get

"”o,n (t) —ugg (t)"C[O,T]

N 5 1/2
+(Z(Ailluk,m—uk,m<t)||cm)) <e (47

Vn > n,.

Hence, by arbitrariness of N (or the same, passing to limit
as N — 00), we get

"uO,n (t) - u0,0 (t)"C[O,T]
o 1/2
2
(S 080 -0 Ol ) < 90
Vn > n,.

Accept the denotation

Uy (x,t) = Z”k,o (t) cos Ayx. (49)
k=0

Since uy(x,t) = [ug(x,t)— U, (x, )]+ U, (x,t) and by (48)

uy(x,t) — U, (x,t) € Bg)T and also uns(x, t) € B;’T, we get that

Uy (x,t) € B} . (50)

Then, by (48) for any & > 0 there exists a number #, such
that

[, (6, ) = g (x, t)“ng <e Vn=n, (51)

And this means that the sequence u,(x,t) converges
in B;)T to the element uy(x,t) € B;)T. This proves the
completeness and consequently the Banach property of the
space Bg I

Denote by E;. the space BST x C[0,T] of the vector
functions z(x, t) = {u(x, t), a(t)} with the norm

Iz e, )l = llue Cx, O)llgg,, + lla Ol gor- (52)

It is known that B;)T and E;. are Banach spaces.
Now, in the space E. consider the operator

® (u,a) = {0, (u,a), 0, (u,a)}, (53)
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where

D, (u,a) =1 (x,t) = OZO:ﬁk (t) cos Aix,
k=0 (54)

®, (u,a) =af(t),
iy (1), 4 (t) (k =1,2,...),and a(t) are equal to the right hand

sides of (28), (29), and (35), respectively.
It is easy to see that

1
ch2p T + cos2p, T > ECthkT’

chpt chp, 2T —t)
ch2p T +cos2pT = ch2pT + cos2p T ~
(0<t<T),
chp, (T —1t) chp (T +1)
ch2p T +cos2pT = ch2pT + cos2p T ~
0<t<T),
shpt shp, (2T —t)
ch2p T +cos2p,T ~ ~ ch2pT + cos2p T ~
(0<t<T),
shp (T —t) <o, shp (T +1t) <2
ch2p T + cos 2p, T ch2p T + cos 2p, T
(0<t<T),
chp QT +t—1) <5 chp, QT -t —1) <5
ch2p T +cos2p, T~ ch2p T +cos2p T ~
(0<t<t<T),

shp, QT +t—1)

- shp QT -t —1)
ch2p T + cos2p T ~

<
ch2p T + cos2p T ~

>

O0<t<t<T),
chp, (t + 1) chp, (t — 1)
ch2p T +cos2pT = ch2pT +cos2p T ~
(0<t<t<T),
shp, (t + 1) shp (t - 7)
ch2p T +cos2pT = ch2pT +cos2p T ~
(0<t<t<T),
chp 2T -t + 1) chp 2T -t —1) <>
ch2p T +cos2p T~ ch2pT + cos2p T ~
0<7<t<T),
shp, QT -t + 1) <o, shp, QT -t -1) <
ch2p T + cos2p, T ch2p T + cos2p, T
(0<7<t<T),

7
chp (t + 1) < chp, (t — 1) <2
ch2p, T + cos 2p, T ch2p, T + cos2p, T
0<7<t<T),
shp, (t + 1) <o, shp (t - 1) <)
ch2p T + cos2p T ch2p T + cos2p T
O0<7<t<T)
(55)

Taking into account these relations, by means of simple
transformations we find

17 (t)”C[O,T]
S I%ol +T |‘P01| +T? |‘P02| +T° |‘P03|
7 t 1/2
+ 5T3 \/T<J |f0 (T)|2dT>
0

7
+ 5T4||a Ol cro.r [l (t)“C[O,T] >

(s

k=1

o ) 1/2
2Bt
k=1

12
- 2
(i Ol )

o 1/2
" ? (5T +8) (Z(Ai |(p1k|)2>

k=1

+

“I%

(s« 23) (S0t )

k=

—

1/2

+

“I%

° (o) (B0l

oo N
+ 16\/3_T(J Z(Ai Ife @) dT)

0 k=1

o 1/2
2
+ 16@T||a<t)||cm,n(Z(Ailluk Olloor) ) ,

k=

—_



18 Oleor < [ O qom

M8

Ao sook,

|

k

1/2
A;Z)
1
1/2

1
~ (5T +8
+, 6T +8)

> (3 |§"0k|)2>

- 12
» Z(Ai|¢lk|)2> L sreava)

(56)

Suppose that the data of problems (1)-(3), (10), and (11) satisfy
the following conditions:

1) gi(x) € C'0,1], 9(x) € L,(0,1), and ¢/(0) =
9l(1) = ¢/ (0) = ¢'(1) = ¢! (0) = ¢! (1) = 9{”(0) =
¢ (1) =0 (i =0,3).

(2) f(x 1), fi(x,t) € C(Dr), frx(x,t) € L,(Dy), and
£.0,6) = f.(1,t) =0 (0 <t <T).

(3) h(t) € C*[0,T], h(t)#0 (0 <t <T).

Then from (56), we get

17 (e Dllgs, < Ay (T) + By (T) la ()l ogozry e (5, )l

la®llcr) < Az (T) + By (T) lla O)licjo,r 1 (%, Ol
(57)
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where
Ay (T) = |9 (X)||L2(0,1) + T, (x)||L2(0,1) + TZH‘PZ (x)||L2(0,1)
7
+T° "‘P3 (-x)“Lz(O,l) + gTs \/T”f (x, t)”Lz(DT)

V6

+ 94£"(P(()6) (x)"Lz(O’l) s (5T +8)

of? ], gy + 2 (57° + 242)

<o 0l 5T+ 8) o 0

+16V3T| fo (5 8) .0
B, (T) = 16 V3T + §T4’

Ay (1) =™ (t)“C[O,T]

oo 1/2
x «l”hm) O = f 0] o * (Z )L;z)
k=1

N [jll"‘/’(()s) (x)"Lz(o,l) + 4—11 (5T +8)

<[of? ol g+ 5 (577 +22)
<o Ol o0y 3 (57 +8)

x5 o, + 82T

MMAn%MmJP

o 1/2
B, (T) = |0 (t)||c[m< Af) 8V2T.
k=1
(58)
From inequalities (57) we get
1 Go, ), + 1 Ol
(59)

< A(T) + B(T) la@®)lcjo,r e (x D)l g3, »
where

A=A, (T)+A,(T),  B(T)=B,(I)+B,(T).

(60)
So we can prove the following theorem.
Theorem 6. Let conditions (1)-(3) be fulfilled and

(A(T)+2)*B(T) < 1. (61)
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Then problems (1)-(3), (10), and (11) have a unique
solution in the ball K = KR(||z||E; < R = A(T) + 2) of the

space E;

Proof. In the space E. consider
z = Oz, (62)

where the components ®;(u,a) (i = 1,2) of the operator
®(u, a) are defined from the right sides of (32) and (35).

Consider the operator ®(u, a) in the ball K = Kj from
E;.. Similarly to (59), we get that for any z,z,,z, € Kj the
following estimates are valid:

19z]lgs < A(T) + B(T) lla (O)llcpo,r llus (. )l g3,
< A(T) + B(T) R
< A(T)+B(T)(A(T) +2)°,

"(DZI - (DZZHE?F (63)

<B(T)R (||a1 ) = a, O com

Hu G 1) 5 (D))

<B(T)(A(D) +2) |z - 2] -

Then taking into account (61) in (63) it follows that the
operator @ acts in the ball K = Kj and is contractive.
Therefore, in the ball K = Kj the operator ® has a unique
fixed point {u, a} that is a unique solution of (62) in the ball
K = Kj; that is, it is a unique solution of systems (32), (35) in
the ball K = Kj.

The function u(x,t) as an element of the space B;,T is
continuous and has continuous derivatives u,.(x, t), u,..(x, t),
Uy (6, DU (X, 1), U (1) in D

From (25) it in easy to see that

. 5 1/2
(S0 0l

k=1
1/2
- (64)
< ﬁ(;()‘i"”k (t)"cm,ﬂ)z)
=1

V2 la @y e t) + f 6D oy

L,(0,1)"

Hence it follows that u,,,,(x, ) is continuous in Dy.

It is easy to verify that (1) and conditions (2), (3), (10), and
(11) are satisfied in the ordinary sense.

Consequently, u(x, 1), a(t) is a solution of problems (1)-
(3), (10), and (11), and by Lemma 4 it is unique in the ball K =
K. The theorem is proved. O

By means of Lemma 3, a unique solvability of initial
problems (1)-(5) follows from the last theorem.

9
Theorem 7. Let all the conditions of Theorem 6 be fulfilled:
1
J f(xt)dx=0 (0<t<T),
0
1 —
(x)dx=0 (i=0,3),
[, oax=0 (i-03) "

9 (0)=h(0), @ (0)=H(T), ¢,(0)=h"(0),

@, (0) =H"(T), % (A(T)+2)T* < 1.

Then problems (1)-(5) have a unique classic solution in
the ball K = KR(”Z"E-; < R = A(T) + 2) of the space E;
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