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We establish the Poincaré-type inequalities for the composition of the homotopy operator, exterior derivative operator, and the
projection operator with 𝐿𝜑-norm applied to the nonhomogeneous 𝐴-harmonic equation in 𝐿𝜑(Ω)-averaging domains.

1. Introduction

The purpose of the paper is to develop the Poincaré-type
inequalities for the composition of the homotopy operator
𝑇, exterior derivative operator 𝑑, and the projection operator
𝐻 with 𝐿𝜑-norm. These operators play critical roles in
investigating the properties of the solutions to PDEs and in
controlling oscillatory behavior of the solutions in domains
[1–6]. We first establish the local Poincaré inequalities for the
composition 𝑇∘𝑑 ∘𝐻 in 𝐿𝜑(Ω)-averaging domains.Then, we
prove the global Poincaré inequalities for the composition of
𝑇 ∘ 𝑑 ∘ 𝐻 in 𝐿𝜑(Ω)-averaging domains.

In this paper, we assume Ω is a bounded and convex
domain in R𝑛, 𝑛 ≥ 2 and 𝐵 = 𝐵(𝑥0, 𝑟) is a ball that is
centred at 𝑥0 with 𝑟 as its radius. For any 𝜎 > 0, we use 𝜎𝐵
to denote the ball with centred at 𝑥0 with radius 𝜎𝑟. We do
not distinguish the balls from the cubes in this paper. We use
|𝐸| to denote the Lebesgue measure of a set 𝐸 ⊂ R𝑛. We call
𝜔 a weight if 𝜔 ∈ 𝐿1loc(R

𝑛
) and 𝜔 > 0 a.e. For a function 𝑢,

we denote the average of 𝑢 over 𝐵 by 𝑢𝐵 = (1/|𝐵|) ∫𝐵 𝑢 𝑑𝑥.
Differential forms are extensions of functions in R𝑛. For
example, the function 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) is called a 0-form.
Moreover, if 𝑢(𝑥1, 𝑥2, . . . , 𝑥𝑛) is differentiable, it is called a
differential 0-form. The 1-form 𝑢(𝑥) in R𝑛 can be written as
𝑢(𝑥) = ∑

𝑛

𝑖=1
𝑢𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥𝑖. If the coefficient functions

𝑢𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑛), 𝑖 = 1, 2, . . . , 𝑛, are differentiable, 𝑢(𝑥) is
called a differential 1-form. Similarly, a differential 𝑘-form
𝑢(𝑥) is generated by {𝑑𝑥𝑖
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∧ 𝑑𝑥𝑖
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∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑖
𝑘

}, 𝑘 = 1, 2, . . . , 𝑛,
that is, 𝑢(𝑥) = ∑

𝐼
𝑢𝐼(𝑥)𝑑𝑥𝐼 = ∑𝑢𝑖

1
𝑖
2
⋅⋅⋅𝑖
𝑘

(𝑥)𝑑𝑥𝑖
1

∧ 𝑑𝑥𝑖
2

∧ ⋅ ⋅ ⋅ ∧

𝑑𝑥𝑖
𝑘

, where 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘), 1 ≤ 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘 ≤ 𝑛.

Let ∧𝑙 = ∧𝑙(R𝑛) be the set of all 𝑙-forms in R𝑛, 𝐷(Ω, ∧𝑙) be
the space of all differential 𝑙-forms onΩ and 𝐿𝑝(Ω, ∧𝑙) be the
𝑙-forms 𝑢(𝑥) = ∑

𝐼
𝑢𝐼(𝑥)𝑑𝑥𝐼 on Ω satisfying ∫

Ω
|𝑢𝐼|
𝑝
< ∞ for

all ordered 𝑙-tuples 𝐼, 𝑙 = 1, 2, . . . , 𝑛. We denote the exterior
derivative by 𝑑 : 𝐷(Ω, ∧𝑙) → 𝐷(Ω, ∧𝑙+1) for 𝑙 = 0, 1, . . . , 𝑛−
1, and define the Hodge star operator ∗ : ∧𝑘 → ∧

𝑛−𝑘 as
follows: if 𝑢 = 𝑢𝑖

1
𝑖
2
⋅⋅⋅𝑖
𝑘

(𝑥1, 𝑥2, . . . , 𝑥𝑛)𝑑𝑥𝑖
1

∧ 𝑑𝑥𝑖
2

∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑖
𝑘

=

𝑢𝐼𝑑𝑥𝐼, 𝑖1 < 𝑖2 < ⋅ ⋅ ⋅ < 𝑖𝑘, is a differential 𝑘-form, then
∗𝑢 = ∗(𝑢𝑖

1
𝑖
2
⋅⋅⋅𝑖
𝑘

𝑑𝑥𝑖
1

∧ 𝑑𝑥𝑖
2

∧ ⋅ ⋅ ⋅ ∧ 𝑑𝑥𝑖
𝑘

) = (−1)
∑(𝐼)
𝑢𝐼𝑑𝑥𝐽,

where 𝐼 = (𝑖1, 𝑖2, . . . , 𝑖𝑘), 𝐽 = {1, 2, . . . , 𝑛} − 𝐼, and ∑(𝐼) =
(𝑘(𝑘 + 1)/2) + ∑

𝑘

𝑖=1
𝑖𝑗. The Hodge codifferential operator 𝑑∗ :

𝐷

(Ω, ∧
𝑙+1
) → 𝐷


(Ω, ∧
𝑙
) is given by 𝑑∗ = (−1)𝑛𝑙+1 ∗ 𝑑∗ on

𝐷

(Ω, ∧
𝑙+1
), 𝑙 = 0, 1, . . . , 𝑛 − 1.

We use 𝑀 to denote a bounded and convex domain on
R𝑛. Let∧𝑙𝑀 be the 𝑙th exterior power of the cotangent bundle,
let 𝐶∞(∧𝑙𝑀) be the space of smooth 𝑙-forms on 𝑀, and
W(∧𝑙𝑀) = {𝑢 ∈ 𝐿1loc(∧

𝑙
𝑀) : 𝑢 has generalized gradient}.

The harmonic 𝑙-fields are defined by H(∧𝑙𝑀) = {𝑢 ∈

W(∧𝑙𝑀) : 𝑑𝑢 = 𝑑∗𝑢 = 0, 𝑢 ∈ 𝐿𝑝 for some 1 < 𝑝 < ∞}.
The orthogonal complement of H in 𝐿1 is defined by H⊥ =
{𝑢 ∈ 𝐿

1
: ⟨𝑢, ℎ⟩ = 0 for all ℎ ∈ H}. Then, the Green’s

operator 𝐺 is defined as 𝐺 : 𝐶∞(∧𝑙𝑀) → H⊥ ∩ 𝐶∞(∧𝑙𝑀)

by assigning 𝐺(𝑢) as the unique element of H⊥ ∩ 𝐶∞(∧𝑙𝑀)
satisfying Poisson’s equation Δ𝐺(𝑢) = 𝑢 − 𝐻(𝑢), where 𝐻 is
the harmonic projection operator that maps 𝐶∞(∧𝑙𝑀) onto
H so that 𝐻(𝑢) is the harmonic part of 𝑢. See [7, 8] for
more properties of these operators.The differential forms can
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be used to describe various systems of PDEs and to express
different geometric structures on manifolds. See [9, 10].

The operator 𝐾𝑦 with the case 𝑦 = 0 was first
introduced by Cartan in [11]. Then, it was extended to
the following version in [12]. To each 𝑦 ∈ Ω there
corresponds a linear operator 𝐾𝑦 : 𝐶

∞
(Ω, ∧
𝑙
) →

𝐶
∞
(Ω, ∧
𝑙−1
) defined by (𝐾𝑦𝑢)(𝑥; 𝜉1, . . . , 𝜉𝑙−1) = ∫

1

0
𝑡
𝑙−1
𝑢(𝑡𝑥 +

𝑦 − 𝑡𝑦; 𝑥 − 𝑦, 𝜉1, . . . , 𝜉𝑙−1)𝑑𝑡 and the decomposition 𝑢 =
𝑑(𝐾𝑦𝑢) + 𝐾𝑦(𝑑𝑢). A homotopy operator 𝑇 : 𝐶∞(Ω, ∧𝑙) →
𝐶
∞
(Ω, ∧
𝑙−1
) is defined by averaging 𝐾𝑦 over all points 𝑦 ∈

Ω : 𝑇𝑢 = ∫
Ω
𝜙(𝑦)𝐾𝑦(𝑑𝑢), where 𝜙 ∈ 𝐶

∞

0
(Ω) is normalized so

that ∫𝜙(𝑦)𝑑𝑦 = 1.
We are particularly interested in a class of differen-

tial forms satisfying the well-known nonhomogeneous 𝐴-
harmonic equation

𝑑
∗
𝐴 (𝑥, 𝑑𝑢) = 𝐵 (𝑥, 𝑑𝑢) , (1)

where 𝐴 : Ω × ∧𝑙(R𝑛) → ∧
𝑙
(R𝑛) and 𝐵 : Ω × ∧𝑙(R𝑛) →

∧
𝑙−1
(R𝑛) satisfy the conditions

𝐴 (𝑥, 𝜉)
 ≤ 𝑎

𝜉

𝑝−1
, 𝐴 (𝑥, 𝜉) ⋅ 𝜉 ≥

𝜉

𝑝
,

𝐵 (𝑥, 𝜉)
 ≤ 𝑏
𝜉

𝑝−1

(2)

for almost every 𝑥 ∈ Ω and all 𝜉 ∈ ∧𝑙(R𝑛). Here 𝑎 > 0 and 𝑏 >
0 are constants and 1 < 𝑝 < ∞ is a fixed exponent associated
with (1). A solution to (1) is an element of the Sobolev space
𝑊
1,𝑝

loc (Ω, ∧
𝑙−1
) such that ∫

Ω
𝐴(𝑥, 𝑑𝑢) ⋅ 𝑑𝜑 +𝐵(𝑥, 𝑑𝑢) ⋅ 𝜑 = 0 for

all 𝜑 ∈ 𝑊1,𝑝loc (Ω, ∧
𝑙−1
) with compact support. If 𝑢 is a function

(0-form) in R𝑛, (1) reduces to

div𝐴 (𝑥, ∇𝑢) = 𝐵 (𝑥, ∇𝑢) . (3)

If the operator 𝐵 = 0, (1) becomes

𝑑
∗
𝐴 (𝑥, 𝑑𝑢) = 0, (4)

which is called the homogeneous 𝐴-harmonic equation. Let
𝐴 : Ω × ∧

𝑙
(R𝑛) → ∧

𝑙
(R𝑛) be defined by 𝐴(𝑥, 𝜉) =

𝜉|𝜉|
𝑝−2 with 𝑝 > 1. Then, 𝐴 satisfies the required conditions

and 𝑑∗𝐴(𝑥, 𝑑𝑢) = 0 becomes the 𝑝-harmonic equation
𝑑
∗
(𝑑𝑢|𝑑𝑢|

𝑝−2
) = 0 for differential forms. Some results have

been obtained in recent years about different versions of the
𝐴-harmonic equation; see [1, 2, 8, 9, 13–15].

2. Main Results and Proofs

Definition 1. Let 𝜑 be a continuously increasing convex
function on [0,∞)with 𝜑(0) = 0, and letΩ be a domain with
𝜇(Ω) < ∞. If 𝑢 is a measurable function inΩ, then we define
the Orlicz norm of 𝑢 by

‖𝑢‖𝜑,Ω = inf {𝑘 > 0 : ∫
Ω

𝜑(
|𝑢 (𝑥)|

𝑘
) 𝑑𝑥 ≤ 1} . (5)

A continuously increasing function 𝜑 : [0,∞) with 𝜑(0) = 0
is called an Orlicz function, and a convex Orlicz function 𝜑 is
often called a Young function.

From Definition 1, it is easy to see that for any domain
Ω ⊂ R𝑛

∫
Ω

𝜑(
|𝑢 (𝑥)|

‖𝑢‖𝜑,Ω

)𝑑𝑥 ≤ 1 (6)

if ‖𝑢‖𝜑,Ω is finite.

Definition 2. Let 𝜑 be an increasing convex function on
[0,∞)with 𝜑(0) = 0. We call a proper subdomainΩ ⊂ R𝑛 an
Orlicz space 𝐿𝜑(Ω), if 𝜇(Ω) < ∞ and there exists a constant
𝐶 such that


𝑢 − 𝑢𝐵

0

𝜑,Ω
≤ 𝐶 sup
𝐵⊂Ω

𝑢 − 𝑢𝐵
𝜑,𝐵 (7)

for some ball 𝐵0 ⊂ Ω and all integrable functions 𝑢 in Ω,
where the supremum is over all balls 𝐵 with 𝐵 ⊂ Ω.

Definition 3 (see [15]). We say that a Young function 𝜑 lies in
the class 𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, if (i) 1/𝐶 ≤
𝜑(𝑡
1/𝑝
)/𝑔(𝑡) ≤ 𝐶 and (ii) 1/𝐶 ≤ 𝜑(𝑡1/𝑝)/ℎ(𝑡) ≤ 𝐶 for all 𝑡 > 0,

where 𝑔 is a convex increasing function and ℎ is a concave
increasing function on [0,∞).

From [15], we know that the class 𝐺(𝑝, 𝑞, 𝐶) contains
some very interesting functions, such as 𝜑(𝑡) = 𝑡𝑝 and 𝜑(𝑡) =
𝑡
𝑝log𝛼
+
(𝑡), 𝑝 ≥ 1, 𝛼 ∈ R, and each of 𝜑, 𝑔 and ℎ is doubling in

the sense that its values at 𝑡 and 2𝑡 are uniformly comparable
for all 𝑡 > 0, and the consequent fact that

𝐶1𝑡
𝑞
≤ ℎ
−1
(𝜑 (𝑡)) ≤ 𝐶2𝑡

𝑞
, 𝐶1𝑡

𝑝
≤ 𝑔
−1
(𝜑 (𝑡)) ≤ 𝐶2𝑡

𝑝
,

(8)

where 𝐶1 and 𝐶2 are constants. We will need the following
reverse Hölder inequality.

Lemma4 (see [4]). Let 𝑢 be a solution of the nonhomogeneous
𝐴-harmonic equation (1) in a bounded and convex domain Ω
and 0 < 𝑠, 𝑡 < ∞. Then, there exists a constant 𝐶, independent
of 𝑢, such that

‖𝑢‖s,𝐵 ≤ 𝐶|𝐵|
(𝑡−𝑠)/𝑠𝑡

‖𝑢‖𝑡,𝜎𝐵 (9)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω for some 𝜎 > 1.

Lemma 5 (see [1]). Let 𝑢 be a solution of the nonhomogeneous
𝐴-harmonic equation (1) in a bounded and convex domainΩ.
Let 𝐻 be the projection operator, and let 𝑇 : 𝐶∞(Ω, Λ𝑙) →
𝐶
∞
(Ω, Λ
𝑙−1
) be the homotopy operator. Then, there exists a

constant 𝐶, independent of 𝑢, such that
𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑠,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝑠,𝐵
(10)

for all balls 𝐵 with 𝐵 ⊂ Ω.

Lemma 6 (see [1]). Let 𝑢 be a solution of the nonhomogeneous
𝐴-harmonic equation (1) in a bounded and convex domainΩ.
Let 𝐻 be the projection operator, and let 𝑇 : 𝐶∞(Ω, Λ𝑙) →
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𝐶
∞
(Ω, Λ
𝑙−1
) be the homotopy operator. Then, there exists a

constant 𝐶, independent of 𝑢, such that

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝑠,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝑠,𝜎𝐵
(11)

for all balls 𝐵 with 𝜎𝐵 ⊂ Ω, where 𝜎 > 1 is a constant.

Theorem 7. Let 𝜑 be a Young function in the class 𝐺(𝑝, 𝑞, 𝐶),
1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, and let Ω be a bounded convex
domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and 𝑢 is a solution of
the nonhomogeneous𝐴-harmonic (1) inΩ, 𝜑(|𝑑𝑢|) ∈ 𝐿1loc(Ω).
Let 𝐻 be the projection operator, and let T : 𝐶∞(Ω, Λ𝑙) →
𝐶
∞
(Ω, Λ
𝑙−1
) be the homotopy operator. Then, there exists a

constant 𝐶, independent of 𝑢, such that

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝜎𝐵
(12)

for some 𝜎 > 1 and all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Proof. For any constant 𝑘 > 0, from Lemmas 4 and 5, (i) in
Definition 3, using the fact that 𝜑 is an increasing function,
Jensen’s inequality, and noticing that 𝜑 and 𝑔 are doubling,
we have

𝜑(
1

𝑘
(∫
𝐵

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑞
𝑑𝑥)

1/𝑞

)

≤ 𝜑(
1

𝑘
𝐶1|𝐵|
(𝑝−𝑞)/𝑝𝑞

(∫
𝜎𝐵

|𝑇 (𝑑 (𝐻 (𝑢)))

− (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑝
𝑑𝑥)
1/𝑝

)

≤ 𝜑(
1

𝑘
𝐶2|𝐵|
1+(𝑝−𝑞)/𝑝𝑞 diam (𝐵) (∫

𝜎𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝜑((
1

𝑘𝑝
𝐶
𝑝

2
|𝐵|
𝑝+(𝑝−𝑞)/𝑞

(diam (𝐵))𝑝 ∫
𝜎𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝐶3𝑔(
1

𝑘𝑝
𝐶
𝑝

2
|𝐵|
𝑝+(𝑝−𝑞)/𝑞

(diam (𝐵))𝑝 ∫
𝜎𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

= 𝐶3𝑔(∫
𝜎𝐵

1

𝑘𝑝
𝐶
𝑝

2
|𝐵|
𝑝+(𝑝−𝑞)/𝑞

(diam (𝐵))𝑝|𝑑𝑢|𝑝𝑑𝑥)

≤ 𝐶3 ∫
𝜎𝐵

𝑔(
1

𝑘𝑝
𝐶
𝑝

2
|𝐵|
𝑝+(𝑝−𝑞)/𝑞

(diam (𝐵))𝑝|𝑑𝑢|𝑝)𝑑𝑥.

(13)

Since 𝑝 ≥ 1, then, 1 + (𝑝 − 𝑞)/𝑝𝑞 > 0. Hence, we have
|𝐵|
1+(𝑝−𝑞)/𝑝𝑞

≤ |Ω|
1+(𝑝−𝑞)/𝑝𝑞

≤ 𝐶4. From (i) in Definition 3,
we find that 𝑔(𝑡) ≤ 𝐶5𝜑(𝑡

1/𝑝
). Thus,

∫
𝜎𝐵

𝑔(
1

𝑘𝑝
𝐶
𝑝

2
|𝐵|
𝑝+(𝑝−𝑞)/𝑞

(diam (𝐵))𝑝|𝑑𝑢|𝑝)𝑑𝑥

≤ 𝐶5 ∫
𝜎𝐵

𝜑(
1

𝑘
𝐶2|𝐵|
1+(𝑝−𝑞)/𝑝𝑞 diam (𝐵) |𝑑𝑢|) 𝑑𝑥

≤ 𝐶5 ∫
𝜎𝐵

𝜑(
1

𝑘
𝐶2 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(14)

Combining (13) and (14) yields

𝜑(
1

𝑘
(∫
𝐵

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑞
𝑑𝑥)

1/𝑞

)

≤ 𝐶6 ∫
𝜎𝐵

𝜑(
1

𝑘
𝐶2 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(15)

Using Jensen’s inequality for ℎ−1, (8), and noticing that 𝜑 and
ℎ are doubling, we obtain

∫
𝐵

𝜑(

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵


𝑘
) 𝑑𝑥

= ℎ (ℎ
−1
(∫
𝐵

𝜑 ((
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
) 𝑑𝑥))

≤ ℎ (∫
𝐵

ℎ
−1
(𝜑 ( (

𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
)) 𝑑𝑥)

≤ ℎ (𝐶7 ∫
𝐵

((
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
)
𝑞

𝑑𝑥)

≤ 𝐶8𝜑((𝐶7 ∫
𝐵

((
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)×(𝑘)

−1
)
𝑞

𝑑𝑥)

1/𝑞

)

≤ 𝐶8𝜑(
1

𝑘
(𝐶7 ∫

𝐵

(
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)
𝑞
𝑑𝑥)

1/𝑞

)

≤ 𝐶9𝜑(
1

𝑘
(∫
𝐵

(
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)
𝑞
𝑑𝑥)

1/𝑞

) .

(16)
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Substituting (15) into (16) and noticing that 𝜑 is doubling, we
have

∫
𝐵

𝜑(

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵


𝑘
) 𝑑𝑥

≤ 𝐶10 ∫
𝜎𝐵

𝜑(
1

𝑘
𝐶2 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥

≤ 𝐶11 ∫
𝜎𝐵

𝜑(
1

𝑘
|𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(17)

From Definition 2 and (17), we have the following version of
Poincaré inequality with the Orlicz norm:

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝜎𝐵.
(18)

We have completed the proof of Theorem 7.

Theorem 8. Let 𝜑 be a Young function in the class
𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, and let Ω be a
bounded convex domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the non-homogeneous 𝐴-harmonic (1) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝐵
(19)

for some 𝜎 > 1 and all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Proof. For any constant 𝑘 > 0, from Lemma 5, (i) in
Definition 3, using the fact that 𝜑 is an increasing function,
Jensen’s inequality, and noticing that 𝜑 and 𝑔 are doubling,
we have

𝜑(
1

𝑘
(∫
𝐵

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝜑(
1

𝑘
𝐶1 |𝐵| diam (𝐵) (∫

𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝜑((
1

𝑘𝑝
𝐶
𝑝

1
|𝐵|
𝑝
(diam (𝐵))𝑝 ∫

𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝐶2𝑔(
1

𝑘𝑝
𝐶
𝑝

1
|𝐵|
𝑝
(diam (𝐵))𝑝 ∫

𝐵

|𝑑𝑢|
𝑝
𝑑𝑥)

= 𝐶2𝑔(∫
𝐵

1

𝑘𝑝
𝐶
𝑝

1
|𝐵|
𝑝
(diam (𝐵))𝑝|𝑑𝑢|𝑝𝑑𝑥)

≤ 𝐶2 ∫
𝐵

𝑔(
1

𝑘𝑝
𝐶
𝑝

1
|𝐵|
𝑝
(diam (𝐵))𝑝|𝑑𝑢|𝑝)𝑑𝑥.

(20)

Since 𝑝 ≥ 1, then |𝐵| ≤ |Ω| ≤ 𝐶3. From (i) in Definition 3, we
find that 𝑔(𝑡) ≤ 𝐶4𝜑(𝑡

1/𝑝
). Thus,

∫
𝐵

𝑔(
1

𝑘𝑝
𝐶
𝑝

1
|𝐵|
𝑝
(diam (𝐵))𝑝|𝑑𝑢|𝑝)𝑑𝑥

≤ 𝐶4 ∫
𝐵

𝜑(
1

𝑘
𝐶1 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(21)

Combining (20) and (21) yields

𝜑(
1

𝑘
(∫
𝐵

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝐶5 ∫
𝐵

𝜑(
1

𝑘
𝐶1 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(22)

Using Jensen’s inequality for 𝑔−1, (8), and noticing that 𝜑 and
ℎ are doubling, we obtain

∫
𝐵

𝜑(

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵


𝑘
) 𝑑𝑥

= 𝑔(𝑔
−1
(∫
𝐵

𝜑 ((
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
) 𝑑𝑥))

≤ 𝑔(∫
𝐵

𝑔
−1
(𝜑 ( (

𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
)) 𝑑𝑥)

≤ 𝑔(𝐶6 ∫
𝐵

( (
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
) × (𝑘)

−1
)
𝑝

𝑑𝑥)

≤ C7𝜑((𝐶6 ∫
𝐵

( (
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)×(𝑘)

−1
)
𝑝

𝑑𝑥)

1/𝑝

)

≤ 𝐶7𝜑(
1

𝑘
(𝐶6 ∫

𝐵

(
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)
𝑝
𝑑𝑥)

1/𝑝

)

≤ 𝐶8𝜑(
1

𝑘
(∫
𝐵

(
𝑇 (𝑑 (𝐻 (𝑢)))

−(𝑇 (𝑑 (𝐻 (𝑢))))𝐵
)
𝑝
𝑑𝑥)

1/𝑝

) .

(23)
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Substituting (22) into (23) and noticing that 𝜑 is doubling, we
have

∫
𝐵

𝜑(

𝑇 (𝑑 (𝐻 (𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵


𝑘
) 𝑑𝑥

≤ 𝐶9 ∫
𝐵

𝜑(
1

𝑘
𝐶1 |𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥

≤ 𝐶10 ∫
𝐵

𝜑(
1

𝑘
|𝐵| diam (𝐵) |𝑑𝑢|) 𝑑𝑥.

(24)

From Definition 2 and (24), we have the following version of
Poincaré inequality with the Orlicz norm:

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝐵.
(25)

We have completed the proof of Theorem 8.

Using a similar method to the proof ofTheorem 8, we can
establish the following version of Poincaré inequality with the
Orlicz norm.

Theorem 9. Let 𝜑 be a Young function in the class
𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞,𝐶 ≥ 1, and let Ω be a
bounded convex domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the non-homogeneous 𝐴-harmonic (1) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that
T(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝜑,𝜎𝐵
(26)

for some 𝜎 > 1 and all balls 𝐵 with 𝜎𝐵 ⊂ Ω.

Theorem 10. Let 𝜑 be a Young function in the class
𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞, 𝐶 ≥ 1, and let Ω be a
bounded convex domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the non-homogeneous 𝐴-harmonic (1) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

0

𝜑,Ω

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,Ω,
(27)

where 𝐵0 ⊂ Ω is some fixed ball.

Proof. From definition of the 𝐿𝜑(Ω) and (12), we have

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

0

𝜑,Ω

≤ 𝐶1sup
𝐵⊂Ω

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶1sup
𝐵⊂Ω

(𝐶2 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝜎𝐵)

≤ 𝐶1sup
𝐵⊂Ω

(𝐶2 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,Ω)

≤ 𝐶3 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,Ω.
(28)

We have completed the proof of Theorem 10.

Using a similar method to the proof of Theorem 8, we
obtainTheorem 11.

Theorem 11. Let 𝜑 be a Young function in the class
𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞,𝐶 ≥ 1, and let Ω be a
bounded convex domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the non-homogeneous 𝐴-harmonic (1) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

0

𝜑,Ω

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝜑,Ω,
(29)

where 𝐵0 ⊂ Ω is some fixed ball.

It has been proved in [5] that any John domain is special
𝐿
𝜑
(Ω)-averaging domain. Hence, we have the following

results.

Corollary 12. Let 𝜑 be a Young function in the class
𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞,𝐶 ≥ 1, and let Ω be a
bounded John domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω) and
𝑢 is a solution of the non-homogeneous 𝐴-harmonic (3) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

0

𝜑,Ω

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,Ω,
(30)

where 𝐵0 ⊂ Ω is some fixed ball.

For some special convex function, we have the following
theorems.

Theorem 13. Let 𝜑 = 𝑡
𝑝 or 𝜑 = 𝑡

𝑝log𝛼(𝑒 + 𝑡) ∈

𝐺(𝑝, 𝑞, 𝐶), 1 ≤ 𝑝 < 𝑞 < ∞,𝐶 ≥ 1, 𝛼 ∈ 𝑅 a Young
function, and Ω a bounded convex domain. Assume that
𝜑(|𝑢|) ∈ 𝐿

1

loc(Ω) and 𝑢 is a solution of the nonhomogeneous
𝐴-harmonic (1) in Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let 𝐻 be the
projection operator, and let 𝑇 : 𝐶∞(Ω, Λ𝑙) → 𝐶

∞
(Ω, Λ
𝑙−1
)

be the homotopy operator. Then, there exists a constant 𝐶,
independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵
𝜑,𝐵

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑑𝑢‖𝜑,𝜎𝐵
(31)

for some 𝜎 > 1 and all balls 𝐵 with 𝜎𝐵 ⊂ Ω.
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Theorem 14. Let 𝜑 = 𝑡𝑝 or 𝜑 = 𝑡𝑝log𝛼(𝑒+𝑡) ∈ 𝐺(𝑝, 𝑞, 𝐶), 1 ≤
𝑝 < 𝑞 < ∞,𝐶 ≥ 1, 𝛼 ∈ 𝑅 a Young function, and Ω
a bounded convex domain. Assume that 𝜑(|𝑢|) ∈ 𝐿1loc(Ω)
and 𝑢 is a solution of the nonhomogeneous 𝐴-harmonic (1) in
Ω, 𝜑(|𝑑𝑢|) ∈ 𝐿

1

loc(Ω). Let𝐻 be the projection operator, and let
𝑇 : 𝐶

∞
(Ω, Λ
𝑙
) → 𝐶

∞
(Ω, Λ
𝑙−1
) be the homotopy operator.

Then, there exists a constant 𝐶, independent of 𝑢, such that

𝑇(𝑑(𝐻(𝑢))) − (𝑇 (𝑑 (𝐻 (𝑢))))𝐵

0

𝜑,Ω

≤ 𝐶 |𝐵| diam (𝐵) ‖𝑢‖𝜑,Ω,
(32)

where 𝐵0 ⊂ Ω is some fixed ball.
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