
Research Article
Mechanical Quadrature Method and Splitting
Extrapolation for Solving Dirichlet Boundary Integral
Equation of Helmholtz Equation on Polygons

Hu Li and Yanying Ma

School of Mathematical Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China

Correspondence should be addressed to Hu Li; lihuxiwangzhixing@163.com

Received 20 February 2014; Revised 20 June 2014; Accepted 22 June 2014; Published 10 July 2014

Academic Editor: Bo Yu

Copyright © 2014 H. Li and Y. Ma. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

We study the numerical solution of Helmholtz equation with Dirichlet boundary condition. Based on the potential theory, the
problem can be converted into a boundary integral equation.We propose themechanical quadraturemethod (MQM) using specific
quadrature rule to deal with weakly singular integrals. Denote by ℎ

𝑚
themeshwidth of a curved edge Γ

𝑚
(𝑚 = 1, . . . , 𝑑) of polygons.

Then, the multivariate asymptotic error expansion of MQM accompanied with 𝑂(ℎ3
𝑚
) for all mesh widths ℎ

𝑚
is obtained. Hence,

once discrete equations with coarse meshes are solved in parallel, the higher accuracy order of numerical approximations can be at
least 𝑂(ℎ5max) by splitting extrapolation algorithm (SEA). A numerical example is provided to support our theoretical analysis.

1. Introduction

We consider Helmholtz equation with Dirichlet boundary
condition:

Δ𝑢 (𝑥) + 𝛼
2

𝑢 (𝑥) = 0, 𝑥 ∈ Ω,

𝑢
𝑚
(𝑥) = 𝑔

𝑚
(𝑥) , 𝑥 ∈ Γ

𝑚
(Γ =

𝑑

⋃

𝑚=1

) ,

(1)

where Ω ⊂ R2 is a polygonal domain with the curved
boundary Γ = ∪𝑑

𝑚=1
Γ
𝑚
, 𝑑 > 1, and the angels between Γ

𝑚

and Γ
𝑚+1

are in (0, 2𝜋], and the function 𝑔
𝑚
(𝑥) = 𝑔(𝑥)|

Γ
𝑚

is
known on Γ

𝑚
.

By the potential theory, the solutions of (1) can be
represented as a single-layer potential

𝑢 (𝑦) = ∫
Γ

Φ(𝑦, 𝑥) V (𝑥) 𝑑𝑠
𝑥
, 𝑦 = (𝑦

1
, 𝑦
2
) ∈ Ω, (2)

where 𝑥 = (𝑥
1
, 𝑥
2
) and Φ(𝑦, 𝑥) is the foundation solution of

Helmholtz equation, which is given by

Φ(𝑦, 𝑥) =
𝑖

4
𝐻
(1)

0
(𝛼
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨) .
(3)

And𝐻(1)
0
= 𝐽
0
+𝑖𝑁
0
is the Hankel functions of order zero and

of the first kind, where

𝐽
0
(𝑧) =

∞

∑

𝑛=0

(−1)
𝑛

(𝑛!)
2
(
𝑧

2
)

2𝑛

(4)

for the Bessel function of order zero and

𝑁
0
(𝑧) =

2

𝜋
(ln 𝑧
2
+ 𝛾) 𝐽

0
(𝑧)+

2

𝜋

∞

∑

𝑛=1

(

𝑛

∑

𝑚=1

1

𝑚
)
(−1)
𝑛+1

(𝑛!)
2
(
𝑧

2
)

2𝑛

(5)

for the Neumann function of order zero. And 𝛾 = 0.57721 . . .
is Euler constant.

In what follows, in order to analyze properties of the
kernel, we decompose the kernel

Φ(𝑥, 𝑦) = 𝑘
1
(𝑥, 𝑦) + 𝑘

2
(𝑥, 𝑦) , (6)

where 𝑘
1
(𝑥, 𝑦) = −1/2𝜋 ln |𝑥 − 𝑦| is logarithmic singular

function and 𝑘
2
(𝑥, 𝑦) = 𝑖/4 − 1/2𝜋(ln(𝛼/2) + 𝛾) + 𝑂(|𝑥 −

𝑦| ln |𝑥 − 𝑦|) is a smooth function. V(𝑥) is the solution of the
following equation:

𝑔 (𝑦) = ∫
Γ

Φ(𝑦, 𝑥) V (𝑥) 𝑑𝑠
𝑥
, 𝑦 = (𝑦

1
, 𝑦
2
) ∈ Γ. (7)
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Equation (7) is weakly singular BIE system of the first kind,
whose solution exists and is unique as 𝐶

𝑇
̸= 1 [1], where 𝐶

𝑇
is

the logarithmic capacity (i.e., the transfinite diameter). Once
V(𝑥) is solved from (7), the function 𝑢(𝑦)(𝑦 ∈ Ω) can be
calculated by (2).

Galerkin and collocation methods [2, 3] are used to solve
(7). However, the discrete matrix is full and each element
has to calculate the weakly singular integral for collocation
methods or the double weakly singular integral for Galerkin
methods, which implies that the work calculating discrete
matrix is so large as greatly to exceed to solve the discrete
equations. When the numerical methods are applied, the
accuracy of numerical solutions is lower at singular points [4]
and the corresponding numerical results become unreliable,
because the condition numbers are very large.

In the paper, MQM is proposed to calculate weakly
singular integrals by Sidi quadrature rules [5], which makes
the calculation of the discrete matrix becomes very simple
and straightforward without any singular integrals. The
convergence theory of approximations is given by estimating
eigenvalues of the discrete matrix and using Anselone’s
collectively compact convergent theory [6], which shows that
the method retains the optimal convergence order 𝑂(ℎ3max)

and possesses the optimal condition number 𝑂(ℎ−1min). Since
MQM possesses the multivariate asymptotic expansion of
errors, we can construct SEA to obtain the convergence order
𝑂(ℎ
5

max). Once discrete equations on some coarse meshes are
solved in parallel, the accuracy of numerical solutions can be
greatly improved by SEA.

This paper is organized as follows. Section 2 includes the
singularity analysis of the integral kernels and the solution. In
Section 3, the MQM is described. In Section 4, we can obtain
multiparameter asymptotic expansion of errors and SEA is
described. In Section 5, a numerical example is provided to
verify the theoretical results.

2. The Integral Kernels and the Solution of
Singularity Analysis

Define boundary integral operators on Γ
𝑚
:

(𝐾
𝑞𝑚
V
𝑚
) (𝑦) = −

1

2𝜋
∫
Γ
𝑚

Φ(𝑥, 𝑦) V
𝑚
(𝑥) 𝑑𝑠

𝑥
,

𝑦 ∈ Γ
𝑞
, 𝑚, 𝑞 = 1, . . . , 𝑑.

(8)

Then (7) can be converted into a matrix operator equation

𝐾𝑉 = 𝐺, (9)

where 𝐾 = [𝐾
𝑞𝑚
]
𝑑

𝑞,𝑚=1
, 𝑉 = (V

1
(𝑥), . . . , V

𝑑
(𝑥))
𝑇, and 𝐺 =

(𝑔
1
(𝑦), . . . , 𝑔

𝑑
(𝑦))
𝑇.

Assume that Γ
𝑚

can be described by the parameter
mapping:

𝑥
𝑚
(𝑠) = (𝑥

1𝑚
(𝑠) , 𝑥
2𝑚
(𝑠)) : [0, 1] 󳨀→ Γ

𝑚
, 0 ≤ 𝑠 ≤ 1,

(10)

with |𝑥󸀠
𝑚
(𝑠)| = [(𝑥

󸀠

1𝑚
(𝑠))
2

+ (𝑥
󸀠

2𝑚
(𝑠))
2

]
1/2

> 0, 𝑚 = 1, . . . , 𝑑.
Using Sidi periodic transformation [7]

𝜓
𝑝
(𝜏) =

𝜗
𝑝
(𝜏)

𝜗
𝑝
(1)
: [0, 1] 󳨀→ [0, 1] , 𝑝 ∈ 𝑁, (11)

where 𝜗
𝑝
(𝜏) = ∫

𝜏

0

(sin(𝜋𝜌))𝑝𝑑𝜌, then operator (8) is also
converted into integral operator on [0, 1]:

(𝐵
𝑞0
V
𝑞
) (𝑡) = −

1

2𝜋
∫

1

0

ln 󵄨󵄨󵄨󵄨󵄨2𝑒
−1/2 sin (𝜋 (𝑡 − 𝜏))󵄨󵄨󵄨󵄨󵄨 V𝑞 (𝜏) 𝑑𝜏,

(𝐵
0𝑞
V
𝑞
) (𝑡) = −

1

2𝜋
∫

1

0

(ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑞
(𝑡) − 𝑥

𝑞
(𝜏)

2𝑒−1/2 sin (𝜋 (𝑡 − 𝜏))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

−
𝜋𝑖

2

+ ln 𝛼
2
+ 𝛾) V

𝑞
(𝜏) 𝑑𝜏,

(𝐾
𝑞𝑚
V
𝑚
) (𝑡) = ∫

1

0

Φ(𝑥
𝑞
(𝑡) , 𝑥
𝑚
(𝜏)) V
𝑚
(𝜏) 𝑑𝜏, 𝑞 ̸=𝑚,

(12)

where 𝑥
𝑞
(𝑡) = 𝑥

𝑞
(𝜓
𝑝
(𝑡)) and V

𝑚
(𝜏) =

V
𝑚
(𝜓
𝑝
(𝜏))|𝑥

󸀠

𝑚
(𝜓
𝑝
(𝜏))|𝜓

󸀠

𝑝
. Then (9) can be rewritten as

(𝐵
0
+ 𝐵
1
+ 𝐾)𝑉 = 𝐺, (13)

where 𝐵
0
= diag(𝐵

10
, . . . , 𝐵

𝑑0
), 𝐵
1
= diag(𝐵

01
, . . . , 𝐵

0𝑑
), 𝐾 =

[𝐾
𝑞𝑚
]
𝑑

𝑞,𝑚=1
, 𝑉 = (V

1
(𝜏), . . . , V

𝑑
(𝜏))
𝑇, 𝐺 = (𝐺

1
(𝑡), . . . , 𝐺

𝑑
(𝑡))
𝑇,

and 𝐺
𝑚
(𝑡) = 𝑔

𝑚
(𝜓
𝑝
(𝑡)).

Let 𝑏
𝑞0
(𝑡, 𝜏), 𝑏

0𝑞
(𝑡, 𝜏), and 𝑘

𝑞
𝑚(𝑡, 𝜏) be the kernels of the

integral operators 𝐵
𝑞0
, 𝐵
0𝑞
, and 𝐾

𝑞𝑚
, respectively. Then, the

following results hold.

(1) 𝑏
𝑞0
(𝑡, 𝜏) is a logarithmic singular function on 𝑡 ∈ [0, 1]

and 𝜏 ∈ [0, 1].
(2) 𝑏
0𝑞
(𝑡, 𝜏) is a continuous function on 𝑡 ∈ [0, 1] and 𝜏 ∈

[0, 1].
(3) For Γ

𝑞
∩ Γ
𝑚
= 0(|𝑞 − 𝑚| ̸= 1 or 𝑑 − 1), 𝑘

𝑞𝑚
(𝑡, 𝜏) is a

continuous function on 𝑡 ∈ [0, 1] and 𝜏 ∈ [0, 1].
(4) The solution V

𝑞
(𝑡) is a smooth function under (11).

Lemma 1. If Γ
𝑞
∩ Γ
𝑚
̸= 0(|𝑞 −𝑚| = 1 or 𝑑 − 1) and 𝑝 ≥ 2, then

𝑘
𝑞𝑚
(𝑡, 𝜏)(= sin𝑝(𝜋𝑡)𝑘

𝑞𝑚
(𝑡, 𝜏)) and (𝜕𝑛/𝜕𝑡𝑛)𝑘(𝑡, 𝜏)(𝑛 = 1, 2)

are continuous on [0, 1]2.

Proof. Without loss of generality, we assume that the origin
(0, 0) = Γ

𝑚
∩ Γ
𝑞
of coordinates is a vertex with an interior

angle 𝜃
𝑚+1

. By (6), 𝑘
𝑞𝑚

can be expressed by

𝑘
𝑞𝑚
(𝑡, 𝜏) = −

1

2𝜋
ln [𝑎2
0
(𝑡) + 𝑎

1
(𝜏)
2

− 2𝑎
0
(𝑡) 𝑎
1
(𝜏) cos 𝜃

𝑚+1
]

+ 𝑘
2
(𝑥
𝑞
, 𝑥
𝑚
) ,

(14)

where 𝑎
0
(𝑡) = |𝑥

𝑞
(𝜓
𝑝
(𝑡))| and 𝑎

1
(𝜏) = |𝑥

𝑚
(𝜓
𝑝
(𝜏))|. We

assume that 𝑎
0
(0) = 𝑎

1
(0) = 0; namely, 𝑘

𝑞𝑚
has the
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logarithmic singularity at points (0, 0) and is continuously
differentiable in [0, 1]2 \ (0, 0). Consider

𝑘
𝑞𝑚
(𝑡, 𝜏) = −

1

2𝜋
ln (𝑎2
0
(𝑡) + 𝑎

1
(𝜏)
2

) −
1

2𝜋

× ln[1 −
2𝑎
0
(𝑡) 𝑎
1
(𝜏) cos 𝜃

𝑚+1

𝑎2
0
(𝑡) + 𝑎

1
(𝜏)
2
] + 𝑘
2
(𝑥
𝑞
, 𝑥
𝑚
) .

(15)

We have
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

2𝑎
0
(𝑡) 𝑎
1
(𝜏) cos 𝜃

𝑚+1

𝑎2
0
(𝑡) + 𝑎

1
(𝜏)
2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
󵄨󵄨󵄨󵄨cos 𝜃𝑚+1

󵄨󵄨󵄨󵄨 < 1. (16)

So the singularity of 𝑘
𝑞𝑚
(𝑡, 𝜏) occurs in (1/2𝜋) ln(𝑎2

0
(𝑡) +

𝑎
1
(𝜏)
2

). In order to remove the singularity, we define

𝜍 (𝑡, 𝜏) =
sin𝑝 (𝜋𝜏)
𝜓
𝑝
(1)

ln (𝑎2
0
(𝑡) + 𝑎

1
(𝜏)
2

) . (17)

Since 𝜓󸀠
𝑝
have 𝑝 order zero, we have the error estimate

|𝜍 (𝑡, 𝜏)| = 𝑜 (𝜀
𝑝

) |ln 𝜀| 󳨀→ 0, as 𝜀 󳨀→ 0, (18)

which shows that 𝜍(𝑡, 𝜏) is bounded and continuous on
(𝐶
2

[0, 1])
2 when 𝜀/2 ≤ 𝑡, 𝜏 ≤ 𝜀 for any 𝜀 > 0.

Similarly, we can prove (𝜕/𝜕𝑡)𝜍(𝑡, 𝜏) and (𝜕2/𝜕𝑡2)𝜍(𝑡, 𝜏)
are continuous on (𝐶[0, 1])2, which can be obtained by

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝜕

𝜕𝑡
𝜍 (𝑡, 𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin𝑝 (𝜋𝜏)
𝜓
𝑝
(1)

2𝑎
0
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑥
󸀠

𝑚+1
(𝜓
𝑝
(𝑡))
󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨
𝜓
󸀠

𝑝
(𝑡)
󵄨󵄨󵄨󵄨󵄨

𝑎2
0
(𝑡) + 𝑎

2

1
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑂 (𝜀
𝑝

) , ∀𝑡, 𝜏 ∈ [
𝜀

2
, 𝜀] ,

(19)

and (𝜕2/𝜕𝑡2)𝜍(𝑡, 𝜏) = 𝑂(𝜀𝑝−1). As above, (𝜕𝑛/𝜕𝑡𝑛)𝜍(𝑡, 𝜏) (𝑛 =
0, 1, . . . , 𝑝) are continuous on (𝐶[0, 1])2. We can prove that
(𝜕
𝑛

/𝜕𝑡
𝑛

)𝑘
𝑞𝑚
(𝑡, 𝜏) (𝑛 = 0, 1, . . . , 𝑝) are also continuous on

(𝐶[0, 1])
2. The proof of Lemma 1 is completed.

3. Mechanical Quadrature Method

Let ℎ
𝑚
= 1/𝑛

𝑚
(𝑛
𝑚
∈ 𝑁,𝑚 = 1, . . . , 𝑑) be mesh widths and

let 𝑡
𝑚𝑗
= (𝑗−1/2)ℎ

𝑚
(𝑗 = 1, . . . , 𝑛

𝑚
) be nodes. Since an integral

operator𝑊 is continuous, by the trapezoidal or the midpoint
rule [8], we can construct Nyström approximate operator𝑊ℎ
for the integral operator𝑊, defined by

(𝑊
ℎ V
𝑚
) (𝑡) = ℎ

𝑚

𝑛
𝑚

∑

𝑗=1

𝑤(𝑡, 𝑡
𝑚𝑗
) V
𝑚
(𝑡
𝑚𝑗
) , (20)

and the error

(𝑊
ℎ V
𝑚
) (𝑡) − (𝑊 V

𝑚
) (𝑡) = 𝑂 (ℎ

2𝑙

𝑚
) , 𝑙 ∈ 𝑁. (21)

Since 𝐵
𝑞0

has the singularities on [0, 1], by Sidi quadrature
formula [5], we get the following approximations 𝐵ℎ

𝑞0
of

integral operator 𝐵
𝑞0
:

(𝐵
ℎ

𝑞0
V
𝑚
) (𝑡) = −

1

2𝜋
ℎ
𝑚

𝑛
𝑚

∑

𝑗=1,𝑡 ̸= 𝑡
𝑚𝑗

ln 󵄨󵄨󵄨󵄨󵄨2𝑒
−1/2 sin𝜋 (𝑡 − 𝑡

𝑚𝑗
)
󵄨󵄨󵄨󵄨󵄨

× V
𝑚
(𝑡
𝑚𝑗
) −
ℎ
𝑚

2𝜋
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝜋𝑒
−1/2
ℎ
𝑚

(2𝜋)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
V
𝑚
(𝑡) ,

(22)

and the error

(𝐵
ℎ

𝑞0
V
𝑚
) (𝑡) − (𝐵

𝑞0
V
𝑚
) (𝑡)

= −
2

𝜋

2𝑙−1

∑

𝜇=1

𝜁
󸀠

(−2𝜇)

(2𝜇)!
[V
𝑚
(𝑡)]
2𝜇

ℎ
2𝜇+1

𝑚
+ 𝑂 (ℎ

2𝑙

𝑚
) ,

(23)

where 𝜁󸀠(𝑡) is the derivative of the Riemann zeta function.
Then, we can get the approximate equation of (13):

(𝐵
ℎ

0
+ 𝐵
ℎ

1
+ 𝐾
ℎ

)𝑉
ℎ

= 𝐺
ℎ

, (24)

where 𝑉ℎ = (𝑉ℎ
1
, . . . , 𝑉

ℎ

𝑑
), 𝑉ℎ
𝑚
= (V
𝑚
(𝑡
1
), . . . , V

𝑚
(𝑡
𝑛
𝑚

)), 𝐵ℎ
0
=

diag(𝐵ℎ
10
, . . . , 𝐵

ℎ

𝑑0
), 𝐵ℎ
𝑞0
= [𝑏
𝑞0
(𝑡
𝑗
, 𝜏
𝑖
)]
𝑛
𝑞

𝑗,𝑖=1
, 𝐵ℎ
1
= diag(𝐵ℎ

01
, . . . ,

𝐵
ℎ

0𝑑
), 𝐵
0𝑞
= [𝑏
0𝑞
(𝑡
𝑗
, 𝜏
𝑖
)]
𝑛
𝑞

𝑗,𝑖
, 𝐾ℎ = [𝐾ℎ

𝑞𝑚
]
𝑑

𝑞,𝑚=1
, 𝐾ℎ
𝑞𝑚
= [𝑘
𝑞𝑚
(𝑡
𝑗
,

𝜏
𝑖
)]
𝑛
𝑞
,𝑛
𝑚

𝑗,𝑖=1
, 𝐺ℎ = (𝐺ℎ

1
, . . . , 𝐺

ℎ

𝑑
)
𝑇, and 𝐺ℎ

𝑞
= (𝑔
𝑞
(𝑡
1
), . . . , 𝑔

𝑞
(𝑡
𝑛
𝑞

)).
Obviously, (24) is a system of linear equations with 𝑛(=
∑
𝑑

𝑚=1
𝑛
𝑚
) unknowns. Once 𝑉ℎ is solved by (24), the solution

𝑢(𝑦)(𝑦 ∈ Ω) can be computed by

𝑢
ℎ

(𝑦) =

𝑑

∑

𝑚=1

ℎ
𝑚

𝑛
𝑚

∑

𝑗=1

Φ(𝑦, 𝑥 (𝑡
𝑚𝑗
)) V
𝑚
(𝑡
𝑚𝑗
) . (25)

𝐵
ℎ

𝑞0
is symmetric circular matrix and has the form of

𝐵
ℎ

𝑞0
= circulate(−

ℎ
𝑚

2𝜋
ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2𝑒
−1/2
ℎ
𝑚

𝜋

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
, . . . ,

−
ℎ
𝑚

2𝜋
ln 󵄨󵄨󵄨󵄨󵄨2𝑒
−1/2 sin (𝜋 (𝑛

𝑚
− 1) ℎ

𝑚
)
󵄨󵄨󵄨󵄨󵄨
) .

(26)

Lemma 2 (see [9]). (1) There exists a positive 𝑐
1
> 0 so that

the eigenvalues 𝜆
𝛽
(𝛽 = 1, . . . , 𝑛

𝑚
) of 𝐵ℎ

𝑞0
satisfy 𝑐

1
> 𝜆
𝛽
>

1/(2𝜋𝑛
𝑚
). (2)The condition number of 𝐵ℎ

𝑞0
is𝑂(𝑛

𝑚
). (3) 𝐵

𝑞0
is

invertible, and (𝐵ℎ
𝑞0
)
−1 is uniformly bounded with the spectral

norm ‖(𝐵ℎ
𝑞0
)
−1

‖ = 𝑂(𝑛
𝑚
).

Based on Lemma 2, we immediately get the following
corollary.
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Corollary 3. (1) 𝐵ℎ
0
is invertible, and (𝐵ℎ

0
)
−1 is uniformly

bounded with the spectral norm ‖(𝐵ℎ
0
)
−1

‖ = 𝑂(𝑛
0
). (2) The

condition number of 𝐵ℎ
0
is 𝑂(𝑛

0
), where 𝑛

0
= max𝑑

𝑚=1
𝑛
𝑚
.

From Corollary 3, we know that (24) is equivalent to

(𝐸
ℎ

+ (𝐵
ℎ

0
)

−1

(𝐵
ℎ

1
+ 𝐾
ℎ

))𝑉
ℎ

= (𝐵
ℎ

0
)

−1

𝐺
ℎ

, (27)

where 𝐸ℎ denotes the unit matrix.
Now we give the following definitions to discuss the

approximate convergence in (27).
Define a subspace 𝐶

0
[0, 1] = {V(𝑡) ∈ 𝐶[0, 1] : V(𝑡)/

sin2(𝜋𝑡) ∈ 𝐶[0, 1]} of the space 𝐶[0, 1] with a norm ‖V‖∗ =
max
0≤𝑡≤1
|V(𝑡)/sin2(𝜋𝑡)|. Let 𝑆ℎ

𝑚
⊂ 𝐶
0
[0, 1] be a piecewise

linear function subspace with base points {𝑡
𝑖
}
𝑛
𝑚
−1

𝑖=0
, and let

𝑒
𝑗
(𝑡)𝑗 = 0, . . . , 𝑛

𝑚
− 1 be base function satisfying 𝑒

𝑗
(𝑡
𝑖
) = 𝛿
𝑗𝑖
.

Define a prolongation operator 𝑃ℎ𝑚 : Rℎ𝑚 → 𝑆ℎ𝑚 satisfying

𝑃
ℎ
𝑚𝜔 =

𝑛
𝑚
−1

∑

𝑗=0

𝜔
𝑚
𝑒
𝑗
(𝑡) , ∀𝜔 = (𝜔

𝑚1
, . . . , 𝜔

𝑚𝑛
𝑚

) ∈ R
𝑛
𝑚 .

(28)

Define a restricted operator 𝑅ℎ𝑚 : 𝐶
0
[0, 1] → R𝑛𝑚 satisfying

𝑅
ℎ
𝑚V
𝑚
= (V
𝑚
(𝑡
𝑚1
) , . . . , V

𝑚
(𝑡
𝑚𝑛
𝑚

)) ∈ R
𝑛
𝑚 ,

∀V
𝑚
∈ 𝐶
0
[0, 1] .

(29)

Replacing (𝐵ℎ
0
)
−1

(𝐵
ℎ

1
+ 𝐾̂
ℎ

) = 𝑃
ℎ

(𝐵
ℎ

0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+𝐾
ℎ

), 𝑉̂ℎ =
𝑃
ℎ

𝑉
ℎ, and 𝐺 = 𝑃ℎ𝐺ℎ, we construct an operator equation

(𝐸
ℎ

+ (𝐵
ℎ

0
)
−1

(𝐵
ℎ

1
+ 𝐾̂
ℎ

)) 𝑉̂
ℎ

= (𝐵
ℎ

0
)
−1

𝐺
ℎ

, (30)

where 𝑃ℎ = diag(𝑃
1
, . . . , 𝑃

𝑑
) and 𝑅ℎ = diag(𝑅

1
, . . . , 𝑅

𝑑
).

Obviously, if 𝑉̂ℎ is the solution of (30), then 𝑅ℎ𝑉ℎ must be
the solution of (27); conversely, if 𝑉ℎ is the solution of (27),
then 𝑃ℎ𝑉ℎ must be the solution of (30). In order to prove the
convergence of MQM, we give the following lemma.

Lemma 4 (see [9]). The operator sequence {𝑃
𝑞
(𝐵
ℎ

𝑞0
)
−1

𝑅
𝑞
𝐵
𝑞0
:

𝐶
2

[0, 1] → 𝐶[0, 1]} is uniformly bounded and convergent to
the embedding operator 𝐼.

Corollary 5. Let the Nyström approximation 𝑊ℎ be defined
by (20). (1) For Γ

𝑞
∩ Γ
𝑚
= 0, one has

P
𝑚
(𝐵
𝑚0
)
−1

𝑅
𝑚
𝑊
ℎ
𝑐.𝑐

󳨀󳨀→ (𝐵
𝑚0
)
−1

𝑊, 𝑖𝑛 𝐶 [0, 1] 󳨀→ 𝐶 [0, 1] .

(31)

(2) For Γ
𝑞
∩ Γ
𝑚
̸= 0, one has

𝑃
𝑚
(𝐵
𝑚0
)
−1

𝑅
𝑚
𝐾̃
ℎ

𝑞𝑚

𝑐.𝑐

󳨀󳨀→ (𝐵
𝑚0
)
−1

𝐾̃
𝑞𝑚
,

𝑖𝑛 𝐶 [0, 1] 󳨀→ 𝐶 [0, 1] ,

(32)

where 𝐾̃ℎ
𝑞𝑚

is the Nyström approximation of integral operator
𝐾̃
𝑞𝑚

with the kernel 𝑘
𝑞𝑚
(𝑡, 𝜏) = sin𝑝(𝜋𝑡)𝑘

𝑞𝑚
(𝑡, 𝜏) and 𝑐.𝑐󳨀󳨀→

denotes the collectively compact convergence.

Theorem 6. Let Γ = ∪𝑑
𝑚=1
Γ
𝑚
with 𝐶

𝑇
̸= 1 and Γ

𝑚
(𝑚 = 1, . . . ,

𝑑) be smooth curve. The operator sequence {𝑃ℎ(𝐵ℎ
0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+

𝐾
ℎ

)} is collectively convergent to (𝐵
0
)
−1

(𝐵
1
+ 𝐾) in 𝑉 =

(𝐶
0
[0, 1])

𝑑:

𝑃
ℎ

(𝐵
ℎ

0
)

−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

)
𝑐.𝑐

󳨀󳨀→ (𝐵
0
)
−1

(𝐵
1
+ 𝐾) . (33)

Proof. Let Θ = {𝜐 : ‖𝜐‖ ≤ 1, 𝜐 ∈ 𝑉} be a unit ball. 𝐻 = {ℎ1,
ℎ
2

, . . .} is the grid step sequence, where ℎ𝑛 = {ℎ(𝑛)
1
, ℎ
(𝑛)

2
, . . . ,

ℎ
(𝑛)

𝑑
} with 𝑛 → ∞, max

1≤𝑚≤𝑑
ℎ
(𝑛)

𝑚
→ 0. We arbi-

trarily take a sequence {𝑍
ℎ
}
ℎ∈𝐻

in space Θ, where 𝑍
ℎ
=

(𝑍
ℎ1
, 𝑍
ℎ2
, . . . , 𝑍

ℎ𝑑
)
𝑇 with ‖𝑍

ℎ
𝑚

/sin2(𝜋𝑡)‖
∞

≤ 1,𝑚 = 1, . . . , 𝑑.

We firstly consider the first component of 𝑃ℎ(𝐵ℎ
0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+

𝐾
ℎ

)𝑍
ℎ
:

𝑑

∑

𝑚=1

𝑃
1
(𝐵
ℎ

10
)

−1

𝑅
1
(𝐵
ℎ

01
+ 𝐾
ℎ

1𝑚
)𝑍
ℎ𝑚
. (34)

For Γ
𝑚
∩ Γ
1
= 0, by Corollary 5, 𝑃

1
(𝐵
ℎ

10
)
−1

𝑅
1
(𝐵
ℎ

01
+ 𝐾
ℎ

1𝑚
)
𝑐.𝑐

󳨀󳨀→

𝐵
−1

10
(𝐵
01
+ 𝐾
1𝑚
) in 𝐶[0, 1], and there exists a convergent

subsequence in {𝑃
1
(𝐵
ℎ

10
)
−1

𝑅
1
(𝐵
ℎ

01
+𝐾
ℎ

1𝑚
)𝑍
ℎ𝑚
}. For Γ

𝑚
∩Γ
1
̸= 0,

we have
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝐵
ℎ

10
)

−1

𝑅
1
𝐾
ℎ

1𝑚
𝑍
ℎ𝑚

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0,0

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝐵
ℎ

10
)

−1

𝑅
1
𝐾̃
ℎ

1𝑚
(
𝑍
ℎ𝑚

sin2 (𝜋𝑡)
)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0,0

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝐵
ℎ

10
)

−1

𝑅
1
𝐵
10

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩0,2

󵄩󵄩󵄩󵄩󵄩󵄩
𝐵
−1

10
𝐾̃
ℎ

1𝑚

󵄩󵄩󵄩󵄩󵄩󵄩2,0

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑍
ℎ
𝑚

sin2(𝜋𝑡)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩∞

.

(35)

By Lemma 4, there exists a convergent subsequence in
{𝑃
1
(𝐵
ℎ

10
)
−1

𝑅
1
(𝐵
ℎ

01
+ 𝐾
ℎ

1𝑚
)𝑍
ℎ𝑚
}. Based on the above two cases

it is proved that there exists an infinite subsequence𝐻(1) ⊂ 𝐻
such that the first component converges. Similarly, it can be
concluded that there exists an infinite subsequence 𝐻(𝑑) ⊂
𝐻
(𝑑−1)

⊂ ⋅ ⋅ ⋅ ⊂ 𝐻
(1)

⊂ 𝐻 such that 𝑃ℎ(𝐵ℎ
0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

)𝑍
ℎ

converges. Therefore, 𝑃ℎ(𝐵ℎ
0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

) is collectively
compact convergent sequence, and 𝑃ℎ(𝐵ℎ

0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

)
𝑃

󳨀→

(𝐵
0
)
−1

(𝐵
1
+ 𝐾), where 𝑃󳨀→ shows the point convergence. We

complete the proof.

For the stability ofMQM,we have the following corollary.

Corollary 7. Let Γ = ∪𝑑
𝑚=1
Γ
𝑚

with 𝐶
Γ
̸= 1, let Γ

𝑚
(𝑚 =

1, . . . , 𝑑) be smooth curve, let 𝐵ℎ
0
, 𝐵ℎ
1
, and 𝐾ℎ be the discrete

matrices defined by (20) and (22), respectively, and let 𝜆
𝑖
(𝑖 =
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1, . . . , 𝑛) be the eigenvalues of discrete matrix𝑀ℎ = 𝐵ℎ
0
+ 𝐵
ℎ

1
+

𝐾
ℎ. Then, there exists the bound of condition number

Cond (𝑀ℎ) =
max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨󵄨
𝜆
𝑖
(𝑀
ℎ

)
󵄨󵄨󵄨󵄨󵄨

max
1≤𝑖≤𝑛

󵄨󵄨󵄨󵄨𝜆𝑖 (𝑀
ℎ)
󵄨󵄨󵄨󵄨

= 𝑂 (ℎ
−1

min) , (36)

where ℎmin = min𝑑
𝑚=1
ℎ
𝑚
, ℎ
𝑚
= 1/𝑛

𝑚
, is the mesh step size of a

curved edge Γ
𝑚
.

4. Multiparameter Asymptotic Expansion of
Errors and SEA

In this section, we derive the multivariate asymptotic expan-
sion of solution errors and describe SEA.We first provide the
main result.

Theorem 8. Let Γ = ∪𝑑
𝑚=1
Γ
𝑚
with 𝐶

Γ
̸= 1. There exists a vector

function Φ = (𝜙
1
, . . . , 𝜙

𝑑
)
𝑇 independent of ℎ = (ℎ

1
, . . . , ℎ

𝑑
)

such that the following multiparameter asymptotic expansion
holds at nodes:

𝑉
ℎ

− 𝑉 = diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
)Φ + 𝑜 (ℎ

3

0
) , ℎ

0
= max
1≤𝑚≤𝑑

ℎ
𝑚
,

(37)

where 𝑉ℎ ∈ 𝑆𝑑, 𝑉 ∈ 𝐶3[0, 1].

Proof. By (20) and (22), there exists the asymptotic expansion

(𝐺
ℎ

− 𝐺) = diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
) 𝑃
ℎ

𝑅
ℎ

𝜔 + 𝑜 (ℎ
3

0
) , (38)

where ℎ = max𝑑
𝑚=1
ℎ
𝑚
and 𝜔 = (𝜔

1
, . . . , 𝜔)

𝑇 with 𝜔
𝑚
=

−𝜁
󸀠

(−2)(𝐺
𝑚
(𝑡))
󸀠󸀠

/𝜋.
Using (13), (21), (23), and (24), we obtain

(𝐵
ℎ

0
+ 𝐵
ℎ

1
+ 𝐾
ℎ

)𝑅
ℎ

(𝑉
ℎ

− 𝑉)

= 𝑉
ℎ

− 𝑃
ℎ

(𝐵
ℎ

0
+ 𝐵
ℎ

1
+ 𝐾
ℎ

)𝑅
ℎ

𝑉

= 𝑉
ℎ

− [(𝐵
0
+ 𝐵
1
+ 𝐾)𝑅

ℎ

𝑉

− diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
) 𝑃
ℎ

𝑅
ℎ

𝛾] + 𝑜 (ℎ
3

0
)

= (𝐺
ℎ

− 𝐺) + diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
) 𝑃
ℎ

𝑅
ℎ

𝛾 + 𝑜 (ℎ
3

0
)

= diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
) 𝑃
ℎ

𝑅
ℎ

𝜂 + 𝑜 (ℎ
3

0
) ,

(39)

where 𝛾 = (𝛾
1
, . . . , 𝛾

𝑑
)
𝑇with 𝛾

𝑚
= −𝜁
󸀠

(−2)(𝑥
󸀠

(𝑡)𝜓
󸀠

(𝑡)V(𝑡))󸀠󸀠/𝜋
and 𝜂 = (𝜂

1
, . . . , 𝜂

𝑑
)
𝑇 with 𝜂

𝑚
= 𝜔
𝑚
+ 𝛾
𝑚
. From Corollary 3,

we can obtain

(𝐸 + 𝑃
ℎ

(𝐵
ℎ

0
)

−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

)) (𝑉
ℎ

− 𝑉)

= diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
) (𝐵
ℎ

0
)

−1

𝑃
ℎ

𝑅
ℎ

𝜂 + 𝑜 (ℎ
3

0
) .

(40)

Constructing the auxiliary equation

(𝐸 + (𝐵
0
)
−1

(𝐵
1
+ 𝐾))Φ = (𝐵

0
)
−1

𝜂 (41)

and its approximate equation

(𝐸 + 𝑃
ℎ

(𝐵
ℎ

0
)

−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

))Φ
ℎ

= (𝐵
ℎ

0
)

−1

𝑃
ℎ

𝑅
ℎ

𝜂 (42)

and substituting (42) into (40), we obtain

(𝐸 + 𝑃
ℎ

(𝐵
ℎ

0
)

−1

𝑅
ℎ

(𝐵
ℎ

1
+ 𝐾
ℎ

))

× (𝑉
ℎ

− 𝑉 − diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
)Φ
ℎ

) = 𝑜 (ℎ
3

0
) .

(43)

Since (𝐸 + 𝑃ℎ(𝐵ℎ
0
)
−1

𝑅
ℎ

(𝐵
ℎ

1
+𝐾
ℎ

)) is uniformly bounded from
Theorem 6, we get

𝑉
ℎ

− V − diag (ℎ3
1
, . . . , ℎ

𝑑

𝑑
)Φ
ℎ

= 𝑜 (ℎ
3

0
) . (44)

Replacing Φℎ withΦ, we can complete the proof.

The multiparameter asymptotic expansion (37) means
that SEA can be applied to solve (7); that is, higher order
accuracy 𝑜(ℎ3

0
) at coarse grid points can be obtained by

solving some discrete equations in parallel. The process of
SEA is as follows [10].

Step 1. Take ℎ(0) = (ℎ
(0)

1
, . . . , ℎ

(0)

𝑑
) and ℎ(𝑚) =

(ℎ
(0)

1
, . . . , ℎ

(0)

𝑚
/2, . . . , ℎ

(0)

𝑑
), and solve (24) under mesh

parameters ℎ(𝑚) in parallel to get the numerical solutions
𝑉
ℎ
(0)

(𝑡
𝑚𝑗
) and 𝑉ℎ

(𝑚)

(𝑡
𝑚𝑗
),𝑚 = 1, . . . , 𝑑, 𝑗 = 1, . . . , 𝑛

𝑚
.

Step 2. Compute 𝑢ℎ
(0)

(𝑦) and 𝑢ℎ
(𝑚)

(𝑦)(𝑦 ∈ Ω), by (25),

𝑉
ℎ
(0)

(𝑡
𝑚𝑗
), and 𝑉ℎ

(𝑚)

(𝑡
𝑚𝑗
).

Step 3. Compute the extrapolation on the coarse grids as
follows:

𝑢
∗

(𝑦) =
8

7
[

𝑑

∑

𝑚=1

𝑢
ℎ
(𝑚)

(𝑦) − (𝑑 −
7

8
) 𝑢
ℎ
(0)

(𝑦)] . (45)

Step 4. Compute a posteriori error estimate on the coarse
grids as follows:
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑦) −
1

𝑑

𝑑

∑

𝑚=1

𝑢
ℎ
(𝑚)

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑦) − [

𝑑

∑

𝑚=1

𝑢
ℎ
(𝑚)

(𝑦) − (𝑑 −
7

8
) 𝑢
ℎ
(0)

(𝑦)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ (
8

7
𝑑 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑑

𝑑

∑

𝑚=1

𝑢
ℎ
(𝑚)

(𝑦) − 𝑢
ℎ
(0)

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ (
8

7
𝑑 − 1)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝑑

𝑑

∑

𝑚=1

𝑢
ℎ
(𝑚)

(𝑦) − 𝑢
ℎ
(0)

(𝑦)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+ 𝑜 (ℎ
3

0
) .

(46)

In the actual calculation process, a posteriori error estimate
is immediately used to verify the calculation accuracy.
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Table 1: The numerical results.

(𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) Re(𝑒

𝐴
) Im(𝑒

𝐴
) Re(𝑒

𝐵
) Im(𝑒

𝐵
)

(8, 8, 8, 8) 3.943𝑒 − 4 2.459𝑒 − 4 6.255𝑒 − 4 2.832𝑒 − 4

(16, 8, 8, 8) 4.730𝑒 − 4 2.351𝑒 − 4 6.756𝑒 − 4 2.701𝑒 − 4

(8, 16, 8, 8) 1.400𝑒 − 4 1.472𝑒 − 4 3.007𝑒 − 4 1.688𝑒 − 4

(8, 8, 16, 8) 1.400𝑒 − 4 1.472𝑒 − 4 3.007𝑒 − 4 1.688𝑒 − 4

(8, 8, 8, 16) 4.730𝑒 − 4 2.351𝑒 − 4 6.756𝑒 − 4 2.701𝑒 − 4

Post-error 3.134𝑒 − 4 1.953𝑒 − 4 4.902𝑒 − 4 2.277𝑒 − 4

SEA-error 6.841𝑒 − 6 4.125𝑒 − 6 2.080𝑒 − 6 8.284𝑒 − 6

(16, 16, 16, 16) 4.534𝑒 − 5 2.849𝑒 − 5 7.934𝑒 − 5 2.973𝑒 − 5

(32, 16, 16, 16) 5.438𝑒 − 5 2.724𝑒 − 5 8.549𝑒 − 5 2.788𝑒 − 5

(16, 32, 16, 16) 1.648𝑒 − 5 1.729𝑒 − 5 3.849𝑒 − 5 1.859𝑒 − 5

(16, 16, 32, 16) 1.648𝑒 − 5 1.729𝑒 − 5 3.849𝑒 − 5 1.859𝑒 − 5

(16, 16, 16, 32) 5.438𝑒 − 5 2.724𝑒 − 5 8.549𝑒 − 5 2.788𝑒 − 5

Post-error 3.541𝑒 − 5 2.225𝑒 − 5 1.900𝑒 − 5 4.377𝑒 − 5

SEA-error 1.275𝑒 − 8 1.442𝑒 − 8 1.398𝑒 − 8 1.867𝑒 − 8

Table 2: The condition number.

(𝑛
1
, 𝑛
2
, 𝑛
3
, 𝑛
4
) (2

3

, 2
3

, 2
3

, 2
3

) (2
4

, 2
4

, 2
4

, 2
4

) (2
5

, 2
5

, 2
5

, 2
5)

|𝜆min| 2.214𝑒 − 3 1.059𝑒 − 3 5.236𝑒 − 4

|𝜆max| 0.6408 0.6405 0.6404

Cond 2.894𝑒 + 002 6.047𝑒 + 002 1.223𝑒 + 003

5. Numerical Example

In this section, we carry out a numerical example for the
Helmholtz equation by MQM and SEA, in order to verify the
error and stability analysis in the previous sections. Let Re(𝑒

𝑝
)

be the real part of 𝑒
𝑃
= |𝑢
ℎ

(𝑃) − 𝑢(𝑃)| and let Im(𝑒
𝑃
) be the

imaginary part of 𝑒
𝑃
= |𝑢
ℎ

(𝑃) − 𝑢(𝑃)|, where 𝑃 denotes a
point. Post-error and SEA-error denote the a posteriori error
and the error after SEA once, respectively.

Example 1. Consider Helmholtz equation with 𝛼 = √2 on a
plate domain Ω. We describe the boundary Γ = ∪4

𝑚
Γ
𝑚
with

Γ
1
= {(𝑥

1
, 𝑥
2
) | 0 ≤ 𝑥

1
≤ 1, 𝑥

2
= 0}, Γ

2
= {(𝑥

1
, 𝑥
2
) | 0 ≤

𝑥
2
≤ 1, 𝑥

1
= 1}, Γ

3
= {(𝑥

1
, 𝑥
2
) | 0 ≤ 𝑥

1
≤ 1, 𝑥

2
= 1}, and

Γ
4
= {(𝑥

1
, 𝑥
2
) | 0 ≤ 𝑥

2
≤ 1, 𝑥

1
= 0}. Dirichlet boundary

conditions corresponding to the analytical solution 𝑒𝑖×(𝑥1+𝑥2)
were applied to the boundary. We compute the numerical
solution 𝑢ℎ with 𝑃 = 𝐴(0.5, 0.5) and 𝑃 = 𝐵(0.6, 0.6) using
𝜑
3
(𝑡). The numerical results are listed in Tables 1 and 2.

From Table 1, we can know that the convergence rates of
𝑢
ℎ are 𝑂(ℎ3max) for MQM and that the convergence rates

of 𝑢ℎ are at least 𝑂(ℎ5max) for SEA. From Table 2, we can
see Cond|

(2
𝑘+1
,2
𝑘+1
,2
𝑘+1
,2
𝑘+1
)
/Cond|

(2
𝑘
,2
𝑘
,2
𝑘
,2
𝑘
)
≈ 2(𝑘 = 3, 4, 5)

to indicate Corollary 7. It verifies the stability of convergent
theory for MQM. Those results coincide with the theoretical
analysis made.

6. Concluding Remarks

To close this paper, let us make a few concluding remarks.

(1) Evaluation on entries of discrete matrices is very sim-
ple and straightforwardwithout any singular integrals
by MQM.

(2) The numerical experiments show that MQM retains
the optimal convergence order𝑂(ℎ3max) and possesses
the optimal condition number 𝑂(ℎ−1min) which shows
MQM owns the excellent stability. The approximate
solutions accuracy order is at least𝑂(ℎ5max) after split-
ting extrapolation once, which is a great improvement
in accuracy.
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