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We deal with the existence of Nehari-type ground state positive solutions for the nonlinear Schrödinger equation −Δ𝑢 + 𝑉 (𝑥) 𝑢 =

𝑓 (𝑥, 𝑢) , 𝑥 ∈ R𝑁, 𝑢 ∈ 𝐻

1
(R𝑁). Under a weaker Nehari condition, we establish some existence criteria to guarantee that the above

problemhasNehari-type ground state solutions by using amore directmethod in two cases: the periodic case and the asymptotically
periodic case.

1. Introduction

Consider the following semilinear Schrödinger equation:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 = 𝑓 (𝑥, 𝑢) , 𝑥 ∈ R
𝑁
,

𝑢 ∈ 𝐻

1
(R

𝑁
) ,

(1)

where 𝑉 : R𝑁 → R and 𝑓 : R𝑁 ×R → R.
The Schrödinger equation has found a great deal of inter-

est last years because not only it is important in applications
but also it provides a good model for developing mathe-
matical methods. Many authors have studied the existence
of entire solutions of Schrödinger equations under various
stipulations (cf., e.g., [1–28] and the references quoted in
them).

When infR𝑁𝑉(𝑥) > 0 and 𝑉(𝑥) is periodic, Li et al. [12]
made use of a combination of the techniques in [13, 14] with
applications of Lions’ concentration compactness principle
[26, 29, 30] to establish the following theorem.

Theorem 1 (see [12]). Assume that 𝑉 and 𝑓 satisfy the
following assumptions:

(V0) 𝑉 ∈ 𝐶(R𝑁,R) and infR𝑁𝑉(𝑥) > 0;
(V1) 𝑉(𝑥) is 1-periodic in each of 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
;

(S0) 𝑓 ∈ 𝐶

1, 𝑓
𝑡
is a Caratheodory function, and there exists

a constant 𝐶 > 0 such that











𝑓



𝑡
(𝑥, 𝑡)











≤ 𝐶 (1 + |𝑡|

2
∗
−2
) , lim

|𝑡|→∞











𝑓



𝑡
(𝑥, 𝑡)











|𝑡|

2
∗
−2

= 0;

(2)

(S1) 𝑓(𝑥, 𝑡) is 1-periodic in each of 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑁
;

(S2) 𝑓(𝑥, 𝑡) = 𝑜(|𝑡|), as |𝑡| → 0, uniformly in 𝑥 ∈ R𝑁;
(S3) lim

|𝑡|→∞
(|𝐹(𝑥, 𝑡)|/|𝑡|

2
) = ∞, uniformly in 𝑥 ∈ R𝑁;

(S4) 𝑓(𝑥, 𝑡)/|𝑡| is strictly increasing in 𝑡 onR \ {0} for every
𝑥 ∈ R𝑁.

Then problem (1) has a solution 𝑢

0
∈ 𝐻

1
(R𝑁) such that

Φ(𝑢

0
) = infNΦ > 0, where

Φ (𝑢) =

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
) d𝑥

− ∫

R𝑁
𝐹 (𝑥, 𝑢) d 𝑥, ∀𝑢 ∈ 𝐻

1
(R

𝑁
) ,

(3)

⟨Φ


(𝑢) , V⟩ = ∫

R𝑁
(∇𝑢 ⋅ ∇V + 𝑉 (𝑥) 𝑢V) d𝑥

− ∫

R𝑁
𝑓 (𝑥, 𝑢) V d 𝑥, ∀𝑢, V ∈ 𝐻

1
(R

𝑁
)

(4)
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with 𝐹(𝑥, 𝑡) := ∫

𝑡

0
𝑓(𝑥, 𝑠) d𝑠, and

N = {𝑢 ∈ 𝐻

1
(R

𝑁
) : ⟨Φ


(𝑢) , 𝑢⟩ = 0, 𝑢 ̸= 0} . (5)

The set N is the Nehari manifold, which contains
infinitely many elements of 𝐻

1
(R𝑁). In fact, for any 𝑢 ∈

𝐻

1
(R𝑁) \ {0}, there exists 𝑡 = 𝑡(𝑢) > 0 such that 𝑡𝑢 ∈ N; see

Lemma 9. Since 𝑢
0
is a solution at whichΦ has least “energy”

in setN, we will call it a Nehari-type ground state solution.
Wemust point out that “the least energy solution” (which

is sometimes also called the ground state solution in some
references) is in fact a nontrivial solution 𝑢

0
which satisfies

Φ(𝑢

0
) = infMΦ, where

M = {𝑢 ∈ 𝐻

1
(R

𝑁
) \ {0} : Φ


(𝑢) = 0} (6)

is a very small subset ofN; it may contain only one element.
In general, it is much more difficult to find a solution 𝑢

0
for

problem (1) with a constraint conditionΦ(𝑢

0
) = infNΦ than

with oneΦ(𝑢

0
) = infMΦ.

To establish the existence of Nehari-type ground state
solutions, the so-called Nehari-type condition (S4) seems to
be always necessary in the proof of the existence of ground
states solutions for problem (1).

In recent paper [15, 20], Theorem 1 has been extended to
the case where 0 is in the gap of the spectrum 𝜎(−Δ +𝑉), but
an additional assumption on the nonlinearity𝑓 is assumed in
[15].

Motivated by [12, 17, 20], in the present paper, we will
develop a more direct method to generalize Theorem 1 by
relaxing assumptions (V0), (S3), and (S4) in two cases: the
periodic case and the asymptotically periodic case.

In the periodic case, we establish the following two
theorems.

Theorem2. Assume that𝑉 and𝑓 satisfy (V0), (V1), (S1), (S2),
and the following assumptions:
(S0) 𝑓 ∈ 𝐶(R𝑁 × R,R), and there exists a constant 𝐶 > 0

such that








𝑓 (𝑥, 𝑡)









≤ 𝐶 (1 + |𝑡|

2
∗
−1
) , lim

|𝑡|→∞









𝑓 (𝑥, 𝑡)









|𝑡|

2
∗
−1

= 0,

uniformly in 𝑥 ∈ R
𝑁
;

(7)

(S3) lim
|𝑡|→∞

(|𝐹(𝑥, 𝑡)|/|𝑡|

2
) = ∞, a.e.𝑥 ∈ R𝑁;

(S4) 𝑓(𝑥, 𝑡)/|𝑡| is nondecreasing in 𝑡 on R \ {0} for every
𝑥 ∈ R𝑁.

Then problem (1) has a solution 𝑢

0
∈ 𝐻

1
(R𝑁) such that

Φ(𝑢

0
) = infNΦ > 0.

Theorem 3. Assume that 𝑉 and 𝑓 satisfy (V0), (V1), (S0),
(S1), (S2), (S3), and (S4). Then problem (1) has a positive
solution 𝑢 ∈ 𝐻

1
(R𝑁) such that Φ

+
(𝑢) = infN+Φ+ > 0, where

Φ

+ (
𝑢) =

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
) d 𝑥 − ∫

R𝑁
𝐹 (𝑥, 𝑢

+
) d𝑥,

∀𝑢 ∈ 𝐻

1
(R

𝑁
)

(8)

with 𝑢

+
(𝑥) = max{𝑢(𝑥), 0} and 𝑢

−
(𝑥) = max{−𝑢(𝑥), 0}, and

N
+
= {𝑢 ∈ 𝐻

1
(R

𝑁
) : ⟨Φ



+
(𝑢) , 𝑢⟩ = 0, 𝑢 ̸= 0} . (9)

In the asymptotically periodic case, 𝑉(𝑥) is allowed to be
negative in some bounded domain in R𝑁. Precisely, we use
the following condition instead of (V0).

(V0

) 𝑉 ∈ 𝐶(R𝑁) ∩ 𝐿

∞
(R𝑁), 𝑉(𝑥) ≤ 𝑉 ∈ (0,∞) for all

𝑥 ∈ R𝑁 and there exists a constant 𝜁
0
> 0 such that

∫

R𝑁
(|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
) d𝑥

≥ 𝜁

0
∫

R𝑁
[𝑉 − 𝑉 (𝑥)] |𝑢|

2d𝑥, ∀𝑢 ∈ 𝐻

1
(R

𝑁
) .

(10)

(V0

) Was first introduced by Deng et al. [6]; it is satisfied if
the following assumption holds (see Lemma 7):

(V0

) 𝑉 ∈ 𝐶(R𝑁) ∩ 𝐿

∞
(R𝑁), and there exist two constants

𝑎

1
, 𝑎

2
> 0 and a bounded measurable set Ω ⊂ R𝑁

such that (𝑎
1
+ 𝑎

2
)|Ω|

2/𝑁
≤ 𝑆, and

𝑉 (𝑥) ≥ {

−𝑎

1
, 𝑥 ∈ Ω,

𝑎

2
, 𝑥 ∉ Ω,

(11)

where 𝑆 = inf
𝑢∈D1,2(R𝑁),‖𝑢‖

2
∗=1

‖∇𝑢‖

2

2
.

In this case, we establish the following two theorems.

Theorem 4. Assume that 𝑉 and 𝑓 satisfy (V0

), (S0), (S2),
(S3), (S4), and the following assumptions:

(V2) 𝑉(𝑥) = 𝑉

0
(𝑥) + 𝑉

1
(𝑥), 𝑉

0
∈ 𝐶(R𝑁, (0, +∞)), 𝑉

0
(𝑥)

is 1-periodic in each of 𝑥
1
, 𝑥

2
, . . . , 𝑥

𝑁
, 𝑉

1
(𝑥) < 0 for

|𝑥| < 1 +

√

𝑁, and 𝑉

1
(𝑥) ≤ 0 for |𝑥| ≥ 1 +

√

𝑁,
lim

|𝑥|→∞
|𝑉

1
(𝑥)| = 0;

(S1) 𝑓(𝑥, 𝑡) = 𝑓

0
(𝑥, 𝑡)+𝑓

1
(𝑥, 𝑡);𝑓

0
∈ 𝐶(R𝑁×R,R) satisfies

(S1), (S2), and (S4); 𝑓
1
∈ 𝐶(R𝑁 ×R,R) satisfies that

0 ≤ 𝑡𝑓

1 (
𝑥, 𝑡) ≤ 𝑎 (𝑥) (𝑡

2
+ |𝑡|

𝑝0
) , ∀ (𝑥, 𝑡) ∈ R

𝑁
×R, (12)

where 𝑝

0
∈ (2, 2

∗
) and 𝑎 ∈ 𝐶(R𝑁,R+) with

lim
|𝑥|→∞

𝑎(𝑥) = 0.

Then problem (1) has a solution 𝑢

0
∈ 𝐻

1
(R𝑁) such that

Φ(𝑢

0
) = infNΦ > 0.

Theorem 5. Assume that 𝑉 and 𝑓 satisfy (V0

), (V2), (S0),
(S1), (S2), (S3), and (S4). Then problem (1) has a positive
solution 𝑢 ∈ 𝐻

1
(R𝑁) such that Φ

+
(𝑢) = infN+Φ+ > 0.

In our theorems, we give a new condition (S4) which
weakens Nehari-type condition (S3) considerably.
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2. Preliminaries

Lemma6 (see [6, Lemma 2.3]). Assume that𝑉 satisfies (V0

).
Then there exist two positive constants 𝐶

1
, 𝐶

2
> 0 such that

𝐶

1‖
𝑢‖

2

𝐻
1
(

R𝑁
)

≤ ∫

R𝑁
[|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
] d𝑥

≤ 𝐶

2‖
𝑢‖

2

𝐻
1
(R𝑁), ∀𝑢 ∈ 𝐻

1
(R

𝑁
) ,

(13)

where ‖𝑢‖
𝐻
1
(R𝑁) is the usual norm of𝐻1

(R𝑁)

‖𝑢‖𝐻
1
(R𝑁) = [∫

R𝑁
(|∇𝑢|

2
+ 𝑢

2
) d𝑥]

1/2

, 𝑢 ∈ 𝐻

1
(R

𝑁
) .

(14)

By Lemma 6, we define an inner product

(𝑢, V) = ∫

R𝑁
[(∇𝑢 ⋅ ∇V) + 𝑉 (𝑥) 𝑢V] d𝑥, 𝑢, V ∈ 𝐻

1
(R

𝑁
) ,

(15)

associated with the norm

‖𝑢‖ = {∫

R𝑁
[|∇𝑢|

2
+ 𝑉(𝑥)𝑢

2
] d𝑥}

1/2

, 𝑢 ∈ 𝐻

1
(R

𝑁
) .

(16)

Then 𝐻

1
(R𝑁) is a Hilbert space with this inner product.

Moreover, under assumptions (V0

) and (S0), the functional
Φ defined by (3) is of class 𝐶1(𝐻1

(R𝑁),R).

Lemma 7. If (V0

) holds, then (V0

) does.

Proof. By virtue of (V0

), the Hölder inequality, and the
Sobolev inequality, we have

∫

R𝑁
[|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
] d𝑥

≥ ∫

R𝑁
|∇𝑢|

2d𝑥 − (𝑎

1
+ 𝑎

2
) ∫

Ω

𝑢

2 d𝑥 + 𝑎

2
∫

R𝑁
𝑢

2 d𝑥

≥ ∫

R𝑁
|∇𝑢|

2d𝑥 − (𝑎

1
+ 𝑎

2
) |Ω|

2/𝑁
‖𝑢‖

2

2
∗ + 𝑎

2
∫

R𝑁
𝑢

2 d𝑥

≥ ‖∇𝑢‖

2

2
− (𝑎

1
+ 𝑎

2
) |Ω|

2/𝑁
𝑆

−1
‖∇𝑢‖

2

2
+ 𝑎

2
∫

R𝑁
𝑢

2 d𝑥

≥ 𝑎

2
∫

R𝑁
𝑢

2 d𝑥

≥

𝑎

2

𝑉 + 𝑎

1

∫

R𝑁
[𝑉 − 𝑉 (𝑥)] 𝑢

2 d𝑥, ∀𝑢 ∈ 𝐻

1
(R

𝑁
) .

(17)

This shows that (V0

) holds with 𝜁

0
= 𝑎

2
/(𝑉 + 𝑎

1
).

Lemma 8. Let 𝑋 be a Banach space. Let 𝑀

0
be a closed

subspace of the metric space𝑀 and Γ

0
⊂ 𝐶(𝑀

0
, 𝑋). Define

Γ = {𝛾 ∈ 𝐶 (𝑀,𝑋) : 𝛾







𝑀0
∈ Γ

0
} . (18)

If Ψ ∈ 𝐶

1
(𝑋,R) satisfies

∞ > 𝑐 := inf
𝛾∈Γ

sup
𝑡∈𝑀

Ψ (𝛾 (𝑡)) > 𝑎 := sup
𝛾0∈Γ0

sup
𝑡∈𝑀0

Ψ (𝛾

0 (
𝑡)) , (19)

then there exists a sequence {𝑢
𝑛
} ⊂ 𝑋 satisfying

Ψ (𝑢

𝑛
) → 𝑐,











Ψ


(𝑢

𝑛
)











(1 +









𝑢

𝑛









) → 0. (20)

Proof. For any 𝛾 ∈ Γ, define set 𝐾
𝛾
= {𝛾(𝑡) : 𝑡 ∈ 𝑀} in 𝑋 and

the collectionK = {𝐾

𝛾
: 𝛾 ∈ Γ}. Let 𝐴 = {𝛾

0
(𝑡) : 𝛾

0
∈ Γ

0
, 𝑡 ∈

𝑀

0
},

Λ = {𝜑 ∈ 𝐶 (𝑋,𝑋) : 𝜑

−1
∈ 𝐶 (𝑋,𝑋) ,

both𝜑 and 𝜑

−1 are

bounded on bounded sets} ,

Λ (𝐴) = {𝜑 ∈ Λ : 𝜑 (𝑢) = 𝑢, 𝑢 ∈ 𝐴} .

(21)

For any 𝛾 ∈ Γ and 𝜑 ∈ Λ(𝐴), let 𝛾
0

= 𝛾|

𝑀0
and 𝛾(𝑡) =

𝜑(𝛾(𝑡)), 𝑡 ∈ 𝑀. Then 𝛾

0
∈ Γ

0
and 𝛾 ∈ 𝐶(𝑀,𝑋). Hence,

𝛾 (𝑡) = 𝜑 (𝛾

0 (
𝑡)) = 𝛾

0 (
𝑡) , ∀𝑡 ∈ 𝑀

0
; (22)

that is, 𝛾|
𝑀0

= 𝛾

0
∈ Γ

0
. Therefore,

𝜑 (𝐾) ∈ K, ∀𝜑 ∈ Λ (𝐴) , 𝐾 ∈ K. (23)

These show that the collectionK is a minimax system for 𝐴.
Since (19) implies

∞ > 𝑐 := inf
𝐾∈K

sup
𝐾

Ψ > 𝑎 := sup
𝐴

Ψ, (24)

it follows fromTheorem 2.4 in [18] that the result is true.

Lemma9. Under assumptions (V0

), (S0), (S2), and (S3), for
any 𝑢 ∈ 𝐻

1
(R𝑁) \ {0}, there exists 𝑡(𝑢) > 0 such that 𝑡(𝑢)𝑢 ∈

N.

Proof. Let 𝑢 ∈ 𝐻

1
(R𝑁) \ {0} be fixed and define the function

𝑔(𝑡) := Φ(𝑡𝑢) on [0,∞). Clearly we have

𝑔


(𝑡) = 0 ⇐⇒ 𝑡𝑢 ∈ N ⇐⇒ ‖𝑢‖

2
=

1

𝑡

∫

R𝑁
𝑓 (𝑥, 𝑡𝑢) 𝑢 d𝑥.

(25)

It is easy to verify, using (S2) and (S3), that 𝑔(0) = 0,
𝑔(𝑡) > 0 for 𝑡 > 0 small and 𝑔(𝑡) < 0 for 𝑡 large. Therefore
max

𝑡∈[0,∞)
𝑔(𝑡) is achieved at a 𝑡

0
= 𝑡(𝑢) so that 𝑔(𝑡

0
) = 0 and

𝑡(𝑢)𝑢 ∈ N.

Lemma 10. Under assumptions (V0

), (S0), and (S4),

Φ (𝑢) ≥ Φ (𝑡𝑢) +

1 − 𝑡

2

2

⟨Φ


(𝑢) , 𝑢⟩ ,

∀𝑢 ∈ 𝐻

1
(R

𝑁
) , 𝑡 ≥ 0.

(26)
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Proof. For 𝜏 ̸= 0, (S4) yields

𝑓 (𝑥, 𝑠) ≤

𝑓 (𝑥, 𝜏)

|𝜏|

|𝑠| , 𝑠 ≤ 𝜏;

𝑓 (𝑥, 𝑠) ≥

𝑓 (𝑥, 𝜏)

|𝜏|

|𝑠| , 𝑠 ≥ 𝜏.

(27)

It follows that

1 − 𝑡

2

2

𝜏𝑓 (𝑥, 𝜏) ≥ ∫

𝜏

𝑡𝜏

𝑓 (𝑥, 𝑠) d𝑠, 𝑡 ≥ 0.

(28)

Note that

⟨Φ


(𝑢) , 𝑢⟩ = ‖𝑢‖

2
− ∫

R𝑁
𝑓 (𝑥, 𝑢) 𝑢 d𝑥. (29)

Thus, by (3), (28), and (29), one has

Φ (𝑢) − Φ (𝑡𝑢)

=

1 − 𝑡

2

2

‖𝑢‖

2
+ ∫

R𝑁
[𝐹 (𝑥, 𝑡𝑢) − 𝐹 (𝑥, 𝑢)] d𝑥

=

1 − 𝑡

2

2

⟨Φ


(𝑢) , 𝑢⟩

+ ∫

R𝑁
[

1 − 𝑡

2

2

𝑓 (𝑥, 𝑢) 𝑢 + 𝐹 (𝑥, 𝑡𝑢) − 𝐹 (𝑥, 𝑢)] d𝑥

=

1 − 𝑡

2

2

⟨Φ


(𝑢) , 𝑢⟩

+ ∫

R𝑁
[

1 − 𝑡

2

2

𝑓 (𝑥, 𝑢) 𝑢 − ∫

𝑢

𝑡𝑢

𝑓 (𝑥, 𝑠) d 𝑠] d𝑥

≥

1 − 𝑡

2

2

⟨Φ


(𝑢) , 𝑢⟩ , 𝑡 ≥ 0.

(30)

This shows that (26) holds.

Corollary 11. Under assumptions (V0

), (S0), and (S4), for
𝑢 ∈ N,

Φ (𝑢) ≥ Φ (𝑡𝑢) , ∀𝑡 ≥ 0. (31)

We define

𝑐

1
:= inf

N
Φ, 𝑐

2
:= inf

𝑢∈𝐸,𝑢 ̸= 0

max
𝑡≥0

Φ (𝑡𝑢) ,

𝑐 := inf
𝛾∈Γ

sup
𝑡∈[0,1]

Φ(𝛾 (𝑡)) ,

(32)

where

Γ = {𝛾 ∈ 𝐶 ([0, 1] , 𝐸) : 𝛾 (0) = 0, Φ (𝛾 (1)) < 0} . (33)

Lemma 12. Under assumptions (V0

), (S0), (S2), (S3), and
(S4), one has that 𝑐

1
= 𝑐

2
= 𝑐 > 0 and there exists a sequence

{𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁) satisfying

Φ(𝑢

𝑛
) → 𝑐,











Φ


(𝑢

𝑛
)











(1 +









𝑢

𝑛









) → 0. (34)

Proof. (1) Both Lemma 9 and Corollary 11 imply that 𝑐
1
= 𝑐

2
.

Next, we prove that 𝑐 = 𝑐

1
= 𝑐

2
. By the definition of 𝑐

2
, we

choose a sequence {V
𝑛
} ⊂ 𝐸 \ {0} such that

𝑐

2
≤ max

𝑡≥0

Φ(𝑡V
𝑛
) < 𝑐

2
+

1

𝑛

, 𝑛 ∈ N. (35)

Since Φ(𝑡𝑢) < 0 for 𝑢 ∈ 𝐸 \ {0} and 𝑡 large, there exist 𝑡
𝑛
=

𝑡(V
𝑛
) > 0 and 𝑠

𝑛
> 𝑡

𝑛
such that

Φ(𝑡

𝑛
V
𝑛
) = max

𝑡≥0

Φ(𝑡V
𝑛
) , Φ (𝑠

𝑛
V
𝑛
) < 0, 𝑛 ∈ N. (36)

Let 𝛾
𝑛
(𝑡) = 𝑡𝑠

𝑛
V
𝑛
for 𝑡 ∈ [0, 1]. Then 𝛾

𝑛
∈ Γ, and it follows

from (35) and (36) that

sup
𝑡∈[0,1]

Φ(𝛾

𝑛 (
𝑡)) = max

𝑡≥0

Φ(𝑡V
𝑛
) < 𝑐

2
+

1

𝑛

, 𝑛 ∈ N, (37)

which implies that 𝑐 ≤ 𝑐

2
. On the other hand, themanifoldN

separates𝐻1
(R𝑁) into two components 𝐸+ = {𝑢 ∈ 𝐻

1
(R𝑁) :

⟨Φ


(𝑢), 𝑢⟩ > 0} ∪ {0} and 𝐸

−
= {𝑢 ∈ 𝐻

1
(R𝑁) : ⟨Φ


(𝑢), 𝑢⟩ <

0}. By (S4), one has

𝑓 (𝑥, 𝑡) 𝑡 ≥ 2𝐹 (𝑥, 𝑡) , ∀ (𝑥, 𝑡) ∈ R
𝑁
×R.

(38)

It follows that Φ(𝑢) ≥ 0 for 𝑢 ∈ 𝐸

+. By (S0) and (S2), 𝐸+
contains a small ball around the origin. Thus every 𝛾 ∈ Γ has
to crossN, because 𝛾(0) ∈ 𝐸

+ and 𝛾(1) ∈ 𝐸

−, and so 𝑐

1
≤ 𝑐.

(2) In order to prove the second part of Lemma 12, we
apply Lemma 8 with𝑀 = [0, 1],𝑀

0
= {0, 1}, and

Γ

0
= {𝛾

0
: {0, 1} → 𝐻

1
(R

𝑁
) : 𝛾

0 (
0) = 0, Φ (𝛾

0 (
1)) < 0} .

(39)

By (S0) and (S2), there exists 𝑟 > 0 such that

min
‖𝑢‖≤𝑟

Φ (𝑢) = 0, inf
‖𝑢‖=𝑟

Φ (𝑢) > 0. (40)

Hence we obtain

𝑐 ≥ inf
‖𝑢‖=𝑟

Φ (𝑢) > 0 = sup
𝛾0∈Γ0

sup
𝑡∈𝑀0

Φ(𝛾

0 (
𝑡)) . (41)

These show that all assumptions of Lemma 8 are satisfied.
Therefore there exists a sequence (𝑢

𝑛
) ⊂ 𝐻

1
(R𝑁) satisfying

(34).

Lemma 13. Under assumptions (V0

), (S0), (S2), (S3), and
(S4), any sequence {𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁) satisfying (34) is bounded

in𝐻

1
(R𝑁).

Proof. To prove the boundedness of {𝑢
𝑛
}, arguing by contra-

diction, suppose that ‖𝑢
𝑛
‖ → ∞. Let V

𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖. Then

‖V
𝑛
‖ = 1. By Sobolev embedding theorem, there exists a

constant 𝐶
3
> 0 such that









V
𝑛







2
+









V
𝑛







2
∗ ≤ 𝐶

3
. (42)

Passing to a subsequence, we may assume that V
𝑛

⇀ V in
𝐻

1
(R𝑁), V

𝑛
→ V in 𝐿

𝑠

loc(R
𝑁
), 2 ≤ 𝑠 < 2

∗, and V
𝑛

→ V
a.e. on R𝑁.
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If 𝛿 := lim sup
𝑛→∞

sup
𝑦∈R𝑁 ∫𝐵1(𝑦)

|V
𝑛
|

2d𝑥 = 0, then by
Lions’ concentration compactness principle [23, Lemma 1.21],
V
𝑛

→ 0 in 𝐿

𝑠
(R𝑁) for 2 < 𝑠 < 2

∗. Fix 𝑝 ∈ (2, 2

∗
) and 𝑅 >

2√𝑐. By (S0) and (S2), for 𝜀 = 𝑐/4[(𝑅𝐶

3
)

2
+ (𝑅𝐶

3
)

2
∗

] > 0

there exists 𝐶
𝜀
> 0 such that

|𝐹 (𝑥, 𝑢)| ≤ 𝜀 (|𝑢|

2
+ |𝑢|

2
∗

) + 𝐶

𝜀|
𝑢|

𝑝
. (43)

It follows that

lim sup
𝑛→∞

∫

R𝑁
𝐹 (𝑥, 𝑅V

𝑛
) d𝑥

≤ 𝜀 [(𝑅𝐶

3
)

2
+ (𝑅𝐶

3
)

2
∗

] + 𝑅

𝑝
𝐶

𝜀
lim
𝑛→∞









V
𝑛









𝑝

𝑝
=

𝑐

4

.

(44)

Hence, by using (34), (44), and Lemma 10, one has

𝑐 + 𝑜 (1) = Φ (𝑢

𝑛
)

≥ Φ (𝑅V
𝑛
) + (

1

2

−

𝑅

2

2









𝑢

𝑛









2
)⟨Φ


(𝑢

𝑛
) , 𝑢

𝑛
⟩

=

𝑅

2

2

− ∫

R𝑁
𝐹 (𝑥, 𝑅V

𝑛
) d𝑥

+ (

1

2

−

𝑅

2

2









𝑢

𝑛









2
)⟨Φ


(𝑢

𝑛
) , 𝑢

𝑛
⟩

≥

𝑅

2

2

−

𝑐

4

+ 𝑜 (1) >

7𝑐

4

+ 𝑜 (1) ,

(45)

which is a contradiction. Thus, 𝛿 > 0.
Going if necessary to a subsequence, we may assume the

existence of 𝑘
𝑛
∈ Z𝑁 such that ∫

𝐵
1+√𝑁

(𝑘𝑛)
|V
𝑛
|

2d𝑥 > 𝛿/2. Let
𝑤

𝑛
(𝑥) = V

𝑛
(𝑥 + 𝑘

𝑛
). Then it follows that

∫

𝐵
1+√𝑁

(0)









𝑤

𝑛









2d𝑥 >

𝛿

2

. (46)

Now we define �̃�

𝑛
(𝑥) = 𝑢

𝑛
(𝑥 + 𝑘

𝑛
), then �̃�

𝑛
/‖𝑢

𝑛
‖ = 𝑤

𝑛
, and

‖𝑤

𝑛
‖

𝐻
1
(R𝑁) = ‖𝑢

𝑛
‖

𝐻
1
(R𝑁)/‖𝑢𝑛‖ ≤ 𝐶

4
for some 𝐶

4
> 0. Passing

to a subsequence, we have 𝑤

𝑛
⇀ 𝑤 in 𝐻

1
(R𝑁), 𝑤

𝑛
→ 𝑤

in 𝐿

𝑠

loc(R
𝑁
), 2 ≤ 𝑠 < 2

∗, and 𝑤

𝑛
→ 𝑤 a.e. on R𝑁. Thus,

(46) implies that 𝑤 ̸= 0. Hence, it follows from (34), (S3), and
Fatou’s lemma that

0 = lim
𝑛→∞

𝑐 + 𝑜 (1)









𝑢

𝑛









2
= lim
𝑛→∞

Φ(𝑢

𝑛
)









𝑢

𝑛









2

= lim
𝑛→∞

[

1

2

− ∫

R𝑁

𝐹 (𝑥 + 𝑘

𝑛
, �̃�

𝑛
)

�̃�

2

𝑛

𝑤

2

𝑛
d𝑥]

≤

1

2

− lim inf
𝑛→∞

∫

R𝑁

𝐹 (𝑥 + 𝑘

𝑛
, �̃�

𝑛
)

�̃�

2

𝑛

𝑤

2

𝑛
d𝑥

≤

1

2

− ∫

R𝑁
lim inf
𝑛→∞

𝐹 (𝑥 + 𝑘

𝑛
, �̃�

𝑛
)

�̃�

2

𝑛

𝑤

2

𝑛
d𝑥 = −∞,

(47)

which is a contradiction. Thus {𝑢

𝑛
} is bounded in 𝐻

1
(R𝑁).

Remark 14. In the proof of Lemma 13, (S3) is used only in
(47). Hence, it can be weakened to (S3) if𝑓(𝑥, 𝑡) is 1-periodic
in each of 𝑥

1
, 𝑥

2
, . . . , 𝑥

𝑁
.

3. The Proofs of Theorems

Proof of Theorem 2. Lemma 12 implies the existence of a
sequence {𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁) satisfying (34), by a standard

argument; we can proveTheorem 2.

Proof of Theorem 3. In view of the proofs of Lemmas 12 and
13, we can show that the conclusions of Lemmas 12 and 13 still
hold if Φ and N are replaced by Φ

+
and N

+
, respectively.

Hence, there exists a bounded sequence {𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁)

satisfying

Φ

+
(𝑢

𝑛
) → 𝑐

+
,











Φ



+
(𝑢

𝑛
)











(1 +









𝑢

𝑛









) → 0, (48)

where 𝑐

+
= inf

𝑢∈N+
Φ

+
(𝑢). The rest of the proof is standard,

so we omit it.

To prove Theorems 4 and 5, we define functional Φ
0
and

Φ

+,0
as follows:

Φ

0 (
𝑢) =

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉

0 (
𝑥) 𝑢

2
) d𝑥 − ∫

R𝑁
𝐹

0 (
𝑥, 𝑢) d𝑥,

𝑢 ∈ 𝐻

1
(R

𝑁
) ,

(49)

Φ

+,0 (
𝑢) =

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉

0 (
𝑥) 𝑢

2
) d𝑥 − ∫

R𝑁
𝐹

0
(𝑥, 𝑢

+
) d𝑥,

𝑢 ∈ 𝐻

1
(R

𝑁
) ,

(50)

where 𝐹

0
(𝑥, 𝑡) := ∫

𝑡

0
𝑓

0
(𝑥, 𝑠)d𝑠. Then (V2), (S0), and (S1)

imply thatΦ
0
∈ 𝐶

1
(𝐻

1
(R𝑁),R) and

⟨Φ



0
(𝑢) , V⟩ = ∫

R𝑁
(∇𝑢∇V + 𝑉

0 (
𝑥) 𝑢V) d𝑥

− ∫

R𝑁
𝑓

0 (
𝑥, 𝑢) V d𝑥, 𝑢, V ∈ 𝐻

1
(R

𝑁
) .

(51)

Proof of Theorem 4. Lemma 12 implies the existence of a
sequence {𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁) satisfying (34). By Lemma 13, {𝑢

𝑛
}

is bounded in 𝐻

1
(R𝑁). Passing to a subsequence, we have

𝑢

𝑛
⇀ 𝑢

0
in𝐻

1
(R𝑁). Next, we prove 𝑢

0
̸= 0.

Arguing by contradiction, suppose that 𝑢
0

= 0; that is,
𝑢

𝑛
⇀ 0 in 𝐻

1
(R𝑁), and so 𝑢

𝑛
→ 0 in 𝐿

𝑠

loc(R
𝑁
), 2 ≤ 𝑠 < 2

∗,
and 𝑢

𝑛
→ 0 a.e. on R𝑁. For any 𝜀 > 0, it follows from (V2)
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that there exists 𝑅
𝜀
> 0 such that |𝑉

1
(𝑥)| ≤ 𝜀 for |𝑥| ≥ 𝑅

𝜀
.

Hence,

∫

R𝑁









𝑉

1 (
𝑥)









𝑢

2

𝑛
d𝑥

= ∫

𝐵𝑅𝜀
(0)









𝑉

1 (
𝑥)









𝑢

2

𝑛
d𝑥 + ∫

R𝑁\𝐵𝑅𝜀 (0)









𝑉

1 (
𝑥)









𝑢

2

𝑛
d𝑥

≤ sup
R𝑁









𝑉

1 (
𝑥)









∫

𝐵𝑅𝜀
(0)

𝑢

2

𝑛
d𝑥 + 𝜀∫

R𝑁\𝐵𝑅𝜀 (0)

𝑢

2

𝑛
d𝑥

≤ 𝑜 (1) + 𝜀









𝑢

𝑛









2

2
≤ 𝑜 (1) + 𝐶

3
𝜀.

(52)

Since 𝜀 > 0 is arbitrary, we have

lim
𝑛→∞

∫

R𝑁
𝑉

1 (
𝑥) 𝑢

2

𝑛
d𝑥 = 0. (53)

Similarly, by (S1), one has

lim
𝑛→∞

∫

R𝑁
𝐹

1
(𝑥, 𝑢

𝑛
) d𝑥 = 0,

lim
𝑛→∞

∫

R𝑁
𝑓

1
(𝑥, 𝑢

𝑛
) 𝑢

𝑛
d𝑥 = 0.

(54)

Note that

Φ

0 (
𝑢) = Φ (𝑢) −

1

2

∫

R𝑁
𝑉

1 (
𝑥) 𝑢

2d𝑥

+ ∫

R𝑁
𝐹

1 (
𝑥, 𝑢) d𝑥, ∀𝑢 ∈ 𝐻

1
(R

𝑁
) ,

⟨Φ



0
(𝑢) , V⟩ = ⟨Φ


(𝑢) , V⟩ − ∫

R𝑁
𝑉

1 (
𝑥) 𝑢V d𝑥

+ ∫

R𝑁
𝑓

1 (
𝑥, 𝑢) V d𝑥, ∀𝑢, V ∈ 𝐻

1
(R

𝑁
) .

(55)

From (34) and (53)–(55), one has

Φ

0
(𝑢

𝑛
) → 𝑐,











Φ



0
(𝑢

𝑛
)











(1 +









𝑢

𝑛









) → 0. (56)

By a standard argument, we may prove that there exists
𝑘

𝑛
∈ Z𝑁, going if necessary to a subsequence, such that

∫

𝐵
1+√𝑁

(𝑘𝑛)









𝑢

𝑛









2d𝑥 >

𝛿

2

> 0. (57)

Let V
𝑛
(𝑥) = 𝑢

𝑛
(𝑥 + 𝑘

𝑛
). Then ‖V

𝑛
‖

𝐻
1
(R𝑁) = ‖𝑢

𝑛
‖

𝐻
1
(R𝑁), and

∫

𝐵
1+√𝑁

(0)









V
𝑛









2d𝑥 >

𝛿

2

. (58)

Since 𝑉
0
(𝑥) and 𝑓

0
(𝑥, 𝑢) are periodic, we have

Φ

0
(V
𝑛
) → 𝑐,











Φ



0
(V
𝑛
)











(1 +









V
𝑛









) → 0. (59)

Since {V
𝑛
} is bounded in 𝐻

1
(R𝑁), passing to a subsequence,

we have V
𝑛
⇀ V in𝐻

1
(R𝑁), V

𝑛
→ V in 𝐿

𝑠

loc(R
𝑁
), 2 ≤ 𝑠 < 2

∗,

and V
𝑛
→ V a.e. onR𝑁. Obviously, (58) implies that V(𝑥) ̸≡ 0

for 𝑥 ∈ 𝐵

1+√𝑁
(0). By a standard argument, we can prove that

Φ



0
(V) = 0 andΦ

0
(V) ≤ 𝑐 by using (59).

Since V ̸= 0, it follows from Lemma 9 that there exists 𝑡
0
=

𝑡(V) such that 𝑡
0
V ∈ N, and soΦ(𝑡

0
V) ≥ 𝑐. On the other hand,

from (49), (51), (V2), (S1), and (S4), we have

𝑐 ≥ Φ

0 (
V)

= Φ

0
(𝑡

0
V)

+ ∫

R𝑁
[

1 − 𝑡

2

0

2

𝑓

0 (
𝑥, V) V + 𝐹

0
(𝑥, 𝑡

0
V) − 𝐹

0 (
𝑥, V)] d𝑥

≥ Φ

0
(𝑡

0
V)

= Φ (𝑡

0
V) −

𝑡

2

0

2

∫

R𝑁
𝑉

1 (
𝑥) V2d𝑥 + ∫

R𝑁
𝐹

1
(𝑥, 𝑡

0
V) d𝑥

> Φ (𝑡

0
V) ≥ 𝑐.

(60)

This contradiction implies that 𝑢
0

̸= 0. By a standard argu-
ment, we can prove that Φ(𝑢

0
) = 0 and Φ(𝑢

0
) = 𝑐 = infNΦ.

This shows that 𝑢
0
∈ 𝐻

1
(R𝑁) is a solution for problem (1)

with Φ(𝑢

0
) = infNΦ > 0.

Proof of Theorem 5. Similar to the proof of Theorem 3, there
exists a bounded sequence {𝑢

𝑛
} ⊂ 𝐻

1
(R𝑁) satisfying (48).

Passing to an appropriate subsequence, we have that 𝑢
𝑛
⇀ 𝑢

in𝐻

1
(R𝑁). Next, we prove 𝑢 ̸= 0.

Arguing by contradiction, suppose that 𝑢 = 0; that is,
𝑢

𝑛
⇀ 0 in 𝐻

1
(R𝑁). Then, 𝑢

𝑛
→ 0 in 𝐿

𝑠

loc(R
𝑁
), 2 ≤

𝑠 < 2

∗, and 𝑢

𝑛
→ 0 a.e. on R𝑁. Analogous to the proof

of Theorem 4, we can demonstrate that there exists a V ∈

𝐻

1
(R𝑁) \ {0} with V(𝑥) ̸≡ 0 for 𝑥 ∈ 𝐵

1+√𝑁
(0) such that

Φ



+,0
(V) = 0 and Φ

+,0
(V) ≤ 𝑐. By a standard argument, we can

show that V ≥ 0.
Since V ≥ ( ̸≡ )0, it follows from Lemma 9 that there exists

𝑡

0
= 𝑡(V) such that 𝑡

0
V ∈ N

+
, and so Φ

+
(𝑡

0
V) ≥ 𝑐. On the

other hand, from (49), (51), (V2), (S1), and (S4), we have

𝑐 ≥ Φ

+,0 (
V)

= Φ

+,0
(𝑡

0
V) + ∫

R𝑁
[

1 − 𝑡

2

0

2

𝑓

0 (
𝑥, V) V

+ 𝐹

0
(𝑥, 𝑡

0
V) − 𝐹

0 (
𝑥, V) ] d𝑥

≥ Φ

+,0
(𝑡

0
V)

= Φ

+
(𝑡

0
V) −

𝑡

2

0

2

∫

R𝑁
𝑉

1 (
𝑥) V2 d𝑥 + ∫

R𝑁
𝐹

1
(𝑥, 𝑡

0
V) d𝑥

> Φ

+
(𝑡

0
V) ≥ 𝑐.

(61)

This contradiction shows that 𝑢 ̸= 0. In the same way as
the last part of the proof of Theorem 1, we can deduce that
Φ



+
(𝑢) = 0 and Φ

+
(𝑢) = 𝑐 = infN+Φ+. By a standard
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argument, we can demonstrate that 𝑢 ≥ 0. Therefore, 𝑢 ∈

𝐻

1
(R𝑁) is a positive solution for problem (1) with Φ

+
(𝑢) =

infN+Φ+ > 0.
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