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Very recently, the convenient way to calculate the Adomian series was suggested.This paper combines this technique and the Pade
approximation to develop some new iteration schemes.Then, the combinedmethod is applied to nonlinearmodels and the residual
functions illustrate the accuracies and conveniences.

1. Introduction

Analytical methods for nonlinear systems have caught much
attention due to their convenience for obtaining solutions
in real engineering problems. One of the most often used
methods is the Adomian decomposition method (ADM) [1].
Also due to the rapid development of the computer science,
various modifications of these nonlinear analytical methods
have been proposed and have been extensively applied to
various nonlinear systems [2–14].

Very recently, for the ADM, Duan [4–6] suggested a
convenient Adomian calculation scheme. The method can
help us get a higher accuracy and can hand higher order
approximation problem due to its easier calculation of the
Adomian series than the classical one [1]. The technique has
been successfully extended to fractional differential equations
and boundary value problems.

Recently, Tsai and Chen [11] proposed a Laplace-Ado-
mian-Pademethod (LAPM).Themethod holds the following
merits: (a) Laplace transform can be used to determine the
initial iteration value; (b) the Pade technique is adopted to
accelerate the convergence.

With Duan and Tsai’s idea, this paper suggests a novel
approximation scheme for the oscillating physical mecha-
nism of the nonlinear models [15]

𝑑𝑇

𝑑𝑡
= 𝐶𝑇 + 𝐷ℎ − 𝜀𝑇

3
, 𝑇 (0) = 1,

𝑑ℎ

𝑑𝑡
= − 𝐸𝑇 − 𝑅

ℎ
ℎ, ℎ (0) = 1,

(1)

where 𝐶,𝐷, 𝐸, and 𝑅
ℎ
are physical constants, 𝑇 describes the

temperature of the eastern equatorial Pacific sea surface, and
ℎ is the thermocline depth anomaly.

2. Preliminaries of the Adomian Series

Generally, consider the following nonlinear equation:

𝐿 [𝑢] + 𝑅 [𝑢] + 𝑁 [𝑢] = 𝑔 (𝑡) , (2)

where 𝐿 is the highest derivative of 𝑢, for example, 𝑚 order,
𝑅 is the remaining linear part containing the lower order
derivatives, and𝑁 is the nonlinear operator.
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Apply the inverse 𝐿−1 of the linear operator 𝐿 in (2), and
we can obtain

𝑢 = 𝑢 (0) + 𝑢
󸀠
(0) 𝑡 + ⋅ ⋅ ⋅ + 𝑢

(𝑚−1)
(0)

𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1
(𝑔 (𝑡)) − 𝐿

−1
(𝑅 [𝑢]) − 𝐿

−1
(𝑁 [𝑢]) .

(3)

Consider the basic idea of the Picard method

𝑢
𝑛+1

= 𝑢 (0) + 𝑢
󸀠
(0) 𝑡 + ⋅ ⋅ ⋅ + 𝑢

(𝑚−1)
(0)

𝑡
𝑚−1

(𝑚 − 1)!

+ 𝐿
−1
(𝑔 (𝑡)) − 𝐿

−1
(𝑅 [𝑢
𝑛
]) − 𝐿

−1
(𝑁 [𝑢

𝑛
]) ,

(4)

and assume that

𝑢 =

∞

∑

𝑖=0

V
𝑖
, 𝑢

𝑛
=

𝑛

∑

𝑖=0

V
𝑖
. (5)

The classical ADM [1] supposes that the nonlinear term
𝑁[𝑢] can be expanded approximately as

𝑁[𝑢] =

∞

∑

𝑛=0

𝐴
𝑛
, (6)

where 𝐴
𝑛
is calculated by

𝐴
𝑛
=
1

𝑛!

𝜕
𝑛

𝜕𝜆𝑛
[𝑁(

∞

∑

𝑘=0

V
𝑘
𝜆
𝑘
)]

𝜆=0

. (7)

For example, ∑∞
𝑛=0

𝐴
𝑛
is the Adomian series of 𝑇3; namely,

𝐴
0
= V3
0
,

𝐴
1
= 3V2
0
V
1
,

𝐴
2
= 3V
0
V2
1
+ 3V2
0
V
2
,

...

(8)

Duan et al. [4–6] very recently suggested a convenient
way to calculate the Adomian series as

𝐴
𝑛
=
1

𝑛

𝑛−1

∑

𝑘=0

(𝑘 + 1) V
𝑘+1

𝑑𝐴
𝑛−1−𝑘

𝑑V
0

, (9)

as well as the case of the𝑚-variable

𝐴
𝑛
=
1

𝑛

𝑚

∑

𝑖=1

𝑛−1

∑

𝑘=0

(𝑘 + 1) V𝑖,𝑘+1
𝜕𝐴
𝑛−1−𝑘

𝜕V
𝑖,0

. (10)

For the single variable case, 𝑁[𝑢] = 𝑓(𝑢), the first three
components are listed as

𝐴
1
= V
1

𝑑𝑓 (V
0
)

𝑑V
0

,

𝐴
2
=
1

2
V
1

2
𝑑
2
𝑓 (V
0
)

𝑑V
0
2

+ V
2

𝑑𝑓 (V
0
)

𝑑V
0

,

𝐴
3
=
1

6
V
1

3
𝑑
3
𝑓 (V
0
)

𝑑V
0
3

+ V
2
V
1

𝑑
2
𝑓 (V
0
)

𝑑V
0
2

+ V
3

𝑑𝑓 (V
0
)

𝑑V
0

,

𝐴
4
=
1

24
V
1

4
𝑑
4
𝑓 (V
0
)

𝑑V
0
4

+
1

2
V
2
V
1

2
𝑑
3
𝑓 (V
0
)

𝑑V
0
3

+ V
3
V
1

𝑑
2
𝑓 (V
0
)

𝑑V
0
2

+
1

2
V
2

2
𝑑
2
𝑓 (V
0
)

𝑑V
0
2

+ V
4

𝑑𝑓 (V
0
)

𝑑V
0

.

(11)

And for the two-variable case, 𝑁[𝑢] = 𝑓(𝑢
1
, 𝑢
2
), the first

three components are listed as

𝐴
1
= V
1,1

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0

+ V
2,1

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0

,

𝐴
2
=
1

2
V
1,1

2
𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0
2

+ V
1,1
V
2,1

𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
𝜕V
1,0

+ V
1,2

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0

+
1

2
V
2,1

2
𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
2

+ V
2,2

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0

,

𝐴
3
=
1

6
V
1,1

3
𝜕
3
𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0
3

+
1

2
V
1,1

2V
2,1

𝜕
3
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
𝜕V
1,0
2

+ V
1,1
V
1,2

𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0
2

+
1

2
V
1,1
V
2,1

2
𝜕
3
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
2𝜕V
1,0

+ V
1,1
V
2,2

𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
𝜕V
1,0

+ V
1,2
V
2,1

𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
𝜕V
1,0

+ V
1,3

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
1,0

+
1

6
V
2,1

3
𝜕
3
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
3

+ V
2,1
V
2,2

𝜕
2
𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0
2

+ V
2,3

𝜕𝑓 (V
1,0
, V
2,0
)

𝜕V
2,0

.

(12)

The above formulae (9) spend less time deriving the 𝐴
𝑛
. On

the other hand, this provides a possible tool to investigate the
higher order approximation solution.



Abstract and Applied Analysis 3

3. Iteration Schemes Based on the Convenient
Adomian Series

Now, we present our analytical schemes using the convenient
Adomian series, Laplace transform, and Pade approximation.
We adopt the steps in [16]. Considering (2), we show the
following iteration schemes.

(i) Take Laplace transform 𝐿̃ to both sides:

𝐿̃ [𝐿 [𝑢] + 𝑅 [𝑢]] + 𝐿̃ [𝑁 [𝑢]] = 𝐿̃ [𝑔 (𝑡)] . (13)

We can have iteration formula (4) through inverse of Laplace
transform 𝐿̃

−1:

𝑢 (𝑡) = 𝑓 (𝑡) + 𝐿̃
−1
[𝜆̃ (𝑠) 𝐿̃ [𝑁 [𝑢]]] , (14)

where 𝑓(𝑡) and 𝜆̃(𝑠) can be determined by calculation of
Laplace transform to 𝐿[𝑢], 𝑅[𝑢], and 𝑔(𝑡). The calculation of
𝜆̃(𝑠) is similar to the determination of the Lagrangemultiplier
of the variational iteration method in [17].

(ii) Through the Picard successive approximation, we
can obtain the following iteration formula:

𝑢
𝑛+1

= 𝑓 (𝑡) + 𝐿̃
−1
[𝜆̃ (𝑠) 𝐿̃ [𝑁 [𝑢

𝑛
]]] . (15)

(iii) Let 𝑢
𝑛
= ∑
𝑛

𝑖=0
V
𝑖
and apply the Adomian series to

expand the term𝑁[𝑢] as ∑∞
𝑖=0
𝐴
𝑖
. Then, the iteration

formula reads

V
𝑛+1

= 𝐿̃
−1
[𝜆̃ (𝑠) 𝐿̃ [𝐴𝑛]] ,

V
0
= 𝑓 (𝑡) ,

(16)

where 𝐴
𝑖
are calculated by

𝐴
𝑛
=
1

𝑛

𝑛−1

∑

𝑘=0

(𝑘 + 1) V
𝑘+1

𝑑𝐴
𝑛−1−𝑘

𝑑V
0

. (17)

(iv) Employ the Pade technique to accelerate the
convergence of 𝑢

𝑛
= ∑
𝑛

𝑖=0
V
𝑖
.

4. Applications of the Iteration Formulae

In this study, we consider a reduced case where 𝐷 = 0 and
0 < 𝜀 ≪ 1 in (1) as follows:

𝑑𝑇

𝑑𝑡
= 𝐶𝑇 − 𝜀𝑇

3
, 𝐶 = 1, 𝑇 (0) = 1. (18)

In order to solve (18) with the Maple software, apply
Laplace transform 𝐿 to both sides firstly. This step can fully
and optimally determine the initial iteration. We can derive

V
𝑛+1 (𝑡) = −𝐿̃

−1
[
𝜀𝐿̃ [𝐴

𝑛
]

(𝑠 − 𝐶)
] , 𝑛 ≥ 1,

V
0
= 𝐿̃
−1
[
𝑇 (0)

(𝑠 − 𝐶)
] .

(19)

Formula (
19

)
Formula (

21

)

2

0
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543210

g
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t

Figure 1: The comparisons of the approximate solutions using (19)
and (21).

Setting 𝜀 = 0.00001 in the model (18), now we can obtain
the first few as

𝑇
0
= V
0
= e𝑡,

𝑇
1
= V
0
+ V
1
= e𝑡 − 0.0001 e2𝑡 sinh (𝑡) ,

...

(20)

Apply the Pade technique to 𝑇
𝑛
and denote the result as

𝑃𝑇
1,𝑛
[𝑝/𝑞].

We now can compare the accuracies of the different
versions of the Adomian decomposition methods.

For example, we can write out the classical Adomian
formula for (18) as

V
𝑛+1

(𝑡) = 𝐶∫

𝑡

0

V
𝑛
𝑑𝜏 − 𝜀∫

𝑡

0

𝐴
𝑛
𝑑𝜏, 𝑛 ≥ 1,

V
0
= 𝑇 (0) .

(21)

Also apply the Pade technique to 𝑇
𝑛
and denote the result as

𝑃𝑇
2,𝑛
[𝑝/𝑞].

Define the residual function as

𝑔
𝑛
= log

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑 (𝑃𝑇
𝑖,𝑛
[𝑝/𝑞])

𝑑𝑡
− 𝐶(𝑃𝑇

𝑖,𝑛
[
𝑝

𝑞
])

+ 𝜀(𝑃𝑇
𝑖,𝑛
[
𝑝

𝑞
])

3󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

, 𝑖 = 1, 2.

(22)

Consider the same 𝑛 = 20 and 𝑝 = 𝑞 = 20; from
the comparison illustrated through Figure 1, we can see that
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Figure 2: Analytical solution of (18) via (19).

the iteration formula (19) has a higher accuracy almost in the
interval [0, 5].

As a result, we decide to adopt the iteration formula
(19) and give the numerical simulation of (18) in the case
of the higher order approximation. The analytical solution is
illustrated in Figure 2.

The approximate solution is reliable from the error
analysis of the iteration formula (19) in Figure 1.

5. Conclusions

The approximate solution is compared with the nonlinear
techniques in higher order iteration and the result shows the
new way’s higher accuracy to calculate the Adomian series.
In view of this point, the comparison of different versions
of the Adomian method is possible. The results show that
the iteration formula fully using all the linear parts has a
higher accuracy. It provides an efficient tool to select a suitable
algorithm when solving engineering problems.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work is supported by the Open Fund of State Key Labo-
ratory of Oil and Gas Geology and Exploration, Southwest
Petroleum University (PLN1309), National Natural Science
Foundation of China “Study on wellbore flow model in
liquid-based whole process underbalanced drilling” (Grant
No. 51204140), the Scientific Research Fund of Sichuan

Provincial Education Department (4ZA0244), and the Pro-
gram for Liaoning Excellent Talents in University under
Grant no. LJQ2011136.

References

[1] G. Adomian, Solving Frontier Problems of Physics: the Decom-
position Method, Kluwer Academic Publishers, Boston, Mass,
USA, 1994.

[2] S. S. Ray andR.K. Bera, “An approximate solution of a nonlinear
fractional differential equation by Adomian decomposition
method,” Applied Mathematics and Computation, vol. 167, no.
1, pp. 561–571, 2005.

[3] H. Jafari and V. Daftardar-Gejji, “Revised Adomian decom-
position method for solving a system of nonlinear equations,”
Applied Mathematics and Computation, vol. 175, no. 1, pp. 1–7,
2006.

[4] J.-S. Duan, “Recurrence trianglefor Adomian polynomials,”
AppliedMathematics and Computation, vol. 216, no. 4, pp. 1235–
1241, 2010.

[5] J.-S. Duan, “An efficient algorithm for the multivariable Ado-
mian polynomials,”AppliedMathematics and Computation, vol.
217, no. 6, pp. 2456–2467, 2010.

[6] J. S. Duan, R. Rach, D. Baleanu, and A. M. Wazwaz, “A review
of the Adomian decomposition method and its applications to
fractional differential equations,”Communications in Fractional
Calculus, vol. 3, no. 2, pp. 73–99, 2012.

[7] G.-C. Wu, “Adomian decomposition method for non-smooth
initial value problems,”Mathematical and Computer Modelling,
vol. 54, no. 9-10, pp. 2104–2108, 2011.

[8] V. Daftardar-Gejji and H. Jafari, “Adomian decomposition: a
tool for solving a system of fractional differential equations,”
Journal of Mathematical Analysis and Applications, vol. 301, no.
2, pp. 508–518, 2005.

[9] H. Jafari and V. Daftardar-Gejji, “Solving linear and nonlinear
fractional diffusion and wave equations by Adomian decompo-
sition,” Applied Mathematics and Computation, vol. 180, no. 2,
pp. 488–497, 2006.

[10] S. Momani and Z. Odibat, “Analytical solution of a time-
fractional Navier-Stokes equation by Adomian decomposition
method,” Applied Mathematics and Computation, vol. 177, no. 2,
pp. 488–494, 2006.

[11] P.-Y. Tsai and C.-K. Chen, “An approximate analytic solution
of the nonlinear Riccati differential equation,” Journal of the
Franklin Institute, vol. 347, no. 10, pp. 1850–1862, 2010.

[12] D. Q. Zeng and Y. M. Qin, “The Laplace-Adomian-Pade
technique for the seepage flows with the Riemann-Liouville
derivatives,” Communications in Fractional Calculus, vol. 3, no.
1, pp. 26–29, 2012.

[13] H. Jafari, C. M. Khalique, and M. Nazari, “Application of the
Laplace decompositionmethod for solving linear and nonlinear
fractional diffusionwave equations,” Applied Mathematics Let-
ters, vol. 24, no. 11, pp. 1799–1805, 2011.

[14] H. Jafari, M. Nazari, D. Baleanu, and C. M. Khalique, “A new
approach for solving a system of fractional partial differential
equations,”Computers&Mathematics withApplications, vol. 66,
no. 5, pp. 838–843, 2013.

[15] J. Q.Mo andW.-T. Lin, “Generalized variation iteration solution
of an atmosphere-ocean oscillator model for global climate,”
Journal of Systems Science andComplexity, vol. 24, no. 2, pp. 271–
276, 2011.



Abstract and Applied Analysis 5

[16] Y. Zeng, “The Laplace-Adomian-Pade technique for the ENSO
model,”Mathematical Problems in Engineering, vol. 2013, Article
ID 954857, 4 pages, 2013.

[17] G. C. Wu, “Challenge in the variational iteration method—
a new approach to identification of the Lagrange multipliers,”
Journal of King Saud University—Science, vol. 25, no. 2, pp. 175–
178, 2013.


