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Mobile networks are composed of heterogeneous mobile devices with peer-to-peer wireless communication. Their dynamic and
self-organizing natures pose security challenge. We consider secure group key management for peer dynamic groups in mobile
wireless networks. Many group based applications have achieved remarkable growth along with increasing use of multicast
based services. The key sharing among the group members is an important issue for secure group communication because the
communication for many participants implies that the likelihood of illegal overhearing increases. We propose a group key sharing
scheme and efficient rekeying methods for frequent membership changes from network dynamics. The proposed method enables
the group members to simply establish a group key and provide high flexibility for dynamic group changes such as member join
or leave and group merging or partition. We conduct mathematical evaluation with other group key management protocols and
finally prove its security by demonstrating group key secrecy, backward and forward secrecy, key independence, and implicit key
authentication under the decisional Diffie-Hellman (DDH) assumption.

1. Introduction

Advances in wireless communications and mobile devices
have made various types of mobile networks such as mobile
ad hoc networks (MANETs), wirelessmobile sensor networks
(WMSNs), and Internet of things (IoT). In mobile networks,
heterogeneous devices such as smartphones, laptops, and
smart sensors perform peer-to-peer (machine-to-machine)
communications without depending on any fixed infrastruc-
ture. Mobile networks have features distinct from conven-
tional networks. First, network topology changes dynamically
due to themobility of nodes, which causes frequent switching
of network connection state. Additionally, many applica-
tions in mobile networks support one-to-many (multicast)
communication, where common data are transferred to
multiple destinations from a source, for instance, military
communication (battlefield), health care system, industrial
monitoring, on-line conferencing, collaborative workspace,
and disastermanagement.They build a collaborative group of

entities, called groupmembers, which participate inmulticast
group communications as a group member and manage
group membership changed by node mobility.

Group communication over wireless networks is suscep-
tible to illegal overhearing such as packet sniffing. When a
group deals with sensitive information, secure group com-
munication must be achieved by sharing a common secret
key—group key for confidentiality of group messages with
data encryption. In other words, it is essential to decide
how to share a key among group members and how to
update the group key for group membership change [1–3].
A typical approach is based on centralized key distribution
with a trusted third party (TTP) [4–8]. It provides scalable
group key management for large groups using symmetric
encryption such as advanced encryption standard (AES) and
hierarchical logical key tree. However, it fairly depends on a
constantly accessible TTP. This requirement is not suitable
for mobile networks with peer-to-peer communication. To
apply a symmetric key based approach without a TTP, a node
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should establish secure connection for sharing a pairwise
key with all other mobile nodes in a group. It requires
much communication and depends on another key sharing
scheme [9]. Diffie-Hellman (DH) key exchange [10] is a
protocol to establish a common key based on asymmetric
keys without any TTP. It allows two parties to share a key
using their secrets over an insecure channel. To extend DH
into group setting, group key agreement (GKA) protocols
have been developed [11–16]. In the protocols, also known as
contributory key agreement, all groupmembers contribute to
generation of a commonkey.While providing dynamic group
key management, they require considerable messages or
operations to establish and update group keys. An approach
for reducing computation cost deploys tree structure to
handle keymanagement. Tree-based group key protocols [15–
18] need to supportmanagement of tree structure and require
ordered message delivery for calculation from leaves to the
root of the tree.

In this paper, we investigate secure group key distribution
and management for collaborative groups with high group
flexibility. We propose a DH-based group key management
protocol and show security proof of the proposed scheme and
mathematical evaluation with other GKA protocols.

The remainder of the paper is organized as follows. In
Section 2, we address related works. Section 3 explains our
group key management scheme with group membership
events and security requirements. Section 4 describes per-
formance analysis and Section 5 shows security proof for
the proposed key management. We conclude the paper in
Section 6.

2. Related Work

Over the past few decades, a considerable number of studies
have been conducted on group key establishment and man-
agement. A typical approach is centralized key distribution
based on constantly accessible TTP and pairwise keys [4–
8]. These studies showed apparent efficiency for large groups
such as wireless sensor network (WSN). Since, however, a
mobile network is comprised of peer-to-peer communica-
tions with dynamic mobility and without a TTP, it is difficult
to provide scalable group keymanagement on arbitrary group
setting [15].

We focus on DH based group key management, known
as group key agreement (GKA), in which a common key
is generated by all group members’ equal contributions.
DH protocol allows two parties to share a key using their
secrets over an insecure channel [10]. The key computation
of DH uses the multiplicative group of integer modulo 𝑝,
where 𝑝 is a large prime number. Each party chooses a
random number 𝑥

𝑖
in Z
𝑝
and computes 𝑔

𝑥𝑖 mod 𝑝, where
𝑔 is a primitive root (generator) mod𝑝. They exchange the
computed values, 𝑔𝑥1 mod 𝑝 and 𝑔

𝑥2 mod 𝑝, and agree on
the common key:

𝐾 = (𝑔
𝑥1)
𝑥2 mod 𝑝 = (𝑔

𝑥2)
𝑥1 mod 𝑝. (1)

For extending it to group setting, Burmester andDesmedt
(BD) proposed a conference key exchange system [11]

depending on a broadcast manner. When the number of
group members is n, the group key (GK) of BD becomes

GK = 𝑔
𝑥1𝑥2+𝑥2𝑥3+⋅⋅⋅+𝑥𝑛−1𝑥𝑛 mod 𝑝. (2)

As BD system requires large communication messages,
Steiner et al. proposed group key agreement protocols called
group Diffie-Hellman (GDH) [12, 13]. In GDH,

GK = 𝑔
𝑥1𝑥2 ...𝑥𝑛−1𝑥𝑛 mod 𝑝. (3)

They showed not only that DH can be extended efficiently
to group setting, but also that their protocol can deal
efficiently with group membership change. They presented
three distinct group key agreements GDH.1, GDH.2, and
GDH.3, which later was advanced as a protocol suite known
asCLIQUES [13]. InGDH.x, groupmembers can individually
or massively join and leave; CLIQUES also considers group
integration and group division. A variant of GDH protocol
is a centralized key distribution (CKD) scheme. In CKD, a
controller distributes the group key to every member using
pairwise temporal keys between the controller and each of
the members, which is computed using DH fashion.

As group dynamics have become an important issue,
some studies have adopted tree-based approach [15–18].
Skinny tree (STR) protocol [16] has good performance for
member addition. In STR,

GK = 𝑔
𝑥𝑛𝑔
𝑥𝑛−1𝑔
...𝑔𝑥3𝑔
𝑥1𝑥2

mod 𝑝. (4)

While STR uses unbalanced key tree for group key compu-
tation, tree-based group Diffie-Hellman (TGDH) leverages
balanced tree structure. Given eight group members in
TGDH, the group key is computed as follows:

GK = 𝑔
𝑔
𝑔
𝑥1𝑥2 𝑔
𝑥3𝑥4
𝑔
𝑔
𝑥5𝑥6 𝑔
𝑥7𝑥8

mod 𝑝. (5)

STR and TGDH require a sponsor node which distributes
intermediate computing keys in the tree during membership
event changes. As tree-based protocols apparently help to
reduce communication cost and operation cost, there have
been several variants of TGDH [17, 18]. However, they need
to support management for tree balance and require message
delivery order due to hierarchical tree structure. In mobile
networks, much communication would be required to make
sure that the group members can keep the synchronized tree
structure.

In summary, DH-based group key protocol is generally
known as GKA protocol. Although our protocol is based
on DH, we do not classify it as a GKA protocol because
of key distribution feature from a controller. Our proposed
scheme provides the advantage of dynamics and collaborative
contribution in computing group keys with a modified key
agreement method.

3. Secure Group Key Management for
Mobile Networks

3.1. Membership and Security Requirements. Groupmember-
ship events occur with either insertion of a new node or
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Figure 1: Four kinds ofmembership events; (1)member join (single
join ormass join), (2)member leave (a single leave ormass leave), (3)
group merging (group join), and (4) group partition (group leave).
A small circle represents a node while a big circle represents a group
of nodes.

deletion of an existingmember.We define the insertion event
asmember join and the deletion event asmember leave.When
there is only one event node specifically, we call each single
join and single leave, and when there are two or more event
nodes we call eachmass join andmass leave. Furthermore, we
consider a group insertion into a group and a group partition
into two distinct groups. We define them as group merging
and group partition, respectively. Figure 1 shows summary of
defined membership events.

Group membership change is closely related to security
of group communication. Outgoingmembers should have no
access to group communication after it leaves the group, and
ingoing nodes should be prevented from accessing previous
group communication before it joins the group. We define
cryptographic properties in which a secure group, depending
on a group key, should meet (1) group key secrecy that
guarantees an adversary who knows that messages sent to
groupmembers cannot discover any group key in polynomial
time, (2) backward secrecy that guarantees a new member or
an adversary who knows that the current group key cannot
discover any previous group key in polynomial time, (3)
forward secrecy that guarantees a former group member or
an adversary who knows that previous group keys cannot
discover any subsequent group key in polynomial time, (4)
key independence that guarantees an adversary who knows
that a proper subset of group keys cannot discover any
other group keys in polynomial time, and (5) (implicit) key
authentication that guarantees that no one apart from a group
member recovers the group key.

3.2. Group Key Establishment. We present a new group key
protocol, collaborative Diffie-Hellman (CODH). CODH has
centralized topology and key distribution property from a
leader node. But, unlike conventional centralized scheme
with TTP, in CODH, a group leader computes and distributes
a group key by using public keys of group members. We
formalize the group key protocol and prove its security.

CODH has one leader called master. The leader is also
one of groupmembers. It consumesmore energy thannormal
nodes for communication and operation in managing group
keys. There will be a policy for choosing a leader. In mobile
networks, signal strength, degree to neighbors, identity, and
resources (CPU, memory, battery, and bandwidth) would be
criteria for leader election [19–21]. When a group is created,
the first master is elected among group members and per-
forms group key initialization. Afterwards, group members
select a new master when receiving master notification for
leader change. Once a new groupmaster is selected for group
management, the previous master forwards information
about group members to the newmaster; that is, a delegation
process is run (refer to Sections 3.3 and 3.4). On the other
hand, connection failure may occur by network isolation or
denial of service attacks. (We assume that group participants
are honest and not compromised. However, they can be
threatened by network adversaries who can perform all of
network-based attacks.) We consider the connection failure
as a kind of member leave whether the left node is a member
or the master.

Notation section represents notations used to illustrate
our group key protocol. The index “s” stands for the master
node in a group that is distinct from 𝑖 or 𝑗 which indicates a
generalmember node.Therefore,𝑀

𝑖
or𝑀
𝑗
means an identity

for general member, while𝑀
𝑠
denotes themaster. Lock-secret

is defined as a secret value of a member. It locks the group
key so that 𝑀

𝑠
can securely transfer the group key to the

members. General members use their unlock-secret to extract
the group key from𝑀

𝑠
’s broadcast message of a locked group

key.
We adopt inverse exponentiation for obtaining the group

key. Let𝐶
𝑛
be a group of size 𝑛; that is,𝐶

𝑛
= {𝑀
1
,𝑀
2
, . . . ,𝑀

𝑛
}

and𝑀
𝑠
∈ 𝐶
𝑛
. To share the initial group key, the group𝐶

𝑛
runs

steps in Box 1 for the initial phase.
The initial phase consists of two rounds. In the first round,

all members except the group master send their locker 𝑔
𝑥𝑖

to the master via unicast and the master produces the locker
list, 𝑋𝐿

𝐶
, from receiving messages. In the second round,

the master 𝑀
𝑠
selects a random secret 𝑘 and computes and

broadcasts the locked group key (𝑋
𝑖
)
𝑘
= (𝑔
𝑥𝑖)
𝑘 using 𝑋𝐿

𝐶
.

Then, each member can compute the group key GK using
their own unlock-secret, 𝑦

𝑖
, as follows:

GK ≡ (𝑋
𝑘

𝑖
)
𝑦𝑖 mod 𝑝 ≡ (𝑔

𝑥𝑖𝑦𝑖)
𝑘 mod 𝑝 ≡ 𝑔

𝑘 mod 𝑝. (6)

The group key is equal to the locker of the group master
when 𝑘 is the master’s secret. Therefore, operations for
computing𝑋

𝑘

𝑖
and group messages never include𝑋

𝑠
.

3.3. Group Rekeying for Member Join and Leave. Themaster-
secret should be renewed when membership changes, since
it is used for the new group key GK󸀠. In Box 2 (member join
process), 𝑘󸀠 means a new master-secret that 𝑀

𝑠
selects. Let

𝑀
𝑛+1

be the first new member and let 𝑀
𝑛+𝑚

be the last new
member, when𝑚 newmembers join the group 𝐶

𝑛
(if a single

member joins, the new member is only one node, 𝑀
𝑛+1

). A
newmember𝑀

𝑗
(𝑛+1 ≤ 𝑗 ≤ 𝑛+𝑚) sends its locker𝑋

𝑗
to the



4 Journal of Applied Mathematics

Assume that the group of 𝑛members establish a group key.
Step 1. Each member selects random 𝑥

𝑖
∈ Z
𝑞
and computes𝑋

𝑖
= 𝑔
𝑥𝑖 mod p.

𝑀
𝑖
→ 𝑀

𝑠
:𝑋
𝑖
(𝑖 ∈ [1, 𝑛], 𝑖 ̸= 𝑠)

Step 2.𝑀
𝑠
selects random 𝑘 in Z

𝑞
for group key sharing and computes key-locks.

𝑀
𝑠
⇒ 𝐶
𝑛
: {(𝑋
𝑖
)
𝑘
| 𝑖 ∈ [1, 𝑛], 𝑖 ̸= 𝑠}

Box 1: Group key initialization.

Assume thatmmembers are added to the group 𝐶
𝑛
.

Step 1. Each new member𝑀
𝑗
(𝑛 + 1 ≤ 𝑗 ≤ 𝑛 + 𝑚) selects random 𝑥

𝑗
∈ Z
𝑞
and computes𝑋

𝑗
= 𝑔
𝑥𝑗 mod p.

𝑀
𝑗
→ 𝑀

𝑠
:𝑋
𝑗
(𝑗 ∈ [𝑛 + 1, 𝑛 + 𝑚])

Step 2.𝑀
𝑠
selects random 𝑘

󸀠 in Z
𝑞
for new group key and computes key-locks.

𝑀
𝑠
⇒ 𝐶
𝑛
: {(𝑋
𝑖
)
𝑘
󸀠

| 𝑖 ∈ [1, 𝑛 + 𝑚], 𝑖 ̸= 𝑠}

Box 2: Group rekeying for member join.

Assume that a subset 𝐿
𝑚
of current group 𝐶

𝑛
is composed ofm leaving members in

the group and does not include the group master𝑀
𝑠
.

Step 1.𝑀
𝑠
selects random 𝑘

󸀠 in Z
𝑞
for new group key and computes key-locks with updated locker list.

𝑀
𝑠
⇒ 𝐶
𝑛
\ 𝐿
𝑚
: {(𝑋
𝑖
)
𝑘
󸀠

| 𝑖 ∈ [1, 𝑛] ∧ 𝑀
𝑖
∉ 𝐿
𝑚
, 𝑖 ̸= 𝑠}

Box 3: Group rekeying for member leave.

master, and then𝑀
𝑠
broadcasts locked new group key GK󸀠 =

𝑔
𝑘
󸀠

to all the group members in the same manner as second
round of initial phase, as in Box 2. All members, including
newmembers, can extract the new group keyGK󸀠 in the same
way as (6).

Unlike the join event, member leave process does not
require the first round for sending lockers to the master. Let a
subset of 𝐶

𝑛
for leaving members be 𝐿

𝑚
⊂ 𝐶
𝑛
(𝑀
𝑠
∉ 𝐿
𝑚
).

Group members conduct rekeying operations for the new
group key GK󸀠 as in Box 3.

The leaving nodes cannot learn the new group key
because the broadcast message from 𝑀

𝑠
does not contain

any locker 𝑋
𝑖
for leaving members. Note that the set 𝐿

𝑚
for

the leaving node does not include the master. Leaving of the
master requires ‘delegation’ duringwhich themaster forwards
locker list 𝑋𝐿

𝐶
for group 𝐶

𝑛
to new group master(𝑀

𝑠
󸀠) as

follows:

𝑀
𝑠
󳨀→ 𝑀

𝑠
󸀠 : 𝑋𝐿

𝐶
= {𝑋
𝑗
| 𝑀
𝑗
∈ 𝐶
𝑛
, 𝑗 ̸= 𝑠} . (7)

The delegation can be used for another case where the master
wishes to finish its master’s role for a reason such as network
topology change or resource exhaustion; that is, the master
turns to a group member not leaving the group. In this case,
the delegation message includes the former master’s locker
generated with new selected secret 𝑥

𝑠
as follows:

𝑀
𝑠
󳨀→ 𝑀

𝑠
󸀠 : 𝑋𝐿

𝐶
= {𝑋
𝑗
| 𝑀
𝑗
∈ 𝐶
𝑛
, 𝑥
𝑠

̸= 𝑘, 𝑥
𝑠

̸= 𝑘
󸀠
} . (8)

When group members detect unexpected disconnection
from themaster, they restart group key initializationwith new

master selection. At the worst case, members can suffer from
frequent connection failure with the master. In this case, the
first protocol should be slightly modified tomake all of group
members have the locker list and any member be the group
master to proceed Box 3. For instance, a general member at
the first step of Box 1 broadcasts its locker to the group as
follows:

𝑀
𝑖
󳨐⇒ 𝐶

𝑛
: 𝑋
𝑖 (𝑖 ∈ [1, 𝑛] , 𝑖 ̸= 𝑠) . (9)

The group members continue secure communication with a
fresh group key obtained through group rekeying.Weprovide
formal security proofs in Section 5.

3.4. Group Rekeying for Group Merging and Partition. There
are two ways to integrate two groups into one group com-
pletely: individual join and group join. The former is that
members of a group join another group individually. It is
similar to the mass joining process, saving that the joining
master should generate his lock-secret, 𝑥

𝑠
, and locker, 𝑔𝑥𝑠 .

The latter way is that a group is absorbed into the other group
via delegation process between both group masters.

Let two groups be merged 𝐶
𝑛

= {𝑀
1
,𝑀
2
, . . . ,𝑀

𝑛
} and

𝑅
𝑚

= {𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
} (𝑛 ≥ 𝑚). The master 𝑀

𝑠
of 𝐶
𝑛

survives after group merging, while the master 𝑀
𝑠
󸀠 of 𝑅

𝑚

becomes a member of the merged group. Smaller group
members (∈ 𝑅

𝑚
) become a member of 𝐶

𝑛+𝑚
; that is, 𝐶

𝑛+𝑚
=

{𝑀
1
,𝑀
2
, . . . ,𝑀

𝑛
,𝑀
𝑛+1

, . . . ,𝑀
𝑛+𝑚

} and 𝑀
𝑠
∈ 𝐶
𝑛
after group

merging. Groupmerging process runs with delegation (in the
first round) as in Box 4. Figure 2 represents an instance for a
merging process for a current group 𝐶

4
and a merged group
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Assume that a group 𝑅
𝑚
is merged into a group 𝐶

𝑛
where 𝑛 ≥ 𝑚, and the merged

group 𝐶
𝑛+𝑚

= 𝐶
𝑛
∪ 𝑅
𝑚
.𝑀
𝑠
󸀠 is the master of 𝑅

𝑚
and𝑀

𝑠
is the master of 𝐶

𝑛
.

Step 1.𝑀
𝑠
󸀠 selects a random number 𝑥

𝑠
󸀠 in Z

𝑞
, computes𝑋

𝑠
󸀠= 𝑔
𝑥
𝑠
󸀠mod p, and updates

the locker list into𝑋𝐿
𝑅
= {𝑋
1
,𝑋
2
, . . .,𝑋

𝑚
} ∪ 𝑋

𝑠
󸀠 .

(delegation)𝑀
𝑠
󸀠 → 𝑀

𝑠
:𝑋𝐿
𝑅

Step 2.𝑀
𝑠
selects random 𝑘

󸀠 in Z
𝑞
for new group key and computes key-locks with updated locker list.

𝑀
𝑠
⇒ 𝐶
𝑛+𝑚

: {(𝑋
𝑖
)
𝑘
󸀠

| 𝑖 ∈ [1, 𝑛 + 𝑚], 𝑖 ̸= 𝑠}

Box 4: Group merging.

Assume that a current group 𝐶
𝑛
is partitioned into two groups, 𝑃

𝑚
(⊂ 𝐶
𝑛
) and 𝐶

𝑛−𝑚
(=𝐶
𝑛
\ 𝑃
𝑚
).

The master of 𝑅
𝑚
is𝑀
𝑠
󸀠 and the master of 𝐶

𝑛
is𝑀
𝑠
(∉ 𝑃
𝑚
)

Step 1.𝑀
𝑠
generate𝑋𝐿

𝑃
= {𝑋
𝑗
|𝑀
𝑗
∈ 𝑃
𝑚
, 𝑗 ̸= 𝑠} from𝑋𝐿

𝐶
.

(delegation)𝑀
𝑠
→ 𝑀

𝑠
󸀠 :𝑋𝐿

𝑃

Step 2.𝑀
𝑠
and𝑀

𝑠
󸀠 select random 𝑘

󸀠, 𝑘󸀠󸀠 in Z
𝑞
respectively and compute key-locks with their locker list.

𝑀
𝑠
⇒ 𝐶
𝑛−𝑚

: {(𝑋
𝑖
)
𝑘
󸀠

| 𝑖 ∈ [1, 𝑛] ∧ 𝑀
𝑖
∉ 𝑃
𝑚
, 𝑖 ̸= 𝑠}

𝑀
𝑠
󸀠 ⇒ 𝑃

𝑚
: {(𝑋
𝑗
)
𝑘
󸀠󸀠

|𝑀
𝑗
∈ 𝑃
𝑚
, 𝑗 ̸= 𝑠}

Box 5: Group partition.

𝑅
3
. In Figure 2, the number in a circle indicates members’

index (such as by a joined order). Before they are merged, the
number of the current group 𝐶 is four including the group
master (i.e., 𝑛 = 4, 𝐶

4
) and the number of members of

joining group is three (i.e., 𝑚 = 3, 𝑅
3
). To be merged, the

master of 𝑅
3
sends the master of 𝐶

4
the locker list 𝑋𝐿

𝑅
for

𝑀
1
and 𝑀

2
. Note that the master 𝑀

𝑠
of 𝑅
𝑚
must forward its

locker after changing its own secret because it was used as the
former group key. The master of 𝐶

4
becomes the master for

the merged group. It updates 𝑋𝐿
𝐶
and generates key-locks

𝑋𝐿
𝑘

𝐶
with a new selected random 𝑘.

As shown in Figure 3, the current group will be divided
into two groups. When the number of left members is𝑚, the
current group will have (𝑛 − 𝑚) members after the partition
process. Group partition requires one more master 𝑀

𝑠
󸀠 for

a separated subgroup 𝑃
𝑚

⊂ 𝐶
𝑛
(𝑀
𝑠
∉ 𝑃
𝑚
). Group partition

process can be easily conducted through delegation, from the
master 𝑀

𝑠
of group 𝐶

𝑛
to the fresh master 𝑀

𝑠
󸀠 of subgroup

𝑃
𝑚
.Thedivided groups performa group key initial phase after

the delegation process, as in Box 5.

3.5. Implicit Key Authentication. For the secure key authenti-
cation, the messages sent from all members should be signed
with a signature key. Hash-based signature such as message
authentication code (MAC) is fairly efficient in terms of
computation cost. However, it is too costly to share one-to-
one pairwise keys between all of group members in advance.

We assume that a member holds long-term private and
public keys certified by a trusted certificate authority (CA).
(Each member can use a different signature algorithm such
as RSA-based signature algorithm, digital signature algo-
rithm (DSA), and elliptic curve digital signature algorithm
(ECDSA). Note that some of them do not provide message
encryption; that is, it is used for message signing and

verifying.We consider thatDSA is better for our scheme since
its public key includes𝑔𝑥mod𝑝.)Thegroupmembers send to
themaster the signedmessageswith their own private key; for
example, in the first step of Box 1, a member,𝑀

𝑖
, sends to the

master {𝑋
𝑖
, 𝑆𝑖𝑔
𝑀𝑖

(𝑋
𝑖
)} which 𝑀

𝑖
signs for 𝑋

𝑖
with its private

key. Note that this process runs one-time at initial phase or it
can be precomputed with𝑋

𝑖
.

Members can obtain the group key securely by verifying
the messages of the master with signature signed with the
master’s private key. All of messages from the master come
with a master-signed signature for the origin and integrity of
a group key. For example, in the second step of Box 1, the
master broadcasts {𝑋

𝑘

1
, 𝑋
𝑘

2
, . . . , 𝑋

𝑘

𝑛
, 𝑆𝑖𝑔
𝑀𝑠

(GK)}. The master
produces a locked set for the group key using verified
members’ locker. It implies that outsiders cannot recover the
group key from the master’s messages.

4. Evaluation

We measure performance of the proposed scheme through
communication and computation cost spent for all group
members to complete group rekeying bymembership change.
Table 1 shows summary of comparison with other DH-
based key management protocols: CKD, GDH, BD, STR,
and TGDH. In Table 1, 𝑛, 𝑚, and 𝑝 denote the number of
current group members, joining or merged-group members,
and leaving or partitioned-group members, respectively.
Therefore,𝑚 = 1 or 𝑝 = 1 indicates the single-member event.
For TGDH, the height of the key tree is denoted as ℎ, and, for
STR, 𝑠 is denoted as the index of the sponsor, which helps
other members to calculate group keys. Group merging is a
case where a group of𝑚members is merged into a group of 𝑛
members (𝑛 ≥ 𝑚), and group partition is a casewhere a group
of 𝑛members is divided into separate subgroups: (1) a group
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Figure 3: Group partition process: (a) when group 𝐶
7
is partitioned into two groups (new group 𝑃

3
), the master of the original group sends

P’s master the locker list of the new subgroup and (b) after the group is split, each group master broadcasts the key-locks for each new group
key.

of 𝑝 members and (2) a group of (𝑛 − 𝑝) members, where
(𝑛−𝑝)≥ 𝑝.The costs for the group partition event include the
costs for updating two subgroup keys. In computation costs,
we consider concurrent execution in distributed nodes if it
is possible. In CODH, we assume the master is selected by
group-join order; the first master is𝑀

1
, and when𝑀

1
leaves

the group,𝑀
2
becomes the next master.

CKD distributes the group key in a similar way with our
protocol. Its communication and computation costs are also
similar to our protocol. However, the worst case of CKD is
when the master leaves. It requires large costs for rekeying.
On the other hand, in CODH, the rekeying cost for a leaving
master is analogous to that for a leaving member due to
efficient delegation or sharing of public locker list. GDH is
operated through communication chain from the first node

to the last node, and the last node becomes the master of the
group. Steiner et al. presented three GDH protocols: GDH.1,
2, and 3. GDH.2 is the most efficient in communication
whereas GDH.3 is the most efficient in computation cost
among GDH.x. We select GDH.3 for comparison. As shown
in Table 1, GDH has weaknesses in group merging and mass
joining. BD employs a completely distributed way using
broadcast messages. Without sponsors or controllers, all of
members broadcast messages for updating the group key.
Although it seems to be fairly efficient in computation cost,
there are hidden costs for multiplications. In addition, it
requires a large communication cost compared to other
protocols. STR and TGDH are tree-based key agreement pro-
tocols.They use different tree structures for keymanagement.
STR, especially, uses the extremely unbalanced tree structure.
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Table 1: Communication and computation costs.

Rounds Messages Exponentiations Signatures Verifications

GDH

Join, merge m + 3 n + 2m + 1 n + 2m + 1 m + 3 n + 2m + 1
Leave 1 1 𝑛 − 𝑝 1 1

Partition 2 p + 1 𝑛 − 𝑝 2 p
Master leave 2 𝑛 − 1 𝑛 − 1 2 𝑛 − 1

STR

Join 3 m + 2 3m 2 m + 2
Leave 1 1 3(𝑛 − 𝑝) − 2𝑠 − 1 1 1
Merge 3 3 3𝑚 − 1 2 3

Partition 2 3 3(𝑛 − 𝑝) − 2𝑠 − 1 2 3

TGDH Join, merge 2 3 3ℎ − 3 2 3
Leave, partition h 2h 3ℎ h ℎ

BD
Join, merge 2 2n + 2m 3 2 2𝑛 + 2𝑚 − 2

Leave 2 2𝑛 − 2𝑝 3 2 2𝑛 − 2𝑝 − 2

Partition 2 2n 3 2 2𝑛 − 2𝑝 − 2

CKD

Join, merge 3 m + 2 n + 2m 3 m + 2
Leave 1 1 𝑛 − 𝑝 1 1

Partition 3 p + 2 max(𝑛 − 𝑝, 2𝑝 − 1) 3 4
Master leave 3 n 2𝑛 − 3 3 n

CODH

Join 2 m + 1 n +m + 1 2 m + 1
Leave 1 1 𝑛 − 𝑝 1 1
Merge 2 2 𝑛 + 𝑚 2 2

Partition 2 3 𝑛 − 𝑝 2 2
Master leave 2 2 𝑛 − 1 2 2

Table 2: Communication and computation costs for CODHmember and master.

Send Receive Exponentiations Signatures Verifications

General member Join, merge 0 1 1 0 1
Leave, partition 0 1 1 0 1

Group master
Join 1 m n +m 1 1

Leave, partition 1 0 𝑛 − 𝑝 1 0
Merge 1 1 n +m 1 1

Accordingly, the performance of STRdepends on the location
of the sponsors. In TGDH, the costs depend on the height
of the resulting key tree and locations of joining or leaving
members in the tree. We provide the worst case cost for
TGDH.

Most of the cost in CODH comes from the master
node. A general node consumes only one communication,
modular exponentiation, signature, and verification in all
of group rekeying process. We summarize the costs for a
general member and the group master in Table 2. Although
the exponentiation cost looks heavy in the master, its cost
is insignificant. We conducted an experiment to measure
computation delays for modular exponentiations. Table 3
shows the average delay of 10 experimental results for each.
The first device has less CPU power than the second device.
When modular prime 𝑝 is 1024 bits long and 𝑛 ≤ 50, the
computation delay is less than 1 s. The average delay of one

exponentiation is less than 8ms in the second device. More-
over, reducing communication cost is important for mobile
devices because data communication consumes more energy
than any other process. Therefore, our group key protocols
can be efficiently applied in dynamic mobile networks.

5. Security

Let 𝑝 be a large prime number of the form 2𝑞 + 1 for a prime
𝑞 in Z

𝑝
. Let 𝐺 be a cyclic group of prime order 𝑞 and let 𝑔

be a generator of 𝐺; that is, 𝐺 = ⟨𝑔⟩. The decisional Diffie-
Hellman problem (DDH) is as follows: given (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧),
where 𝑥, 𝑦, 𝑧 ∈ Z

𝑞
, decide whether 𝑧 = 𝑥𝑦 or a randomly

chosen number. In particular, the security of our protocol
is based on the divisible decisional Diffie-Hellman problem
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Table 3: Computation delays on mobile devices (ms).

p = 1024-bit p = 2048-bit
𝑛 = 1 𝑛 = 25 𝑛 = 50 𝑛 = 1 𝑛 = 25 𝑛 = 50

Exponentiation (1 GHz CPU, 512MB RAM) 37 452.6 907.8 168.9 3385.4 6762.5
Exponentiation (2.26GHz CPU, 2GB RAM) 12.9 192.8 385.3 75.4 1458.8 2917.4

(DDDH), which is stronger assumption than the divisible
computational Diffie-Hellman problem (DCDH).

Definition 1. The DCDH problem is as follows: given
(𝑔, 𝑔𝑥, 𝑔𝑦), where 𝑥, 𝑦 ∈ Z

𝑞
, compute 𝑔𝑦/𝑥.

Definition 2. The DDDH problem is as follows: given
(𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧), where 𝑥, 𝑦, 𝑧 ∈ Z

𝑞
, decide whether 𝑧 = 𝑦/𝑥

or a randomly chosen number.

The DDDH problem is weaker than DCDH, since if an
adversary could solve the DCDH problem, he could solve
the DDDH problem by computing 𝑔

𝑥 to decide 𝑔
𝑧
= 𝑔
𝑦/𝑥;

thus the DDDH assumption is stronger than the DCDH
assumption. Similarly, the DDH problem is weaker than
the computational Diffie-Hellman problem (CDH), which is
weaker than discrete logarithm problem (DL) [22]. We want
to prove the security of our protocol under the DDH and
DDDH assumptions.

Theorem 3. The DDDH problem is equivalent to the DDH
problem.

Proof. Given the DDDH input (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧), where 𝑧 =

𝑦/𝑥, one submits (𝑔, 𝑔𝑥, 𝑔𝑧, 𝑔𝑦) to DDH to decide whether
𝑦 = 𝑥𝑧 or a randomly chosen number. Similarly, given
the DDH input (𝑔, 𝑔𝑥, 𝑔𝑦, 𝑔𝑧), where 𝑧 = 𝑥𝑦, one submits
(𝑔, 𝑔𝑥, 𝑔𝑧, 𝑔𝑦) to DDDH to decide if 𝑦 = 𝑧/𝑥 or a randomly
chosen number.

Therefore, we know that if there is no polynomial time
algorithm to solve the DDH problem, it is hard to solve the
DDDH problem.

Theorem 4. If the DDH problem is hard, it is hard to find a
polynomial time algorithm to recover the group key from the
proposed protocol; in other words, it provides group key secrecy
against passive adversaries under the DDH assumption.

Proof. Let view(𝑛, 𝑘) be public information for a group of 𝑛
members to establish a group key 𝑔

𝑘; thus it is a view of
passive attackers,

V𝑖𝑒𝑤 (𝑛, 𝑘) := (𝑔
𝑥1 , 𝑔
𝑥1𝑘, 𝑔
𝑥2 , 𝑔
𝑥2𝑘, . . . , 𝑔

𝑥𝑛 , 𝑔
𝑥𝑛𝑘) . (10)

Suppose we had an algorithm F that with significant
probability succeeds to distinguish between (view(𝑛, 𝑘),
𝑔
𝑦), where 𝑦 is a random number 𝑦 ∈ Z

𝑞
, and (view(𝑛, 𝑘),

𝑔
𝑘) where 𝑔

𝑘 is the group key; that is, F(V𝑖𝑒𝑤(𝑛, 𝑘), 𝑔
𝑦
) =

F(𝑔𝑥1 , 𝑔𝑥1𝑘, 𝑔𝑥2 , 𝑔𝑥2𝑘, . . . , 𝑔𝑥𝑛 , 𝑔𝑥𝑛𝑘, 𝑔𝑦) = 1, where 𝑦 = 𝑘,

otherwise, returns 0. Then we can query to F with input
view(𝑛−1, 𝑘) = (𝑔

𝑥1 , 𝑔
𝑥1𝑘, 𝑔
𝑥2 , 𝑔
𝑥2𝑘, . . . , 𝑔

𝑥𝑛−1 , 𝑔
𝑥𝑛−1𝑘) for 𝑛−1

members’ information and additional input ((𝑔𝑥𝑖)𝑟, (𝑔𝑥𝑖𝑘)
𝑟

)

for a random number 𝑟 ∈
𝑅Z𝑞, where 0 < 𝑖 < 𝑛, that is,

F(V𝑖𝑒𝑤(𝑛 − 1, 𝑘), 𝑔
𝑥𝑖𝑟, 𝑔
𝑥𝑖𝑘𝑟, 𝑔

𝑦
). It follows that

(V𝑖𝑒𝑤(1, 𝑘), 𝑔
𝑥𝑟1 , 𝑔
𝑥𝑘𝑟1 , 𝑔

𝑥𝑟2 , 𝑔
𝑥𝑘𝑟2 , . . . , 𝑔

𝑥𝑟𝑛−1 , 𝑔
𝑥𝑘𝑟𝑛−1 , 𝑔

𝑦
) =

F(𝑔𝑥, 𝑔𝑥𝑘, 𝑔𝑥𝑟1 , 𝑔𝑥𝑘𝑟1 , 𝑔𝑥𝑟2 , 𝑔𝑥𝑘𝑟2 , . . . , 𝑔𝑥𝑟𝑛−1 , 𝑔𝑥𝑘𝑟𝑛−1 , 𝑔𝑦), where
𝑟
𝑖
∈
𝑅Z𝑞 for 0 < 𝑖 < 𝑛. Then 𝐹 can solve the DDDH problem

since it can decide whether 𝑦 = 𝑥𝑘/𝑥 or a random number,
given (V𝑖𝑒𝑤(1, 𝑘), 𝑔

𝑦
)) = (𝑔

𝑥
, 𝑔
𝑥𝑘
, 𝑔
𝑦
). It means that 𝐹 can

also solve the DDH problem byTheorem 3.

Theorem 5. The proposed scheme provides backward secrecy,
forward secrecy, and key independence provided the DDH
problem is intractable.

Proof. Whenever membership is changed or the group key
is updated, the group controller alters its own secret 𝑘 to 𝑘

󸀠,
where 𝑘

󸀠 is an independently random number to 𝑘 ∈ Z
𝑞
;

it implies that it is impossible to find an algorithm 𝐹 such
that 𝐹(𝑔

𝑘
) → 𝑔

𝑘
󸀠

without knowledge of 𝑘 and 𝑘
󸀠. We

assume that the secret values are uniformly distributed by a
pseudorandom generator.Therefore, when the group key has
been changed, an adversarymust use newpublic information,
V𝑖𝑒𝑤(𝑛, 𝑘

󸀠
) = (𝑔

𝑥1 , 𝑔
𝑥1𝑘
󸀠

, 𝑔
𝑥2 , 𝑔
𝑥2𝑘
󸀠

, . . . , 𝑔
𝑥𝑛 , 𝑔
𝑥𝑛𝑘
󸀠

), to recover
the group key updated into 𝑔

𝑘
󸀠

and it depends on a solution
to solve the DDH problem byTheorem 4. It follows that past
members, future members, or adversaries who know a subset
of previous group keys cannot learn the current group key,
since the broadcastmessage from themaster does not contain
their locker𝑋

𝑖
in view().

Theorem 6. The proposed scheme provides implicit key
authentication under the security of certified public key.

Proof. A locker which the master obtains from group mem-
bers is what a groupmember signswith its public key certified
by a CA. Concretely, a locker 𝑋

𝑖
is hashed by a one-way

function such as SHA-2, and hash (𝑋
𝑖
) is signed with 𝑀

𝑖
’s

private key using a digital signature algorithm such as RSA,
DSA, and ECDSA.Then, the locker is verified with the public
key bound to 𝑀

𝑖
and certified by CA. If there is a locker of

nonmember in the locker list of a group, it must be along with
a forged signature. It means that the problem occurs in a hash
collision attack or a rogueCAcertificate [23].Once all verified
lockers are transferred to the master, any other nodes which
are not a group member cannot recover the group key under
the DDH assumption (Theorems 4 and 5).
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6. Conclusion

In this paper, we propose a secure group key management
protocol based on DH key agreement. The proposed key
management requires only one data communication and one
modular exponentiation at eachmember for anymembership
event. It shows prominent efficiency in renewing the group
keys against dynamic group membership change, member
join/leave and group merging/partition. We proved group
key secrecy, backward/forward secrecy, key independence,
and key authentication. No outsiders can learn the group key
under the DDH assumption.We conclude that CODH can be
adapted efficiently for multicast security in mobile networks.

Notations

n: Number of protocol participants
𝑀
𝑖
: 𝑖th group member, 𝑖 ∈ [1, 𝑛]

𝑀
𝑠
: Master node (controller), 𝑠 ∈ [1, 𝑛]

𝑝: Prime of the form 2𝑞 + 1 for a prime 𝑞
𝑔: Generator in Z∗

𝑝

𝑥
𝑖
: Lock-secret; random number picked by

𝑀
𝑖
such that 1 < 𝑥

𝑖
< 𝑝 − 1 and

gcd(𝑥
𝑖
, 𝑝 − 1) = 1

𝑦
𝑖
: Unlock-secret for𝑀

𝑖
such that

𝑥
𝑖
∗ 𝑦
𝑖
≡ 1 mod (𝑝 − 1)

𝑘: Master-secret randomly selected in Z∗
𝑞
,

by𝑀
𝑠

𝑋
𝑖
: Locker; 𝑔𝑥𝑖 mod 𝑝

𝐶
𝑛
: Current group of 𝑛members; #(𝐶) = 𝑛

𝑋𝐿
𝐶
: Locker list of group

𝐶;𝑋𝐿
𝐶
= {𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
} \ 𝑋
𝑠

𝑋𝐿
𝑘

𝐶
: Key-locks for group

𝐶;𝑋𝐿
𝑘

𝐶
= {𝑋
𝑘

1
, 𝑋
𝑘

2
, . . . , 𝑋

𝑘

𝑛
} \ 𝑋
𝑘

𝑠

𝑀
𝑖
→ 𝑀

𝑗
: m: Unicast message (m) from𝑀

𝑖
to𝑀
𝑗

𝑀
𝑖
⇒ 𝐶
𝑛
: m: Broadcast message (m) from𝑀

𝑖
to 𝑛

members of 𝐶.
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