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In this paper we put forward a family of algorithms for lifting solutions of a polynomial congruence mod𝑝 to polynomial
congruence mod𝑝

𝑘. For this purpose, root-finding iterative methods are employed for solving polynomial congruences of the
form 𝑎𝑥

𝑛
≡ 𝑏(mod𝑝

𝑘
), 𝑘 ≥ 1, where 𝑎, 𝑏, and 𝑛 > 0 are integers which are not divisible by an odd prime 𝑝. It is shown that the

algorithms suggested in this paper drastically reduce the complexity for such computations to a logarithmic scale. The efficacy of
the proposed technique for solving negative exponent equations of the form 𝑎𝑥

−𝑛
≡ 𝑏(mod𝑝

𝑘
) has also been addressed.

1. Introduction and Preliminaries

The scope of congruence in number theory is of vital impor-
tance. The use of iterative methods for solving nonlinear
equations has become a valuable device for numerical ana-
lysts. This research work addresses some iterative methods
for solving polynomial congruences of the form 𝑎𝑥

𝑛
≡

𝑏(mod 𝑝
𝑘
), 𝑘 ≥ 1where 𝑎, 𝑏, and 𝑛 > 0 are integers which are

not divisible by an odd prime 𝑝. The root-finding recursive
techniques have been discussed in [1–4] to get the inverse of
numbers modulo prime powers, which is the motivation of
the proposed research work. In this piece of work, we use
higher order iterative methods with a particular focus on
Householder’s and Basic Family of Iteration Functions (for
detail, see [5–7]) in order to find solutions of polynomial
congruences of the form 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

𝑘
), 𝑘 ≥ 1.

Hensel’s lemma is one of the most popular methods
amongst the existing techniques for solving polynomial
congruencemodulo 𝑝

𝑘. By applyingHensel’s lemma on some
polynomial congruence modulo 𝑝

𝑘, it can be seen that the
experience of the exposition of this lemma is strenuous and
much more laborious. So the proposed technique endeavors
to keep the elucidation consistently a little low to give
advantage in finding the solution of such congruences by

means of explicit iteration techniques which are quite fast in
finding these solutions. The following are the two versions of
well-known Hensel’s lemma.

Theorem 1 (see [8]). Suppose that 𝑔(𝑥) is a polynomial with
integral coefficients. If 𝑔(𝑥) ≡ 0(mod 𝑝

𝑗
) and 𝑔

󸀠
(𝑎) ̸≡

0(mod 𝑝), then there is a unique 𝑦(mod 𝑝) such that 𝑔(𝑎 +

𝑦𝑝
𝑗
) ≡ 0(mod 𝑝

𝑗+1
).

The following theorem can easily be deduced from
Hensel’s lemma after applying Taylor’sTheorem.This is actu-
ally the typical procedure to find solutions of congruences
modulo 𝑝

𝑘 by means of Hensel’s lemma. For details see [9,
page 106].

Theorem 2 (see [9]). Let 𝑝 be a prime and 𝑘 an arbitrary
positive integer, and suppose that 𝑠 is a solution of 𝑓(𝑥) ≡

0(mod 𝑝
𝑘
).

(1) If 𝑝 ∤ 𝑓
󸀠
(𝑠), then there is precisely one solution 𝑠𝑘+1 of

𝑓(𝑥) ≡ 0(mod 𝑝
𝑘+1

) such that 𝑥𝑘+1 ≡ 𝑠(mod 𝑝
𝑘
) is

given by 𝑠𝑘+1 = 𝑠 + 𝑡𝑝
𝑘, where 𝑡 is the unique solution

of 𝑓󸀠(𝑠)𝑡 ≡ (−𝑓(𝑠)/p𝑘)(mod 𝑝).
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(2) If𝑝 | 𝑓
󸀠
(𝑠) and𝑝

𝑘+1
| 𝑓(𝑠), then there are𝑝 solutions of

𝑓(𝑥) ≡ 0(mod 𝑝
𝑘+1

) that are congruent to 𝑠(mod 𝑝
𝑘
),

given by 𝑠 + 𝑝
𝑘
𝑗, for 𝑗 = 0, 1, 2, . . . , 𝑝 − 1.

(3) If 𝑝 | 𝑓
󸀠
(𝑠) and 𝑝

𝑘+1
∤ 𝑓(𝑠), then there are no

solutions of f(𝑥) ≡ 0(mod 𝑝
𝑘+1

) that are congruent to
𝑠(mod 𝑝

𝑘
).

Let us solve the congruence 2𝑥
3

≡ 5(mod 7
4
) using

Theorem 2. Let 𝑓(𝑥) = 2𝑥
3

− 5. First, we solve 𝑓(𝑥) ≡

0(mod 7). By trial, it is easy to find that 𝑥 ≡ 3(mod 7) and
𝑥 ≡ 4(mod 7) are the solutions of the congruence 𝑓(𝑥) ≡

0(mod 7). To perform iterations by Theorem 2, we proceed
as under.

Take 𝑠 = 𝑠1 = 3; then 7 ∤ 𝑓
󸀠
(3). By Theorem 2, there is a

unique solution 𝑠2 of 𝑓(𝑥) ≡ 0(mod 7
2
). To find 𝑠2, we find

integer 𝑡 from the congruence 𝑓
󸀠
(3)𝑡 ≡ (−𝑓(3)/7)(mod 7).

This gives 54𝑡 ≡ (−49/7)(mod 7) or 𝑡 ≡ 0(mod 7). Hence
the unique solution 𝑠𝑘+1 = 𝑠 + 𝑡𝑝

𝑘 gives 𝑠2 = 3. Therefore
𝑠2 = 3 is the unique solution of 𝑓(𝑥) ≡ 0(mod 7

2
).

Next we take 𝑠2 = 3; then 𝑓
󸀠
(3)𝑡 ≡ (−𝑓(3)/7

2
)(mod 7)

becomes 54𝑡 ≡ (−49/49)(mod 7). That is, 5𝑡 ≡ 6(mod 7) or
𝑡 ≡ 4(mod 7). Hence the unique solution 𝑠3 = 𝑠2 + 𝑡𝑝

𝑘 gives
𝑠3 = 3 + 4 ∗ 7

2
= 199. Therefore, 𝑠2 = 199 is the unique

solution of 𝑓(𝑥) ≡ 0(mod 7
3
).

Finally we take 𝑠3 = 199; then 𝑓
󸀠
(199) = 277606

is not divisible by 7. Thus there is a unique solution 𝑠4

of 𝑓(𝑥) ≡ 0(mod 7
4
). To find 𝑠4, we solve 𝑓

󸀠
(199)𝑡 ≡

(−𝑓(199)/7
3
)(mod 7). This gives 5𝑡 ≡ 4(mod 7) or 𝑡 ≡

5(mod 7). Then, 𝑠4 = 199 + 5 ∗ 7
3
= 1914. Hence, 𝑠4 = 1914

is the solution of 2𝑥3 ≡ 5(mod 7
4
).

From above example, it is noticed that several iterations
are required in order to compute a solution to a congruence
of higher powers of primewhich is computationally intensive.
Moreover at each step we need to calculate derivative of the
function at current root. Hence we may hesitate in solving
polynomial congruences with modulus of higher powers of
primes using this lemma. Thus we need to find some explicit
algorithms in which the needed derivatives are already
incorporated with some log 𝑘 steps. In the underlying paper
we solve the polynomial congruence with higher modulo by
means of algorithms developed using root-finding iterative
methods. The p-adic proof of these algorithms has been
derived using elementary number theory. Notations used in
this paper are standard and we follow [1–3, 10, 11].

2. A Solution of Congruences Using
Newton’s Method

Newton’s method is a well-known iterative procedure for
finding the roots of an equation. It is the best tool in many
ways for the solution of a nonlinear problem. Its simplicity
and great speed always attract in attempting a nonlinear
problem. Assume that an initial estimate 𝑥0 is known for the

desired root 𝛼 of 𝑓(𝑥) = 0. Then to perform iterations the
formula for Newton’s method is

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥𝑘)
, 𝑘 = 0, 1, 2 . . . (1)

Let us take 𝑓(𝑥) = 𝑏/𝑥
𝑛
− 𝑎. Then using (1), the explicit form

for Newton’s method is

𝑛𝑏𝑥𝑘+1 = (𝑛 + 1) 𝑏𝑥𝑘 − 𝑎𝑥
𝑛+1

𝑘
. (2)

Like real numbers, it can be proved that Newton’s method is
quadratically convergent. Now if 𝑥𝑘 is the solution of 𝑎𝑥𝑛 ≡

𝑏(mod 𝑝
𝑘
) then for some integer 𝑡, we have, 𝑎𝑥𝑛

𝑘
= 𝑏 + 𝑡𝑝

𝑘.
Then by using (2), we obtain

𝑎𝑥
𝑛

𝑘+1

=
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛 {(𝑛 + 1) 𝑏 − 𝑏 − 𝑡𝑝

𝑘
}
𝑛

=
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛 (𝑛𝑏 − 𝑡𝑝

𝑘
)
𝑛

=
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛

× {(𝑛𝑏)
𝑛
− 𝑛(𝑛𝑏)

𝑛−1
𝑡𝑝
𝑘
+ terms involving 𝑝

2𝑘
}

≡
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛 {(𝑛𝑏)

𝑛
− 𝑛(𝑛𝑏)

𝑛−1
𝑡𝑝
𝑘
} (mod 𝑝

2𝑘
)

≡
(𝑛𝑏)
𝑛
𝑏

(𝑛𝑏)
𝑛 (mod 𝑝

2𝑘
) .

(3)

Now, if 𝑎, 𝑏, 𝑛 ̸≡ 0(mod 𝑝) then (𝑝, 𝑏𝑛) = 1 and hence
(𝑝
2𝑘
, (𝑏𝑛)
𝑛
) = 1.Then by Cancellation law, (3) yields that 𝑥𝑘+1

is the solution of the congruence 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

2𝑘
).

Let us solve the congruence 2𝑥
3

≡ 3(mod 5
32
). In

order to solve a polynomial congruence of the form 𝑎𝑥
𝑛

≡

𝑏(mod 𝑝
2𝑘
), 𝑘 ≥ 1, we first see that it is sufficient to solve

𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝) since every solution of 𝑎𝑥𝑛 ≡ 𝑏(mod 𝑝

2𝑘
) is

a solution of 𝑎𝑥𝑛 ≡ 𝑏(mod 𝑝). Once we do this, then we can
apply (2) for finding the solutions of 𝑎𝑥𝑛 ≡ 𝑏(mod 𝑝

2𝑘
) from

the solutions of the congruence 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

𝑘
). Therefore,

we first solve the congruence 2𝑥
3
≡ 3(mod 5). By inspection

we see that 𝑥 ≡ 4(mod 5) is the solution of the congruence
2𝑥
3
≡ 3(mod 5). Thus we choose 𝑥1 = 4 as our initial guess.

Then by (2), we have

9𝑥2 = 4.3.4 − 2(4)
4
= −464

≡ − 414 (mod 5
2
) .

(4)

Hence,

𝑥2 ≡ − 46 (mod 25)

≡ 4 (mod 25) .
(5)
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We repeat above process and find that 𝑥3 ≡

504, 𝑥4 ≡ 368004, 𝑥5 ≡ 88003883629 and 𝑥6 ≡

1996563532039908180504 are the solutions of the given
congruence modulo 5

4
, 5
8
, 5
16, and 5

32, respectively.

2.1. Order of Convergence. As far as the convergence of
an iterative method of order 𝑚 is concerned, it avows
that the accurateness or precision to compute the current
approximation 𝑥𝑗 is only 𝑚𝑗 digits. This means that if we
start with an 𝑟-digit integer 𝑥𝑘 as the initial estimate in some
modulo 𝑝

𝛼, then 𝑥𝑘+1 would be a new approximation in
modulo 𝑝

𝑚𝛼 containing 𝑟𝑚-digits.
To ensure that the Newton’s method is quadratically

convergent, we show that 𝑥𝑘+1 will not be a solution if we
expand the binomial (𝑛𝑏 − 𝑡𝑝

𝑘
)
𝑛 up to terms involving 𝑝

2.
For this, we rewrite the step

𝑎𝑥
𝑛

𝑘+1
=

(𝑏 + 𝑡𝑝
𝑘
)

(𝑛𝑏)
𝑛 (𝑛𝑏 − 𝑡𝑝

𝑘
)
𝑛

=
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛 {(𝑛𝑏)

𝑛
− 𝑛(𝑛𝑏)

𝑛−1
𝑡𝑝
𝑘
+

𝑛 (𝑛 − 1)

2

×(𝑛𝑏)
𝑛−2

𝑡
2
𝑝
2
+ terms involving 𝑝

3𝑘
}

≡
(𝑏 + 𝑡𝑝

𝑘
)

(𝑛𝑏)
𝑛 {(𝑛𝑏)

𝑛
− 𝑛(𝑛𝑏)

𝑛−1
𝑡𝑝
𝑘

+
𝑛 (𝑛 − 1)

2
(𝑛𝑏)
𝑛−2

𝑡
2
𝑝
2
(mod 𝑝

3𝑘
)}

≡
𝑏(𝑛𝑏)
𝑛
− ((𝑛 + 1) /2) (𝑛𝑏)

𝑛−1
𝑡
2
𝑝
2

(𝑛𝑏)
𝑛 (mod 𝑝

3𝑘
)

̸≡ 𝑏 (mod 𝑝
3𝑘
) as −

𝑛 + 1

2
(𝑛𝑏)
𝑛−1

𝑡
2
𝑝
2

̸≡ 0 (mod 𝑝
3𝑘
) .

(6)

3. Third Order Iterative Methods

The following are the third order iterative methods for which
the explicit formulas for finding the roots of congruences are
presented. The p-adic proofs of their convergence is given in
the following two theorems.

3.1. A Variant of Newton’s Method. Several variants of New-
ton’smethod have been given bymany researchers to improve
the order of convergence. For third-order convergence, the
following three variants of Newton’s methods have been

studied earlier in [11, 12] to solve nonlinear equations, given
as

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥∗
𝑘+1

)
, 𝑘 ≥ 0, (7)

where 𝑥
∗

𝑘+1
= 𝑥𝑘 −

𝑓 (𝑥𝑘)

2𝑓󸀠 (𝑥𝑘)
(8)

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥
∗

𝑘+1
)

𝑓󸀠 (𝑥𝑘)
, 𝑘 ≥ 0,

where 𝑥
∗

𝑘+1
= 𝑥𝑘 −

𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥𝑘)
,

(9)

𝑥𝑘+1 = 𝑥𝑘 −
2𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥∗
𝑘+1

) + 𝑓󸀠 (𝑥𝑘)
, 𝑘 ≥ 0

where 𝑥
∗

𝑘+1
= 𝑥𝑘 −

𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥𝑘)
.

(10)

In the following theorem, we use (7) to find the solutions of
congruences of the form 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

3𝑘
), 𝑘 ≥ 1, from the

solutions of the congruence 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

𝑘
).

Theorem 3. Let 𝑎, 𝑏, and 𝑛 > 0 be integers which are
not divisible by an odd prime 𝑝. If 𝑥𝑘, 𝑘 ≥ 1 satisfies
𝑎𝑥
𝑛

≡ 𝑏(mod 𝑝
𝑘
) then 𝑥𝑘+1 satisfies the congruence 𝑎𝑥

𝑛
≡

𝑏(mod 𝑝
3𝑘
), where

𝑥𝑘+1 = 𝑥𝑘 [1 +
(𝑏 − 𝑎𝑥

𝑛

𝑘
) {(2𝑛 + 1) 𝑏 − 𝑎𝑥

𝑛

𝑘
}
𝑛+1

2𝑛+1(𝑛𝑏)
𝑛+1

] (11)

Proof. To prove this, let𝑓(𝑥) = 𝑏/𝑥
𝑛
−𝑎. By (8), we get, 𝑥∗

𝑘+1
=

𝑥𝑘(((2𝑛 + 1)𝑏 − 𝑎𝑥
𝑛

𝑘
)/𝑛𝑏). Then by (7), we obtain

𝑥𝑘+1 = 𝑥𝑘 [1 +
(𝑏 − 𝑎𝑥

𝑛

𝑘
) {(2𝑛 + 1) 𝑏 − 𝑎𝑥

𝑛

𝑘
}
𝑛+1

2𝑛+1(𝑛𝑏)
𝑛+1

] . (12)

If 𝑥𝑘 is the solution of 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

𝑘
) then for some integer

𝑡, we have 𝑎𝑥
𝑛

𝑘
= 𝑏 + 𝑡𝑝

𝑘. Putting in (12), we get

𝑛𝑏(2𝑛𝑏)
𝑛
𝑥𝑘+1

= 𝑥𝑘 [𝑛𝑏(2𝑛𝑏)
𝑛
− 𝑡𝑝
𝑘

× {(2𝑛𝑏)
𝑛
− 𝑛(2𝑛𝑏)

𝑛−1
𝑡𝑝
𝑘

−
𝑛 (𝑛 − 1)

2
(2𝑛𝑏)
𝑛−2

𝑡
2
𝑝
2𝑘

+ terms involving 𝑝
3𝑘
}]

≡ 𝑥𝑘 {𝑛𝑏(2𝑛𝑏)
𝑛
− 𝑡𝑝
𝑘
(2𝑛𝑏)
𝑛

+𝑛(2𝑛𝑏)
𝑛−1

𝑡
2
𝑝
2𝑘
} (mod 𝑝

3𝑘
) .

(13)
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Since 𝑝 > 2 and (2𝑛𝑏, 𝑝) = 1, so ((2𝑛𝑏)
𝑛−1

, 𝑝
3𝑘
)) = 1. Then by

(13)

2(𝑛𝑏)
2
𝑥𝑘+1 = 𝑥𝑘 {2(𝑛𝑏)

2
− 2𝑛𝑏𝑡𝑝

𝑘
+ 𝑛𝑡
2
𝑝
2𝑘
} (mod 𝑝

3𝑘
) .

(14)

This implies that

𝑎𝑥
𝑛

𝑘+1
≡ (𝑏 + 𝑡𝑝

𝑘
)

×
(2(𝑛𝑏)

2
− 2𝑛𝑏𝑡𝑝

𝑘
+ 𝑛𝑡
2
𝑝
2𝑘
)
𝑛

(2 (𝑛𝑏)
2
)
𝑛 (mod 𝑝

3𝑘
)

≡
𝑏(2 (𝑛𝑏)

2
)
𝑛

(2 (𝑛𝑏)
2
)
𝑛 (mod 𝑝

3𝑘
)

≡ 𝑏 (mod 𝑝
3𝑘
) as (2𝑛𝑏, 𝑝) = 1.

(15)

3.2. Abbasbandy’s Method. In [10], Abbasbandy used Ado-
mian decomposition method to improve Newton’s method
for solving nonlinear equations. The improved method is
called Abbasbandy’s method (AM). Solving polynomial con-
gruences is one of the most interesting problems in number
theory. In this section, we use AM to solve polynomial
congruences of the form 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

𝑘
), 𝑘 ≥ 1. It can be

seen that AM lifts a solution modulo 𝑝 to 𝑝
3 then to 𝑝

9 and
by iteration to 𝑝

3
𝑘

. To perform iterations, the formula for AM
is expressed as

𝑥𝑘+1 = 𝑥𝑘 −
𝑓 (𝑥𝑘)

𝑓󸀠 (𝑥𝑘)
−

𝑓
2
(𝑥𝑘) 𝑓

󸀠󸀠
(𝑥𝑘)

2𝑓󸀠3 (𝑥𝑘)
−

𝑓
3
(𝑥𝑘) 𝑓

󸀠󸀠󸀠
(𝑥𝑘)

6𝑓󸀠4 (𝑥𝑘)
.

(16)

Theorem 4. Let 𝑎, 𝑏, and 𝑛 > 0 be integers which are
not divisible by a prime 𝑝 > 3. If 𝑥𝑘, 𝑘 ≥ 1 satisfies
𝑎𝑥
𝑛

≡ 𝑏(mod 𝑝
𝑘
) then 𝑥𝑘+1 satisfies the congruence 𝑎𝑥

𝑛
≡

𝑏(mod 𝑝
3𝑘
), where

6𝑛
3
𝑏
3
𝑥𝑘+1 = 𝑥𝑘 (2𝑏

3
(1 + 3𝑛 + 5𝑛

2
+ 3𝑛
3
)

− 3𝑎𝑏
2
(2 + 5𝑛 + 5𝑛

2
) 𝑥
𝑛

𝑘

+ 6𝑎
2
𝑏(1 + 𝑛)

2
𝑥
2𝑛

𝑘

− 𝑎
3
(2 + 3𝑛 + 𝑛

2
) 𝑥
3𝑛

𝑘
) .

(17)

Proof. To prove this, let 𝑓(𝑥) = 𝑏/𝑥
𝑛
− 𝑎. By (16), we obtain

𝑥𝑘+1 = 𝑥𝑘 −
𝑏/𝑥
𝑛

𝑘
− 𝑎

−𝑛𝑏/𝑥𝑛+1
𝑘

−
(𝑏/𝑥
𝑛

𝑘
− 𝑎)
2
(𝑛 (𝑛 + 1) 𝑏/𝑥

𝑛+2

𝑘
)

2(−𝑛𝑏/𝑥𝑛+1
𝑘

)
3

+
(𝑏/𝑥
𝑛

𝑘
− 𝑎)
3
((𝑛 (𝑛 + 1) (𝑛 + 2) 𝑏) /𝑥

𝑛+3

𝑘
)

6 (−𝑛𝑏/𝑥𝑛+1
𝑘

)
4

= 𝑥𝑘 [1 +
𝑏 − 𝑎𝑥

𝑛

𝑘

𝑛𝑏
+

(𝑏 − 𝑎𝑥
𝑛

𝑘
)
2
(𝑛 + 1)

2𝑛2𝑏2

+
(𝑏 − 𝑎𝑥

𝑛

𝑘
)
3
(𝑛 + 1) (𝑛 + 2)

6𝑛3𝑏3
] .

(18)

This can be simplified as

6𝑛
3
𝑏
3
𝑥𝑘+1

= 𝑥𝑘 [6𝑏
3
𝑛
3
+ (𝑏 − 𝑎𝑥

𝑛

𝑘
) 6𝑛
2
𝑏
2

+ (𝑏 − 𝑎𝑥
𝑛

𝑘
)
2
(𝑛 + 1) 3𝑛𝑏

+ (𝑏 − 𝑎𝑥
𝑛

𝑘
)
3
(𝑛 + 1) (𝑛 + 2)]

= 𝑥𝑘 (2𝑏
3
(1 + 3𝑛 + 5𝑛

2
+ 3𝑛
3
)

− 3𝑎𝑏
2
(2 + 5𝑛 + 5𝑛

2
) 𝑥
𝑛

𝑘

+ 6𝑎
2
𝑏(1 + 𝑛)

2
𝑥
2𝑛

𝑘
− 𝑎
3
(2 + 3𝑛 + 𝑛

2
) 𝑥
3𝑛

𝑘
) .

(19)

Next we show that 𝑥𝑘+1 is a solution of the congruence 𝑎𝑥
𝑛
≡

𝑏(mod 𝑝
3𝑘
). Now if 𝑥𝑘 is the solution of 𝑎𝑥𝑛 ≡ 𝑏(mod 𝑝

𝑘
)

then for some integer 𝑡, we have, 𝑎𝑥𝑛
𝑘

= 𝑏 + 𝑡𝑝
𝑘. Putting in

(19), we get

6𝑛
3
𝑏
3
𝑥𝑘+1

= 𝑥𝑘 [2𝑏
3
(1 + 3𝑛 + 5𝑛

2
+ 3𝑛
3
)

− 3𝑏
2
(2 + 5𝑛 + 5𝑛

2
) (𝑏 + 𝑡𝑝

𝑘
)

+ 6𝑏(1 + 𝑛)
2
(𝑏
2
+ 2𝑏𝑡𝑝

𝑘
+ 𝑡
𝑡
𝑝
2𝑘
)

− (2 + 3𝑛 + 𝑛
2
) (𝑏
3
+ 3𝑏
2
𝑡𝑝
𝑘

+ 3𝑏𝑡
2
𝑝2𝑘 + 𝑡

3
𝑝
3𝑘
)]

≡ 𝑥𝑘 [6𝑛
3
𝑏
3
− 6𝑛
2
𝑏
2
𝑡𝑝
𝑘

+ 3𝑛 (𝑛 + 1) 𝑏𝑡
2
𝑝
2𝑘
] (mod 𝑝

3𝑘
) .

(20)

This implies that

(6𝑛
3
𝑏
3
)
𝑛

𝑎𝑥
𝑛

𝑘+1

≡ [6𝑛
3
𝑏
3
− 6𝑛
2
𝑏
2
𝑡𝑝
𝑘
+ 3𝑛 (𝑛 + 1) 𝑏𝑡

2
𝑝
2𝑘
]
𝑛

(mod 𝑝
3𝑘
) .

(21)

Using Binomial Series expansion, we obtain

(6𝑛
3
𝑏
3
)
𝑛

𝑎𝑥
𝑛

𝑘+1

≡ [(6𝑛
3
𝑏
3
)
𝑛

+ 𝑛(6𝑛
3
𝑏
3
)
𝑛−1
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× (−6𝑛
2
𝑏
2
𝑡𝑝
𝑘
+ 3𝑛 (𝑛 + 1) 𝑏𝑡

2
𝑝
3𝑘
)

+
𝑛 (𝑛 − 1)

2
(6𝑛
3
𝑏
3
)
𝑛−2

× (−6𝑛
2
𝑏
2
𝑡𝑝
𝑘
+ 3𝑛 (𝑛 + 1) 𝑏𝑡

2
𝑝
2𝑘
)
2

+ terms involving 𝑝
3𝑘
] (𝑏 + 𝑡𝑝

𝑘
) (mod 𝑝

3𝑘
)

≡ [(6𝑛
3
𝑏
3
)
𝑛

− 6𝑛
3
𝑏
2
(6𝑛
3
𝑏
3
)
𝑛−1

𝑡𝑝
𝑘

+6𝑛
3
𝑏(6𝑛
3
𝑏
3
)
𝑛−1

𝑡
2
𝑝
2𝑘
] (𝑏 + 𝑡𝑝

𝑘
) (mod 𝑝

3𝑘
)

≡ 𝑏(6𝑛
3
𝑏
3
)
𝑛

(mod 𝑝
3𝑘
) .

(22)

Since 𝑝 > 3 and (𝑛𝑏, 𝑝) = 1, so (6𝑛
3
𝑏
3
, 𝑝) = 1 and hence

((6𝑛
3
𝑏
3
)
𝑛
, 𝑝
3𝑘
) = 1. Finally, by Cancelation law (22) yields

that𝑥𝑘+1 is the solution of the congruence 𝑎𝑥
2
≡ 𝑏(mod 𝑝

3𝑘
).

3.3. Remark. Note that variants of Newton’s method dis-
cussed in Section 3 are the two-step (predictor-corrector)
methods while the followings are one-step methods. This
clearly shows that the technique suggested is equally good
even to two stepmethods and could be enhanced tomultistep
methods.

4. Higher Order Iterative Families

The following are the two well-known one step root-finding
higher order iterative families. In this section, wemake use of
these families in order to find the solutions of congruences
modulo 𝑝

𝑘. The following theorems demonstrate how one
can employ the order of convergence of these families to get
the solutions of ecstatic problems in number theory.

4.1. Householder’s Family. Householder’s methods are a class
of well-known iterative algorithms for solving a nonlinear
equation in one variable. Let 𝑓 be a function of one variable
with continuous derivatives of order 𝑝 + 1. The formula for
Householder’s method of order 𝑝 + 1 to perform iterations is

𝑥𝑘+1 = 𝑥𝑘 + 𝑝
(1/𝑓)

𝑝−1
(𝑥𝑘)

(1/𝑓)
𝑝
(𝑥𝑘)

. (23)

Let us establish a formula for 𝑝 = 3 using (23)
(𝑝 − 1)th derivative of 1/𝑓(𝑥)

=
2𝑓
󸀠
(𝑥)
2

𝑓(𝑥)
3

−
𝑓
󸀠󸀠
(𝑥)

𝑓(𝑥)
2
. (24)

Similarly, 𝑝th derivative of 1/𝑓(𝑥)

= −
6𝑓
󸀠
(𝑥)
3

𝑓(𝑥)
4

+
6𝑓
󸀠
(𝑥) 𝑓
󸀠󸀠
(𝑥)

𝑓(𝑥)
3

−
𝑓
󸀠󸀠󸀠

(𝑥)

𝑓 (𝑥)
2
. (25)

Substituting the values of (24) and (25) into (23), we obtain

𝑥𝑘+1 = (3𝑓 (𝑥𝑘) [𝑓 (𝑥𝑘) 𝑓
󸀠󸀠
(𝑥𝑘) − 2𝑓

󸀠
(𝑥𝑘)
2
]

× (𝑓(𝑥𝑘)
2
𝑓
󸀠󸀠󸀠

(𝑥𝑘) + 6𝑓
󸀠
(𝑥𝑘)
3

−6𝑓 (𝑥𝑘) 𝑓
󸀠
(𝑥𝑘) 𝑓

󸀠󸀠
(𝑥𝑘))
−1

) + 𝑥𝑘.

(26)

In the following theorem, we use Householder’s method of
order 4 in order to find the solutions of congruences of the
form 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

4𝑘
), 𝑘 ≥ 1, from the solutions of the

congruence 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

𝑘
).

Theorem 5. Let 𝑎, 𝑏, and 𝑛 > 0 be integers which are not
divisible by a prime 𝑝 > 3. If 𝑥𝑘, 𝑘 ≥ 1 is a solution of the
congruence 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

𝑘
) then 𝑥𝑘+1 is the solution of the

congruence 𝑎𝑥
𝑛
≡ 𝑏(mod 𝑝

4𝑘
) satisfying the equation

𝑥𝑘+1 = ( (𝑏
2
(𝑛
2
− 1) + 2𝑎𝑏 (2𝑛

2
+ 1) 𝑥

𝑛

𝑘
+ 𝑎
2
(𝑛
2
− 1) 𝑥

2𝑛

𝑘
)

× (𝑏
2
(𝑛 − 1) (𝑛 − 2) + 4𝑎𝑏 (𝑛

2
− 1) 𝑥

𝑛

𝑘

+𝑎
2
(𝑛 + 1) (𝑛 + 2) 𝑥

2𝑛

𝑘
)
−1

) 𝑥𝑘.

(27)

Proof. To prove this, let 𝑓(𝑥) = 𝑏/𝑥
𝑛
− 𝑎 and solve 𝑓(𝑥) = 0

using (26); we get

𝑥𝑘+1 = (3(
𝑏

𝑥𝑛
𝑘

− 𝑎)[(
𝑏

𝑥𝑛
𝑘

− 𝑎)(
𝑛 (𝑛 + 1) 𝑏

𝑥𝑛+2
𝑘

) − 2
𝑛
2
𝑏
2

𝑥2𝑛+2
𝑘

]

× ((
𝑏

𝑥𝑛
𝑘

− 𝑎)

2

(−
𝑛 (𝑛 + 1) (𝑛 + 2) 𝑏

𝑥𝑛+3
𝑘

) − 6
𝑛
3
𝑏
3

𝑥3𝑛+3
𝑘

+ 6
𝑛
2
(𝑛 + 1) 𝑏

2

𝑥2𝑛+3
𝑘

(
𝑏

𝑥𝑛
𝑘

− 𝑎))

−1

) + 𝑥𝑘

= (3𝑥𝑘 (𝑏 − 𝑎𝑥
𝑛

𝑘
) [𝑛 (𝑛 + 1) (𝑏 − 𝑎𝑥

𝑛

𝑘
) − 2𝑛

2
𝑏
2
]

× (6𝑛
2
(𝑛 + 1) 𝑏

2
(𝑏 − 𝑎𝑥

𝑛

𝑘
) − (𝑏 − 𝑎𝑥

𝑛

𝑘
) 𝑛

× (𝑛 + 1) (𝑛 + 2) 𝑏𝑥
𝑛

𝑘
− 6𝑛
3
𝑏
3
)
−1

) + 𝑥𝑘

= ( (𝑏
2
(𝑛
2
− 1) + 2𝑎𝑏 (2𝑛

2
+ 1) 𝑥

𝑛

𝑘
+ 𝑎
2
(𝑛
2
− 1) 𝑥

2𝑛

𝑘
)

× (𝑏
2
(𝑛 − 1) (𝑛 − 2) + 4𝑎𝑏 (𝑛

2
− 1) 𝑥

𝑛

𝑘

+𝑎
2
(𝑛 + 1) (𝑛 + 2) 𝑥

2𝑛

𝑘
)
−1

) 𝑥𝑘.

(28)
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Next we show that 𝑥𝑘+1 is a root of the congruence 𝑎𝑥
𝑛

≡

𝑏(mod 𝑝
4𝑘
). Now if 𝑥𝑘 is the solution of 𝑎𝑥𝑛 ≡ 𝑏(mod 𝑝

𝑘
)

then for some integer 𝑡, we have, 𝑎𝑥𝑛
𝑘

= 𝑏 + 𝑡𝑝
𝑘. Putting in

(27), we obtain

𝑥𝑘+1 = ( (𝑏
2
(𝑛
2
− 1) + 2𝑏 (2𝑛

2
+ 1) (𝑏 + 𝑡𝑝

𝑘
)

+ (𝑛
2
− 1) (𝑏 + 𝑡𝑝

𝑘
)
2

)

× (𝑏
2
(𝑛 − 1) (𝑛 − 2) + 4𝑏 (𝑛

2
− 1) (𝑏 + 𝑡𝑝

𝑘
)

+ (𝑛 + 1) (𝑛 + 2) (𝑏 + 𝑡𝑝
𝑘
)
2

)
−1

)𝑥𝑘

= ( (6𝑛
2
𝑏
2
+ 6𝑛
2
𝑏𝑡𝑝
𝑘
+ (𝑛
2
− 1) 𝑡

2
𝑝
2𝑘
)

× (6𝑛
2
𝑏
2
+ 6𝑛 (𝑛 + 1) 𝑏𝑡𝑝

𝑘

+ (𝑛 + 1) (𝑛 + 2) 𝑡
2
𝑝
2𝑘
)
−1

) 𝑥𝑘.

(29)

This implies that

𝑎𝑥
𝑛

𝑘+1
≡ ( (𝑏{6𝑛

2
𝑏
2
+ 6𝑛
2
𝑏𝑡𝑝
𝑘
+ (𝑛
2
− 1) 𝑡
2
𝑝
2𝑘
}
𝑛

)

× (𝑏 {6𝑛
2
𝑏
2
+ 6𝑛 (𝑛 + 1) 𝑏𝑡𝑝

𝑘

+ (𝑛 + 1) (𝑛 + 2) 𝑡
2
𝑝
2𝑘
}
𝑛

)
−1

) (𝑏 + 𝑡𝑝
𝑘
) .

(30)

Using Binomial Series expansion, we obtain

[6𝑛
2
𝑏
2
+ 6𝑛
2
𝑏𝑡𝑝
𝑘
+ (𝑛
2
− 1) 𝑡

2
𝑝
2𝑘
]
𝑛

(𝑏 + 𝑡𝑝
𝑘
)

= 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6
𝑛
𝑛(𝑛𝑏)
2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(𝑛 − 1) (3𝑛
2
+ 𝑛 + 1) (𝑛𝑏)

2𝑛−1
𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛 (𝑛 − 1) (𝑛
3
− 𝑛
2
− 1) (𝑛𝑏)

2𝑛−2
𝑡
3
𝑝
3𝑘

+ 6
𝑛
(𝑛𝑏)
2𝑛
𝑡𝑝
𝑘
+ 6𝑛
2
6
𝑛−1

(𝑛𝑏)
2𝑛−1

𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛 (𝑛 − 1) (3𝑛
2
+ 𝑛 + 1) (𝑛𝑏)

2𝑛−2
𝑡
3
𝑝
3𝑘

+ terms involving 𝑝
4𝑘

≡ 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6
𝑛
(𝑛 + 1) (𝑛𝑏)

2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(3𝑛
3
+ 4𝑛
2
− 1) (𝑛𝑏)

2𝑛−1
𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛
2
(𝑛 − 1) (𝑛 + 1)

2
(𝑛𝑏)
2𝑛−2

𝑡
3
𝑝
3𝑘

(mod 𝑝
4𝑘
) .

(31)

Similarly, we expand denominator to get

𝑏 [6𝑛
2
𝑏
2
+ 6𝑛 (𝑛 + 1) 𝑏𝑡𝑝

𝑘

+ (𝑛 + 1) (𝑛 + 2) 𝑡
2
𝑝
2𝑘
]
𝑛

= 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6
𝑛
(𝑛 + 1) (𝑛𝑏)

2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(𝑛 + 1) (𝑛 + 2) (𝑛𝑏)
2𝑛−1

𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

(𝑛 + 1)
2
(𝑛 − 1) (𝑛 + 2) (𝑛𝑏)

2𝑛−2
𝑡
3
𝑝
3𝑘

+ 3.6
𝑛−1

(𝑛 − 1) (𝑛 + 1)
2
(𝑛𝑏)
2𝑛−1

𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

(𝑛 − 1) (𝑛 + 1)
3
(𝑛 − 2) (𝑛𝑏)

2𝑛−2
𝑡
3
𝑝
3𝑘

+ terms involving 𝑝
4𝑘

≡ 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6
𝑛
(𝑛 + 1) (𝑛𝑏)

2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(3𝑛
3
+ 4𝑛
2
− 1) (𝑛𝑏)

2𝑛−1
𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛
2
(𝑛 − 1) (𝑛 + 1)

2
(𝑛𝑏)
2𝑛−2

𝑡
3
𝑝
3𝑘

(mod 𝑝
4𝑘
) .

(32)

Substituting (31) and (32) into (30), we get

𝑎𝑥
𝑛

𝑘+1
≡

𝑏𝑑

𝑑
(mod 𝑝

4𝑘
)where,

𝑑 = 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6
𝑛
(𝑛 + 1) (𝑛𝑏)

2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(3𝑛
3
+ 4𝑛
2
− 1) (𝑛𝑏)

2𝑛−1
𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛
2
(𝑛 − 1) (𝑛 + 1)

2
(𝑛𝑏)
2𝑛−2

𝑡
3
𝑝
3𝑘
.

(33)

Next we claim that 𝑑 ̸≡ 0 (mod 𝑝). To prove our assertion
we let 𝑑 = 6

𝑛
(𝑛𝑏)
2𝑛
𝑏 + 6

𝑛
(𝑛 + 1)(𝑛𝑏)

2𝑛
𝑡𝑝
𝑘

+ 6
𝑛−1

(3𝑛
3

+

4𝑛
2
− 1)(𝑛𝑏)

2𝑛−1
𝑡
2
𝑝
2𝑘

+ 6
𝑛−1

𝑛
2
(𝑛 − 1)(𝑛 + 1)

2
(𝑛𝑏)
2𝑛−2

𝑡
3
𝑝
3𝑘

≡

0(mod 𝑝). But then 6
𝑛
(𝑛𝑏)
2𝑛
𝑏 ≡ 0(mod 𝑝). This shows that

(𝑛𝑏)
2𝑛

≡ 0(mod 𝑝) as 𝑝 > 3 and (𝑏, 𝑝) = 1. Which further
implies that 𝑝 | 𝑛𝑏, a contradiction since (𝑛𝑏, 𝑝) = 1.
Hence we conclude that 𝑑 ̸≡ 0(mod 𝑝) and so because
𝑑 ̸≡ 0(mod 𝑝

4𝑘
). Thus by (33), 𝑥𝑘+1 is the solution of the

congruence 𝑎𝑥
2
≡ 𝑏(mod 𝑝

4𝑘
).

4.2. Basic Family of Iteration Functions. Basic family of
iteration functions denoted by 𝐵𝑚(𝑥) is a well-known class
of iterative algorithms of order 𝑚 for solving a nonlinear
equation in one variable. The details of Basic Family and its
mathematical interpretation regarding existence and charac-
terizations have been discoursed earlier in [5]. It has been
proved that themembers of this family like𝐵2 and𝐵3 coincide
with well-known Newton’s and Halley’s methods. We further
see that the member 𝐵4(𝑥) coincides with a member of
Householder’s Family of order four. However, we demon-
strate that the Basic family of iteration functions is more
convenient in finding roots of the given congruence with
desired convergence. To find the solutions of congruences
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modulo 𝑝
𝑘, we need to recall the basics of this family as given

in [5] (for details see pages 1–3 in [5]).
Let 𝑓(𝑥) be a polynomial of degree ≥ 2 over the field of

complex numbers. For integer 𝑚 ≥ 2, let 𝐿𝑚(𝑥) be a square
matrix of order𝑚whose diagonals elements are𝑓(𝑥) defined
as

𝐿𝑚 (𝑥) =

(
(
(
(

(

𝑓(𝑥) 0 0 ⋅ ⋅ ⋅ 0

𝑓
󸀠
(𝑥) 𝑓 (𝑥) 0 ⋅ ⋅ ⋅ 0

𝑓
󸀠󸀠
(𝑥)

2
𝑓
󸀠
(𝑥) 𝑓 (𝑥) ⋅ ⋅ ⋅ 0

...
...

...
...

...
𝑓
𝑚−1

(𝑥)

(𝑚 − 1)!

𝑓
𝑚−2

(𝑥)

(𝑚 − 2)!

𝑓
𝑚−3

(𝑥)

(𝑚 − 3)!
⋅ ⋅ ⋅ 𝑓 (𝑥)

)
)
)
)

)

.

(34)

For 𝑗 = 12, . . ., let 𝐿𝑗
𝑚
(𝑥) be a square matrix of order 𝑚 − 𝑗

obtained by removing first 𝑗 rows and last 𝑗 columns of the
matrix 𝐿𝑚(𝑥) together with 𝐿

1

1
(𝑥) = 1 given as

𝐿
𝑗

𝑚
(𝑥) =

(
(
(
(
(

(

𝑓
𝑗
(𝑥)

𝑗!

𝑓
𝑗−1

(𝑥)

(𝑗 − 1)!
⋅ ⋅ ⋅ 0

𝑓
𝑗+1

(𝑥)

(𝑗 + 1)!

𝑓
𝑗
(𝑥)

𝑗!
⋅ ⋅ ⋅ 0

...
...

...
...

𝑓
𝑚−1

(𝑥)

(𝑚 − 1)!

𝑓
𝑚−2

(𝑥)

(𝑚 − 2)!
⋅ ⋅ ⋅

𝑓
𝑗
(𝑥)

𝑗!

)
)
)
)
)

)

. (35)

The family of iteration functions 𝐵𝑚(𝑥) is termed as Basic
Family of iteration function of order 𝑚, where

𝐵𝑚 (𝑥) = 𝑥 − 𝑓 (𝑥)
det (𝐿1

𝑚−1
(𝑥))

det (𝐿1
𝑚

(𝑥))
. (36)

Let us establish a formula for 𝑚 = 4. Then by (36), we obtain

𝐵4 (𝑥) = 𝑥 − 𝑓 (𝑥)
det (𝐿1

3
(𝑥))

det (𝐿1
4
(𝑥))

(37)

Now

𝐿
1

4
(𝑥) =

(
(

(

𝑓
󸀠
(𝑥) 𝑓 (𝑥) 0

𝑓
󸀠󸀠
(𝑥)

2!
𝑓
󸀠
(𝑥) 𝑓 (𝑥)

𝑓
󸀠󸀠󸀠

(𝑥)

3!

𝑓
󸀠󸀠
(𝑥)

2!
𝑓
󸀠
(𝑥)

)
)

)

. (38)

Then

det (𝐿1
4
(𝑥))

= (𝑓
󸀠
(𝑥))
3

−
1

2
𝑓 (𝑥) 𝑓

󸀠
(𝑥) 𝑓
󸀠󸀠
(𝑥) +

1

6
(𝑓 (𝑥))

2
𝑓
󸀠󸀠󸀠

(𝑥) .

(39)

Similarly,

𝐿
1

3
(𝑥) = (

𝑓
󸀠
(𝑥) 𝑓 (𝑥)

𝑓
󸀠󸀠
(𝑥)

2!
𝑓
󸀠
(𝑥)

) . (40)

Then

det (𝐿1
3
(𝑥)) = (𝑓

󸀠
(𝑥))
2

−
1

2
𝑓 (𝑥) 𝑓

󸀠󸀠
(𝑥) . (41)

Substituting (39) and (41) into (37), after simplifying we
obtain

𝐵4 (𝑥)

= 𝑥 −
6𝑓 (𝑥) (𝑓

󸀠
(𝑥))
2

− 3(𝑓 (𝑥))
2
𝑓
󸀠󸀠
(𝑥)

(𝑓 (𝑥))
2
𝑓󸀠󸀠󸀠 (𝑥) + 6(𝑓󸀠 (𝑥))

3
− 6𝑓 (𝑥) 𝑓󸀠 (𝑥) 𝑓󸀠󸀠 (𝑥)

.

(42)

Now by (26) and (42), it is interesting to notice that both
families are mapped onto each other even for fourth order
members. That is, the iteration function of Householder’s
family for 𝑑 = 3 and the iteration function 𝐵4 for Basic
Family are same. Therefore, the fourth order convergence
for 𝑝-adic analysis of Basic Family as proved in Theorem 5
is instinctively established. However, the Basic Family is
certainly more expedient to find solutions of congruences
modulo 𝑝

𝑘 as one can find the desired solution using (36)
as well. Let us again find the solution of 2𝑥

3
≡ 5(mod 7

4
)

through determinants. Here 𝑓(𝑥) = 5/𝑥
3
− 3 and 𝑥 = 3 is the

initial solution. Then by (37),

det (𝐿1
4
(3)) = det(

(

−5

27

−49

27
0

10

81

−5

27

−49

27

−50

729

10

81

−5

27

)

)

≡ 923 (mod 7
4
) .

(43)

Similarly,

det (𝐿1
3
(3)) = det(

−5

27

−49

27

10

81

−5

27

) ≡ 592 (mod 7
4
) . (44)

Substituting the values into (37), we obtain

𝑥𝑘+1 = 𝐵4 (𝑥) ≡ 3 +
49 (592)

27 (923)
(mod 7

4
)

≡
528

904
(mod 7

4
)

≡ 1914 (mod 7
4
) .

(45)
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4.3. Remarks

(1) The overhead methods also give an equally efficient
technique in solving polynomial congruences mod-
ulo 𝑝

𝑘 with negative-exponent. To find the solu-
tions of the congruence 𝑎𝑧

−𝑛
≡ 𝑏(mod 𝑝

𝑘
), we

solve the congruence 𝑎𝑦
𝑛

≡ 𝑏(mod 𝑝
𝑘
), where

𝑧𝑦 ≡ 1(mod 𝑝
𝑘
). This means that the solution of

the first congruence is the multiplicative inverse of
the solution of the later congruence. We claim that
the linear congruence 𝛼𝑧 ≡ 1(mod 𝑝

𝑘
) is always

solvable, where 𝛼 is the solution of the congruence
𝑎𝑦
𝑛

≡ 𝑏(mod 𝑝
𝑘
). Then 𝛼 must be a solution of

the congruence 𝑎𝑦
𝑛

≡ 𝑏(mod 𝑝). That is 𝑎𝛼
𝑛

≡

𝑏(mod 𝑝). Since 𝑝 ∤ 𝑏, so 𝑝 ∤ 𝑎𝛼
𝑛. This clearly

shows that 𝑝 ∤ 𝛼. Hence (𝛼, 𝑝) = 1. Consequently, the
linear congruence 𝛼𝑧 ≡ 1(mod 𝑝

𝑘
) is solvable as we

know that the linear congruence 𝛼z ≡ 1(mod 𝑝
𝑘
) is

solvable if and only if (𝛼, 𝑝) = 1. Let 𝛽 be the solution
of the linear congruence 𝛼𝑧 ≡ 1(mod 𝑝

𝑘
). Then 𝛽

is the desired solution of 𝑎𝑧
−𝑛

≡ 𝑏 (mod 𝑝
𝑘
). By

(45), 𝑦 ≡ 1914(mod 7
4
) satisfies 2𝑦

3
≡ 5(mod 7

4
).

To find a solution of 2𝑧
−3

≡ 5(mod 7
4
), we solve

the linear congruence 1914𝑧 ≡ 1(mod 7
4
). It is easy

to see that 𝑧 = 𝛽 ≡ 2189(mod 7
4
) is its solution.

Hence, 𝛽 ≡ 2189(mod 7
4
) is the desired solution of

the congruence 2𝑧
−3

≡ 5 (mod 7
4
).

(2) The text does not discuss the well-known Halley’s
third order iterative method as it can be seen that it
is a subcase of both families discussed above. In the
Householder’s family for 𝑑 = 2 and in basic iteration
family for 𝑚 = 3, the results yield Halley’s method.

In the following algorithm, we summarize the solutions
of congruences discussed inTheorems 3, 4, and 5.

4.4. Algorithm. Step 1: Set 𝑥1 as initial estimate.
Step 2:

𝑘 = {
log
3
𝑚, if Equation (10) or (16) is used.

log
4
𝑚, if Equation (26) is used.

(46)

Step 3: For 𝑖 = 1 to 𝑘 do

𝑥𝑖+1

={
𝑓 (𝑥𝑖)mod 𝑝

3𝑚
, if Equation (10) or (16) is used.

𝑓 (𝑥𝑖)mod 𝑝
4𝑚

, if Equation (26) is used.
(47)

Step 4: Solution = 𝑥𝑖+1

The following algorithm is an improved form of the above
given algorithms for any arbitrary value of 𝑞 where 𝑞 is the
order of convergence of the iterative method induced.
Step 1: Set 𝑥1 as initial estimate.
Step 2:

𝑘 = log
𝑞
𝑚, 𝑞 = 3, 4, . . . (48)

Step 3: For 𝑖 = 1 to 𝑘 do

𝑥𝑖+1 = 𝑓 (𝑥𝑖)mod 𝑝
𝑞𝑚 (49)

Step 4: Solution = 𝑥𝑖+1

5. Numerical Examples

Let us solve the congruence 2𝑥
3

≡ 5(mod 7
81
) by using

Hensel’s lemma (HL), Abbasbandy’s method (AM), a variant
of Newton’s method (VN), Householder’s method (HM), and
Basic Family’s (BM) method. In order to solve a polynomial
congruence of the form 𝑎𝑥

𝑛
≡ 𝑏(mod 𝑝

𝑘
), 𝑘 ≥ 1, it is

sufficient to solve 𝑎𝑥
𝑛

≡ 𝑏(mod 𝑝). Once we do this, then
we can apply algorithm given Section 4.4 for finding the
solutions of 𝑎𝑥

𝑛
≡ 𝑏 (mod 𝑝

3𝑘
) from the solutions of the

congruence 𝑎𝑥
𝑛

≡ 𝑏(mod 𝑝
𝑘
). Therefore, we first solve the

congruence 2𝑥
3

≡ 5(mod 7). By inspection we see that
𝑥 ≡ 3(mod 7) and 𝑥 ≡ 4(mod 7) are the solutions of the
congruence 2𝑥

3
≡ 5(mod 7). Thus we choose 𝑥1 = 3 as our

initial guess.Then by Algorithm given in Section 4.4, we have

𝑥2 ≡ 3 (mod 7
2
) , 𝑥2 ≡ 199 (mod 7

3
) . (50)

We repeat above process to find the roots of the given
congruence modulo 7

4, 7
8,79 and so on until we get the

solution of the congruence 2𝑥
3
≡ 5(mod 7

81
). The necessary

computations are summarized in Table 1.

6. Conclusion

The complexity of a typical method for numerical computa-
tions using Theorem 2 is linear. In the underlying work we
have suggested various methods that drastically reduce the
complexity for such computations to a logarithmic scale. It
is easily deduced from the algorithm given in Section 4.4
that the complexity of the described method is 𝑂(log𝑚).
Additionally the method developed is an explicit technique
which does not require any numerical computation for
finding any sort of derivative. Therefore, the techniques
developed in this paper perform much faster for values of
𝑚 in powers of 3, 4, . . . in contrast with existing techniques
for solving polynomial congruences. Moreover the research
work proves that both families of iterative function, that is,
the Householder’s and Basic iteration family work p-adically
as shown in various results. Furthermore we have shown the
efficacy of the given method for solving negative exponent
equations of the form 𝑎𝑥

−𝑛
≡ 𝑏.
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Table 1: Comparison of HL, AM/VN, and HM/BM.

Methods 𝑥
𝑘
(mod𝑝

𝛼
) 𝑥

𝑘+1
(mod𝑝

𝑚𝛼
)

HL 3 3 (mod 7
2
)

AM/VN 3 199 (mod 7
3
)

HM/BM 3 1914 (mod 7
4
)

HL 3 199 (mod 7
3
)

AM/VN 199 37399890 (mod 7
9
)

HM/BM 1914 24211798063820 (mod 7
16
)

HL 199 1914 (mod 7
4
)

AM/VN 37399890 43741341794232381830191 (mod 7
27
)

HM/BM 24211798063820 954381941076. . .900159613690770 (mod 7
64
)

HL 1914 573 (mod 7
5
)

AM/VN 43741341794232381830191 24452773833. . .232537600 (mod 7
81
)

Solution of the congruence 2𝑥3 ≡ 5 (mod 781) with initial estimate 𝑥1 = 3.
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