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We introduce two kinds of Kantorovich-type q-Bernstein-Schurer-Stancu operators. We first estimate moments of q-Bernstein-
Schurer-Stancu-Kantorovich operators. We also establish the statistical approximation properties of these operators. Furthermore,
we study the rates of statistical convergence of these operators by means of modulus of continuity and the functions of Lipschitz
class.

1. Introduction

In 1987, Lupaş [1] introduced a 𝑞-type of the Bernstein oper-
ators and in 1997 another generalization of these operators
based on 𝑞-integers was introduced by Phillips [2].Thereafter,
an intensive research has been done on the 𝑞-parametric
operators. Recently the statistical approximation properties
have also been investigated for 𝑞-analogue polynomials. For
instance, in [3] 𝑞-Bleimann, Butzer, and Hahn operators;
in [4] Kantorovich-type 𝑞-Bernstein operators; in [5] 𝑞-
analogue of MKZ operators; in [6] Kantorovich-type 𝑞-
Szász-Mirakjan operators; in [7] Kantorovich-type discrete 𝑞-
Beta operators; in [8] Kantorovich-type 𝑞-Bernstein-Stancu
operators were introduced and their statistical approximation
properties were studied.

The main aim of this paper is to introduce two kinds
of Kantorovich-type 𝑞-Bernstein-Stancu operators and study
the statistical approximation properties of these operators
with the help of the Korovkin-type approximation theorem.
We also estimate the rate of statistical convergence by means
of modulus of continuity and with the help of the elements of
the Lipschits classes.

Before proceeding further, let us give some basic def-
initions and notations. Throughout the present paper, we
consider 0 < 𝑞 < 1. For any 𝑛 = 0, 1, 2, . . ., the 𝑞-integer
[𝑛]𝑞 is defined as (see [2])

[𝑛]𝑞 = 1 + 𝑞 + ⋅ ⋅ ⋅ + 𝑞
𝑛−1

, (𝑛 = 0, 1, 2, . . .) , [0]𝑞 = 0 (1)

and the 𝑞-factorial [𝑛]𝑞! as

[𝑛]𝑞! = [1]𝑞 [2]𝑞 ⋅ ⋅ ⋅ [𝑛]𝑞 , (𝑛 = 1, 2, . . .) , [0]𝑞! = 1. (2)

For the integers 𝑛, 𝑘, 𝑛 ≥ 𝑘 ≥ 0, the 𝑞-binomial or the
Gaussian coefficient is defined as

[
𝑛

𝑘
]

𝑞

=
[𝑛]𝑞!

[𝑘]𝑞! [𝑛 − 𝑘]𝑞!
. (3)

For an arbitrary function 𝑓(𝑥), the 𝑞-differential is given
by

𝑑𝑞𝑓 (𝑥) = 𝑓 (𝑞𝑥) − 𝑓 (𝑥) . (4)

The 𝑞-Jackson integral in the interval [0, 𝑏] is defined as
(see [9])

∫

𝑏

0

𝑓 (𝑡) 𝑑𝑞𝑡 = (1 − 𝑞)

∞

∑

𝑗=0

𝑓 (𝑞
𝑗
𝑏) 𝑞
𝑗
, 0 < 𝑞 < 1, (5)

provided that sums converge absolutely.
Suppose 0 < 𝑎 < 𝑏. The 𝑞-Jackson integral in a general

generic interval [𝑎, 𝑏] is defined as

∫

𝑏

𝑎

𝑓 (𝑡) 𝑑𝑞𝑡 = ∫

𝑏

0

𝑓 (𝑡) 𝑑𝑞𝑡 − ∫

𝑎

0

𝑓 (𝑡) 𝑑𝑞𝑡, 0 < 𝑞 < 1. (6)
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2. Construction of the Operators

For any 𝑛 ∈ 𝑁, 𝑝 a fixed nonnegative number and 𝛼, 𝛽 a real
parameters satisfying the conditions 0 ≤ 𝛼 ≤ 𝛽, we introduce
the Kantorovich-type 𝑞-Bernstein-Schurer-Stancu operators
𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) : 𝐶[0, 𝑝 + 1] → 𝐶[0, 1] as follows:

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) =

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)

× ∫

1

0

𝑓(
𝑡

[𝑛 + 1 + 𝛽]
𝑞

+
𝑞 [𝑘 + 𝛼]𝑞

[𝑛 + 1 + 𝛽]
𝑞

)𝑑𝑞𝑡,

𝑥 ∈ [0, 1] ,

(7)

where 𝑝
𝑛,𝑘

(𝑞; 𝑥) = [
𝑛+𝑝

𝑘
]𝑞𝑥
𝑘
∏
𝑛+𝑝−𝑘−1

𝑠=0
(1 − 𝑞

𝑠
𝑥).

The moments of these operators 𝐾(𝛼,𝛽)
𝑛,𝑞

(𝑓; 𝑥) are obtained
as follows.

Lemma 1. For 𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡
𝑖
; 𝑥), 𝑖 = 0, 1, 2, one has

𝐾
(𝛼,𝛽)

𝑛,𝑞
(1; 𝑥) = 1, (8)

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
𝑞

𝑞
𝛼+1

𝑥

+
1

[𝑛 + 1 + 𝛽]
𝑞

(
1

[2]𝑞

+ 𝑞 [𝛼]𝑞) ,

(9)

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥) =

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

𝑞
2𝛼+3

𝑥
2

+

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

× (
2

[2]𝑞

𝑞
𝛼+1

+ 𝑞
2+𝛼

(2 [𝛼]𝑞 + 𝑞
𝛼
))𝑥

+
1

[𝑛 + 1 + 𝛽]
2

𝑞

(
1

[3]𝑞

+
2𝑞 [𝛼]𝑞

[2]𝑞

+ 𝑞
2
[𝛼]
2

𝑞
) .

(10)

Proof. It is obvious that

∫

1

0

1 𝑑𝑞𝑡 = 1, ∫

1

0

𝑡 𝑑𝑞𝑡 =
1

[2]𝑞

, ∫

1

0

𝑡
2
𝑑𝑞𝑡 =

1

[3]𝑞

.

(11)

For 𝑖 = 0, since ∑
𝑛+𝑝

𝑘=0
𝑝
𝑛,𝑘

(𝑞; 𝑥) = 1, (8) holds.
For 𝑖 = 1,

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)

× ∫

1

0

(
𝑡

[𝑛 + 1 + 𝛽]
𝑞

+
𝑞 [𝑘 + 𝛼]𝑞

[𝑛 + 1 + 𝛽]
𝑞

)𝑑𝑞𝑡

=

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) ∫

1

0

𝑡

[𝑛 + 1 + 𝛽]
𝑞

𝑑𝑞𝑡

+

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) ∫

1

0

𝑞 [𝑘 + 𝛼]𝑞

[𝑛 + 1 + 𝛽]
𝑞

𝑑𝑞𝑡

=
1

[2]𝑞 [𝑛 + 1 + 𝛽]
𝑞

+

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
𝑞 [𝑘 + 𝛼]𝑞

[𝑛 + 1 + 𝛽]
𝑞

.

(12)

Using the properties of the generalized 𝑞-Schurer-Stancu
operators ([10, Lemma 2])

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘 + 𝛼]𝑞

[𝑛 + 𝛽]
𝑞

=

𝑞
𝛼
[𝑛 + 𝑝]

𝑞

[𝑛 + 𝛽]
𝑞

𝑥 +
[𝛼]𝑞

[𝑛 + 𝛽]
𝑞

, (13)

we have

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
𝑞

𝑞
𝛼+1

𝑥

+
1

[𝑛 + 1 + 𝛽]
𝑞

(
1

[2]𝑞

+ 𝑞 [𝛼]𝑞) .

(14)

For 𝑖 = 2,

∫

1

0

(
𝑡

[𝑛 + 1 + 𝛽]
𝑞

+
𝑞 [𝑘 + 𝛼]𝑞

[𝑛 + 1 + 𝛽]
𝑞

)

2

𝑑𝑞𝑡

=
1

[𝑛 + 1 + 𝛽]
2

𝑞

× (∫

1

0

𝑡
2
𝑑𝑞𝑡 + 2𝑞 [𝑘 + 𝛼]𝑞 ∫

1

0

𝑡 𝑑𝑞𝑡 + 𝑞
2
[𝑘 + 𝛼]

2

𝑞
∫

1

0

1 𝑑𝑞𝑡)

=
1

[𝑛 + 1 + 𝛽]
2

𝑞

(
1

[3]𝑞

+
2𝑞 [𝑘 + 𝛼]𝑞

[2]𝑞

+ 𝑞
2
[𝑘 + 𝛼]

2

𝑞
) ,

(15)

we obtain

𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥)

=
1

[𝑛 + 1 + 𝛽]
2

𝑞

×

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) (
1

[3]𝑞

+
2𝑞 [𝑘 + 𝛼]𝑞

[2]𝑞

+ 𝑞
2
[𝑘 + 𝛼]

2

𝑞
)
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=
1

[3]𝑞 [𝑛 + 1 + 𝛽]
2

𝑞

+

[𝑛 + 𝛽]
𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

2𝑞

[2]𝑞

×

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘 + 𝛼]𝑞

[𝑛 + 𝛽]
𝑞

+

𝑞
2
[𝑛 + 𝛽]

2

𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘 + 𝛼]

2

𝑞

[𝑛 + 𝛽]
2

𝑞

.

(16)

In view of (13) and [10, Lemma 2]

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘 + 𝛼]

2

𝑞

[𝑛 + 𝛽]
2

𝑞

=

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞

[𝑛 + 𝛽]
2

𝑞

𝑞
2𝛼+1

𝑥
2

+

[𝑛 + 𝑝]
𝑞
𝑞
𝛼

[𝑛 + 𝛽]
2

𝑞

(2 [𝛼]𝑞 + 𝑞
𝛼
) 𝑥 +

[𝛼]
2

𝑞

[𝑛 + 𝛽]
2

𝑞

,

(17)

by simple calculation we can get the stated result (10).

Lemma 2. For 𝛿𝑛(𝑞; 𝑥) := 𝐾
(𝛼,𝛽)

𝑛,𝑞
((𝑡 − 𝑥)

2
; 𝑥), one has

𝛿𝑛 (𝑞; 𝑥) ≤ (

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
𝑞

𝑞
𝛼+1

− 1)

2

+

2 (1 + 𝛼) [𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

+
(1 + 𝛼)

2

[𝑛 + 1 + 𝛽]
2

𝑞

.

(18)

Proof. In view of Lemma 1, we have

𝛿𝑛 (𝑞; 𝑥)

= 𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥) − 2𝑥𝐾

(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) + 𝑥

2

= (

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞
𝑞
2𝛼+3

[𝑛 + 1 + 𝛽]
2

𝑞

−

2𝑞
𝛼+1

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
𝑞

+ 1)𝑥
2

+ (

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

(
2

[2]𝑞

𝑞
𝛼+1

+ 𝑞
2+𝛼

(2 [𝛼]𝑞 + 𝑞
𝛼
))

−
2

[𝑛 + 1 + 𝛽]
𝑞

(
1

[2]𝑞

+ 𝑞 [𝛼]𝑞))𝑥

+
1

[𝑛 + 1 + 𝛽]
2

𝑞

(
1

[3]𝑞

+
2𝑞 [𝛼]𝑞

[2]𝑞

+ 𝑞
2
[𝛼]
2

𝑞
)

≤ (

[𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
𝑞

𝑞
𝛼+1

− 1)

2

+

2 (1 + 𝛼) [𝑛 + 𝑝]
𝑞

[𝑛 + 1 + 𝛽]
2

𝑞

+
(1 + 𝛼)

2

[𝑛 + 1 + 𝛽]
2

𝑞

.

(19)

Now, we consider a sequence 𝑞 = 𝑞𝑛 satisfying the
following two expressions:

lim
𝑛→∞

𝑞𝑛 = 1, lim
𝑛→∞

1

[𝑛]𝑞
𝑛

= 0. (20)

By Korovkin’s theorem, we can state the following theorem.

Theorem 3. Let 𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) be a sequence satisfying (20) for
0 < 𝑞𝑛 < 1.Then for any function𝑓 ∈ 𝐶[0, 𝑝+1], the following
equality

lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; ⋅) − 𝑓
󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

= 0 (21)

is satisfied.

Proof. We know that 𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) is linear positive. By

Lemma 1, if we choose the sequence 𝑞 = 𝑞𝑛 satisfying (20)
and using the equality

[𝑛 + 𝑝]
𝑞
𝑛

= [𝑛]𝑞
𝑛

+ 𝑞
𝑛

𝑛
[𝑝]
𝑞
𝑛

,

[𝑛 + 1 + 𝛽]
𝑞
𝑛

= [𝑛]𝑞
𝑛

+ 𝑞
𝑛

𝑛
[𝛽 + 1]

𝑞
𝑛

(22)

we have
lim
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑡
𝑖
; 𝑥) − 𝑥

𝑖󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0, 𝑖 = 0, 1, 2. (23)

Because of the linearity and positivity of 𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥), the
proof is complete by the classical Korovkin theorem.

We now redefine 𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) as

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) =

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)

× ∫

1

0

𝑓(
𝑡

[𝑛 + 1]𝑞 + 𝛽
+

𝑞 ([𝑘]𝑞 + 𝛼)

[𝑛 + 1]𝑞 + 𝛽
)𝑑𝑞𝑡.

(24)

Let us give some lemmas as follows.

Lemma 4. For 𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡
𝑖
; 𝑥), 𝑖 = 0, 1, 2, one has

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(1; 𝑥) = 1, (25)

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

[𝑛 + 𝑝]
𝑞

[𝑛 + 1]𝑞 + 𝛽
𝑞𝑥

+
1

[𝑛 + 1]𝑞 + 𝛽
(

1

[2]𝑞

+ 𝑞𝛼) ,

(26)
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𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥) =

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞

([𝑛 + 1]𝑞 + 𝛽)
2

𝑞
3
𝑥
2

+

[𝑛 + 𝑝]
𝑞

([𝑛 + 1]𝑞 + 𝛽)
2
(

2𝑞

[2]𝑞

+ 𝑞
2
(2𝛼 + 1)) 𝑥

+
1

([𝑛 + 1]𝑞 + 𝛽)
2
(

1

[3]𝑞

+
2𝑞𝛼

[2]𝑞

+ 𝑞
2
𝛼
2
) .

(27)

Proof. It is obvious that (25) holds.
For 𝑖 = 1,

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)

× ∫

1

0

(
𝑡

[𝑛 + 1]𝑞 + 𝛽
+

𝑞 ([𝑘]𝑞 + 𝛼)

[𝑛 + 1]𝑞 + 𝛽
)𝑑𝑞𝑡

=

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) ∫

1

0

𝑡

[𝑛 + 1]𝑞 + 𝛽
𝑑𝑞𝑡

+

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) ∫

1

0

𝑞 ([𝑘]𝑞 + 𝛼)

[𝑛 + 1 + 𝛽]
𝑞

𝑑𝑞𝑡

=
1

[2]𝑞 ([𝑛 + 1]𝑞 + 𝛽)

+

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
𝑞 ([𝑘]𝑞 + 𝛼)

[𝑛 + 1]𝑞 + 𝛽
.

(28)

Taking into account [11, Lemma 1]
𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘]𝑞 + 𝛼

[𝑛]𝑞 + 𝛽
=

[𝑛 + 𝑝]
𝑞

[𝑛]𝑞 + 𝛽
𝑥 +

𝛼

[𝑛]𝑞 + 𝛽
, (29)

we have

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) =

[𝑛 + 𝑝]
𝑞

[𝑛 + 1]𝑞 + 𝛽
𝑞𝑥 +

1

[𝑛 + 1]𝑞 + 𝛽
(

1

[2]𝑞

+ 𝑞𝛼) .

(30)

For 𝑖 = 2,

∫

1

0

(
𝑡

[𝑛 + 1]𝑞 + 𝛽
+

𝑞 ([𝑘]𝑞 + 𝛼)

[𝑛 + 1]𝑞 + 𝛽
)

2

𝑑𝑞𝑡

=
1

([𝑛 + 1]𝑞 + 𝛽)
2

× (∫

1

0

𝑡
2
𝑑𝑞𝑡 + 2𝑞 ([𝑘]𝑞 + 𝛼)

× ∫

1

0

𝑡 𝑑𝑞𝑡 + 𝑞
2
([𝑘]𝑞 + 𝛼)

2

∫

1

0

1 𝑑𝑞𝑡)

=
1

([𝑛 + 1]𝑞 + 𝛽)
2

× (
1

[3]𝑞

+
2𝑞 ([𝑘]𝑞 + 𝛼)

[2]𝑞

+ 𝑞
2
([𝑘]𝑞 + 𝛼)

2

) ,

(31)

we obtain

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥)

=
1

([𝑛 + 1]𝑞 + 𝛽)
2

×

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)(
1

[3]𝑞

+
2𝑞 ([𝑘]𝑞 + 𝛼)

[2]𝑞

+ 𝑞
2
([𝑘]𝑞 + 𝛼)

2

)

=
1

[3]𝑞 ([𝑛 + 1]𝑞 + 𝛽)
2
+

[𝑛]𝑞 + 𝛽

([𝑛 + 1]𝑞 + 𝛽)
2

2𝑞

[2]𝑞

×

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥)
[𝑘]𝑞 + 𝛼

[𝑛]𝑞 + 𝛽

+
𝑞
2
([𝑛]𝑞 + 𝛽)

2

([𝑛 + 1]𝑞 + 𝛽)
2

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) (
[𝑘]𝑞 + 𝛼

[𝑛]𝑞 + 𝛽
)

2

.

(32)

From (29) and [11, Lemma 1]

𝑛+𝑝

∑

𝑘=0

𝑝
𝑛,𝑘

(𝑞; 𝑥) (
[𝑘]𝑞 + 𝛼

[𝑛]𝑞 + 𝛽
)

2

=

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞

([𝑛]𝑞 + 𝛽)
2

𝑞𝑥
2

+

[𝑛 + 𝑝]
𝑞

([𝑛]𝑞 + 𝛽)
2
(2𝛼 + 1) 𝑥 +

𝛼
2

([𝑛]𝑞 + 𝛽)
2
,

(33)

by simple calculation we arrive at the desired result (27).

Lemma 5. For 𝛿𝑛(𝑞; 𝑥) := 𝐾
(𝛼,𝛽)

𝑛,𝑞
((𝑡 − 𝑥)

2
; 𝑥), one has

𝛿𝑛 (𝑞; 𝑥) ≤ (

[𝑛 + 𝑝]
𝑞

[𝑛 + 1]𝑞 + 𝛽
𝑞 − 1)

2

+

2 (1 + 𝛼) [𝑛 + 𝑝]
𝑞

([𝑛 + 1]𝑞 + 𝛽)
2

+
(1 + 𝛼)

2

([𝑛 + 1]𝑞 + 𝛽)
2
.

(34)
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Proof. From Lemma 4, it is immediately seen that

𝛿𝑛 (𝑞; 𝑥)

= 𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑡
2
; 𝑥) − 2𝑥𝐾̃

(𝛼,𝛽)

𝑛,𝑞
(𝑡; 𝑥) + 𝑥

2

= (

[𝑛 + 𝑝]
𝑞
[𝑛 + 𝑝 − 1]

𝑞
𝑞
3

([𝑛 + 1]𝑞 + 𝛽)
2

−

2𝑞 [𝑛 + 𝑝]
𝑞

[𝑛 + 1]𝑞 + 𝛽
+ 1)𝑥

2

+ (

[𝑛 + 𝑝]
𝑞

([𝑛 + 1]𝑞 + 𝛽)
2
(

2

[2]𝑞

𝑞 + 𝑞
2
(2𝛼 + 1))

−
2

[𝑛 + 1]𝑞 + 𝛽
(

1

[2]𝑞

+ 𝑞𝛼))𝑥

+
1

([𝑛 + 1]𝑞 + 𝛽)
2
(

1

[3]𝑞

+
2𝑞𝛼

[2]𝑞

+ 𝑞
2
𝛼
2
)

≤ (

[𝑛 + 𝑝]
𝑞

[𝑛 + 1]𝑞 + 𝛽
𝑞 − 1)

2

+

2 (1 + 𝛼) [𝑛 + 𝑝]
𝑞

([𝑛 + 1]𝑞 + 𝛽)
2

+
(1 + 𝛼)

2

([𝑛 + 1]𝑞 + 𝛽)
2
.

(35)

We can give the following result, a theorem of Korovkin
type.

Theorem 6. Let 𝑞 = 𝑞𝑛 be a sequence satisfying (20) for 0 <

𝑞𝑛 < 1. Then for any function 𝑓 ∈ 𝐶[0, 𝑝 + 1], the sequence
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) converges to 𝑓(𝑥) uniformly on [0, 1].

The proof of the above theorem follows alongTheorem 3;
thus we omit the details.

3. Statistical Approximation of Korovkin Type

Further on, let us recall the concept of statistical convergence
which was introduced by Fast [12].

Let us set 𝐾 ∈ 𝑁 and 𝐾𝑛 = {𝑘 ≤ 𝑛 : 𝑘 ∈ 𝐾}; the natural
density of 𝐾 is defined by 𝛿(𝐾) := lim𝑛→∞(1/𝑛)|𝐾𝑛| if the
limit exists (see [13]), where |𝐾𝑛| denotes the cardinality of
the set 𝐾𝑛.

A sequence 𝑥 = 𝑥𝑘 is called statistically convergent to a
number 𝐿 if, for every 𝜀 > 0, 𝛿{𝑘 ∈ 𝑁 : |𝑥𝑘 − 𝐿| ≥ 𝜀} = 0.
This convergence is denoted as st − lim𝑘𝑥𝑘 = 𝐿. It is known
that any convergent sequence is statistically convergent, but
its converse is not true. Details can be found in [14].

In approximation theory by linear positive operators, the
concept of statistical convergence was used by Gadjiev and
Orhan [15]. They proved the following Bohman-Korovkin-
type approximation theorem for statistical convergence.

Theorem 7 (see [15]). If the sequence of linear positive opera-
tors 𝐴𝑛 : 𝐶[𝑎, 𝑏] → 𝐶[𝑎, 𝑏] satisfies the conditions

st − lim
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛 (𝑒𝑖; ⋅) − 𝑒𝑖
󵄩󵄩󵄩󵄩𝐶[𝑎,𝑏] = 0 (36)

for 𝑒𝑖(𝑡) = 𝑡
𝑖, 𝑖 = 0, 1, 2, then, for any 𝑓 ∈ 𝐶[𝑎, 𝑏],

st − lim
𝑛

󵄩󵄩󵄩󵄩𝐴𝑛 (𝑓; ⋅) − 𝑓
󵄩󵄩󵄩󵄩𝐶[𝑎,𝑏] = 0. (37)

In this section, we establish the following Korovkin-type
statistical approximation theorems.

Theorem 8. Let 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1, be a sequence satisfying
the following conditions:

st − lim
𝑛

𝑞𝑛 = 1,

st − lim
𝑛

𝑞
𝑛

𝑛
= 𝑎 (𝑎 < 1) ,

st − lim
𝑛

1

[𝑛]𝑞
𝑛

= 0;

(38)

then for 𝑓 ∈ 𝐶[0, 𝑝 + 1], one has

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; ⋅) − 𝑓
󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

= 0. (39)

Proof. From Theorem 7, it is enough to prove that st −

lim
𝑛

‖𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒𝑖; ⋅) − 𝑒𝑖‖𝐶[0,1] = 0 for 𝑒𝑖 = 𝑡
𝑖, 𝑖 = 0, 1, 2.

By (8), we can easily get

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒0; ⋅) − 𝑒0

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (40)

From equality (9) we have

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
𝛼+1

𝑛
[𝑛 + 𝑝]

𝑞
𝑛

[𝑛 + 1 + 𝛽]
𝑞
𝑛

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1

[𝑛 + 1 + 𝛽]
𝑞
𝑛

(
1

[2]𝑞
𝑛

+ 𝑞𝑛 [𝛼]𝑞
𝑛

)

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
𝛼+1

𝑛
[𝑛 + 𝑝]

𝑞
𝑛

[𝑛 + 1 + 𝛽]
𝑞
𝑛

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1 + 𝛼

[𝑛]𝑞
𝑛

.

(41)

Now for a given 𝜀 > 0, let us define the following sets:

𝑈 = {𝑘 :
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} ,

𝑈1 = {𝑘 :

𝑞
𝛼+1

𝑘
[𝑘 + 𝑝]

𝑞
𝑘

[𝑘 + 1 + 𝛽]
𝑞
𝑘

− 1 ≥
𝜀

2
} ,

𝑈2 = {𝑘 :
1 + 𝛼

[𝑘]𝑞
𝑘

≥
𝜀

2
} .

(42)
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From (41), one can see that 𝑈 ⊆ 𝑈1 ∪ 𝑈2, so we have

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀}

≤ 𝛿{𝑘 ≤ 𝑛 :

𝑞
𝛼+1

𝑘
[𝑘 + 𝑝]

𝑞
𝑘

[𝑘 + 1 + 𝛽]
𝑞
𝑘

− 1 ≥
𝜀

2
}

+ 𝛿{𝑘 ≤ 𝑛 :
1 + 𝛼

[𝑘]𝑞
𝑘

≥
𝜀

2
} .

(43)

By (22) and (38) it is clear that

st − lim
𝑛

(

𝑞
𝛼+1

𝑛
[𝑛 + 𝑝]

𝑞
𝑛

[𝑛 + 1 + 𝛽]
𝑞
𝑛

− 1) = 0,

st − lim
𝑛

1 + 𝛼

[𝑛]𝑞
𝑛

= 0.

(44)

So we have

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (45)

Finally, in view of (10), one can write
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 𝑝 − 1]
𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

𝑞
2𝛼+3

𝑛
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

(
2

[2]𝑞
𝑛

𝑞
𝛼+1

𝑛
+ 𝑞
2+𝛼

𝑛
(2 [𝛼]𝑞

𝑛

+ 𝑞
𝛼

𝑛
))

+
1

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

(
1

[3]𝑞
𝑛

+
2𝑞𝑛 [𝛼]𝑞

𝑛

[2]𝑞
𝑛

+ 𝑞
2

𝑛
[𝛼]
2

𝑞
𝑛

) .

(46)

Using (22),

2

[2]𝑞
𝑛

𝑞
𝛼+1

𝑛
+ 𝑞
2+𝛼

𝑛
(2 [𝛼]𝑞

𝑛

+ 𝑞
𝛼

𝑛
) ≤ 2 + 2𝛼,

1

[3]𝑞
𝑛

+
2𝑞𝑛 [𝛼]𝑞

[2]𝑞

+ 𝑞
2
[𝛼]
2

𝑞
≤ (1 + 𝛼)

2
,

𝑞𝑛 [𝑛 + 𝑝 − 1]
𝑞
𝑛

= [𝑛 + 𝑝]
𝑞
𝑛

− 1,

(47)

we can write
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

[𝑛 + 𝑝]
𝑞
𝑛

𝑞
2𝛼+2

𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
2𝛼+2

𝑛
[𝑛 + 𝑝]

2

𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

(2 + 2𝛼) [𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

+
(1 + 𝛼)

2

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞
2𝛼+2

𝑛
[𝑛 + 𝑝]

2

𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
(3 + 2𝛼)

[𝑛]𝑞
𝑛

(1 +

[𝑝]
𝑞
𝑛

[𝑛]𝑞
𝑛

) +
(1 + 𝛼)

2

[𝑛]
2

𝑞
𝑛

=: 𝜃𝑛 + 𝛾𝑛 + 𝜂𝑛.

(48)

Then, from (22) and (38), we have

st − lim
𝑛

𝜃𝑛 = st − lim
𝑛

𝛾𝑛 = st − lim
𝑛

𝜂𝑛 = 0. (49)

Here for a given 𝜀 > 0, let us define the following sets:

𝑇 = {𝑘 :
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} ,

𝑇1 = {𝑘 : 𝜃𝑘 ≥
𝜀

3
} , 𝑇2 = {𝑘 : 𝛾𝑘 ≥

𝜀

3
} ,

𝑇3 = {𝑘 : 𝜂𝑘 ≥
𝜀

3
} .

(50)

It is clear that 𝑇 ⊆ 𝑇1 ∪ 𝑇2 ∪ 𝑇3. So we get

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀}

≤ 𝛿 {𝑘 ≤ 𝑛 : 𝜃𝑘 ≥
𝜀

3
} + 𝛿 {𝑘 ≤ 𝑛 : 𝛾𝑘 ≥

𝜀

3
}

+ 𝛿 {𝑘 ≤ 𝑛 : 𝜂𝑘 ≥
𝜀

3
} .

(51)

By (49), we have

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} = 0, (52)

which implies that

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (53)

In view of (40), (45), and (53), the proof is complete.

Theorem 9. Let 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1, be a sequence satisfying
(38); then for 𝑓 ∈ 𝐶[0, 𝑝 + 1], one has st − lim𝑛‖𝐾̃

(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; ⋅) −

𝑓‖𝐶[0,1] = 0.

Proof. From Theorem 7, it is enough to prove that st −

lim𝑛‖𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒𝑖; ⋅) − 𝑒𝑖‖𝐶[0,1] = 0 for 𝑒𝑖 = 𝑡
𝑖, 𝑖 = 0, 1, 2.

Using (25), we can easily get

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒0; ⋅) − 𝑒0

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (54)

From equality (26) we have
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑞𝑛 [𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1]𝑞
𝑛

+ 𝛽
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+
1 + 𝛼

[𝑛]𝑞
𝑛

.

(55)
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Now for a given 𝜀 > 0, let us define the following sets:

𝑈̃ = {𝑘 :
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} ,

𝑈̃1 = {𝑘 :

𝑞𝑘 [𝑘 + 𝑝]
𝑞
𝑘

[𝑘 + 1]𝑞
𝑘

+ 𝛽
− 1 ≥

𝜀

2
} ,

𝑈̃2 = {𝑘 :
1 + 𝛼

[𝑘]𝑞
𝑘

≥
𝜀

2
} .

(56)

From (55), one can see that 𝑈̃ ⊆ 𝑈̃1 ∪ 𝑈̃2, so we have

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀}

≤ 𝛿{𝑘 ≤ 𝑛 :

𝑞𝑘 [𝑘 + 𝑝]
𝑞
𝑘

[𝑘 + 1]𝑞
𝑘

+ 𝛽
− 1 ≥

𝜀

2
}

+ 𝛿{𝑘 ≤ 𝑛 :
1 + 𝛼

[𝑘]𝑞
𝑘

≥
𝜀

2
} .

(57)

By (38) it is clear that

st − lim
𝑛

(

𝑞𝑛 [𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1]𝑞
𝑛

+ 𝛽
− 1) = 0, st − lim

𝑛

1 + 𝛼

[𝑛]𝑞
𝑛

= 0.

(58)

So we have

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒1; ⋅) − 𝑒1

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (59)

Finally, in view of (27), one can write

󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 𝑝 − 1]
𝑞
𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2

𝑞
3

𝑛
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

[𝑛 + 𝑝]
𝑞
𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2
(

2

[2]𝑞
𝑛

+ 𝑞𝑛 (2𝛼 + 1))

+
1

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2
(

1

[3]𝑞
𝑛

+
2𝑞𝑛𝛼

[2]𝑞
𝑛

+ 𝑞
2

𝑛
𝛼
2
) .

(60)

Using 𝑞𝑛[𝑛 + 𝑝 − 1]𝑞
𝑛

= [𝑛 + 𝑝]𝑞
𝑛

− 1, then we can write

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 𝑝 − 1]
𝑞
𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2

𝑞
3

𝑛
− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1]𝑞
𝑛

+ 𝛽
𝑞𝑛)

2

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

[𝑛 + 𝑝]
𝑞
𝑛

𝑞
2

𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2
.

(61)

So,
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]

≤

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1]𝑞
𝑛

+ 𝛽
𝑞𝑛)

2

− 1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

+

(3 + 2𝛼) [𝑛 + 𝑝]
𝑞
𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2

+
(1 + 𝛼)

2

[𝑛]
2

𝑞
𝑛

=: 𝜃𝑛 + 𝛾𝑛 + 𝜂𝑛.

(62)

Then, from (38), we have

st − lim
𝑛

𝜃𝑛 = st − lim
𝑛

𝛾𝑛 = st − lim
𝑛

𝜂𝑛 = 0. (63)

Here for a given 𝜀 > 0, let us define the following sets:

𝑇̃ = {𝑘 :
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} ,

𝑇̃1 = {𝑘 : 𝜃𝑘 ≥
𝜀

3
} , 𝑇̃2 = {𝑘 : 𝛾𝑘 ≥

𝜀

3
} ,

𝑇3 = {𝑘 : 𝜂𝑘 ≥
𝜀

3
} .

(64)

It is clear that 𝑇̃ ⊆ 𝑇̃1 ∪ 𝑇̃2 ∪ 𝑇̃3. So we get

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀}

≤ 𝛿 {𝑘 ≤ 𝑛 : 𝜃𝑘 ≥
𝜀

3
} + 𝛿 {𝑘 ≤ 𝑛 : 𝛾𝑘 ≥

𝜀

3
}

+ 𝛿 {𝑘 ≤ 𝑛 : 𝜂𝑘 ≥
𝜀

3
} .

(65)

By (63), we have

𝛿 {𝑘 ≤ 𝑛 :
󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑘

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
≥ 𝜀} = 0, (66)

which implies that

st − lim
𝑛

󵄩󵄩󵄩󵄩󵄩
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑒2; ⋅) − 𝑒2

󵄩󵄩󵄩󵄩󵄩𝐶[0,1]
= 0. (67)

In view of (54), (59), and (67), the proof is complete.

4. Rates of Statistical Convergence

Let 𝑓 ∈ 𝐶[0, 𝑝 + 1] for any 𝑡 ∈ [0, 𝑝 + 1] and 𝑥 ∈ [0, 1]. Then
we have |𝑓(𝑡) − 𝑓(𝑥)| ≤ 𝜔(𝑓, |𝑡 − 𝑥|), so for any 𝛿 > 0, we get

𝜔 (𝑓, |𝑡 − 𝑥|) ≤

{{

{{

{

𝜔 (𝑓, 𝛿) , |𝑡 − 𝑥| < 𝛿,

𝜔(𝑓,
(𝑡 − 𝑥)

2

𝛿
) , |𝑡 − 𝑥| ≥ 𝛿.

(68)

Owing to 𝜔(𝑓, 𝜆𝛿) ≤ (1+𝜆)𝜔(𝑓, 𝛿) for 𝜆 > 0, it is obvious
that we have

󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ (1 + 𝛿

−2
(𝑡 − 𝑥)

2
) 𝜔 (𝑓, 𝛿) (69)

for any 𝑡 ∈ [0, 𝑝 + 1], 𝑥 ∈ [0, 1] and 𝛿 > 0.
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Next we will give the rates of convergence of both
𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) and 𝐾̃

(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) in terms of the modulus of

continuity.

Theorem 10. Let 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 be a sequence satisfying
(38); then for any function 𝑓 ∈ 𝐶[0, 𝑝 + 1], 𝑥 ∈ [0, 1], one has

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 2𝜔 (𝑓,√𝛿𝑛) , (70)

where

𝛿𝑛 = (

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1 + 𝛽]
𝑞
𝑛

𝑞
𝛼+1

𝑛
− 1)

2

+

2 (1 + 𝛼) [𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

+
(1 + 𝛼)

2

[𝑛 + 1 + 𝛽]
2

𝑞
𝑛

.

(71)

Proof. Using the linearity and positivity of the operator
𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) and inequality (69), for any 𝑓 ∈ 𝐶[0, 𝑝 + 1] and

𝑥 ∈ [0, 1], we get
󵄨󵄨󵄨󵄨󵄨
𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐾
(𝛼,𝛽)

𝑛,𝑞
(
󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ; 𝑥)

≤ (1 + 𝛿
−2

𝐾
(𝛼,𝛽)

𝑛,𝑞
((𝑡 − 𝑥)

2
; 𝑥)) 𝜔 (𝑓, 𝛿) .

(72)

In view of Lemma 2, take 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 as a sequence
satisfying (38) and choose 𝛿 = √𝛿𝑛 in (72); the desired result
follows immediately.

Theorem 11. Let 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 be a sequence satisfying
(38); then for any function 𝑓 ∈ 𝐶[0, 𝑝 + 1], 𝑥 ∈ [0, 1], one has

󵄨󵄨󵄨󵄨󵄨
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 2𝜔 (𝑓,√𝛿∗

𝑛
) , (73)

where

𝛿
∗

𝑛
= (

[𝑛 + 𝑝]
𝑞
𝑛

[𝑛 + 1]𝑞
𝑛

+ 𝛽
𝑞𝑛 − 1)

2

+

(2 + 2𝛼) [𝑛 + 𝑝]
𝑞
𝑛

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2

+
(1 + 𝛼)

2

([𝑛 + 1]𝑞
𝑛

+ 𝛽)
2
.

(74)

Proof. Using the linearity and positivity of the operator
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) and inequality (69), for any 𝑓 ∈ 𝐶[0, 𝑝 + 1] and

𝑥 ∈ [0, 1], we get
󵄨󵄨󵄨󵄨󵄨
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(𝑓, 𝑥) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨󵄨

≤ 𝐾̃
(𝛼,𝛽)

𝑛,𝑞
(
󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ; 𝑥)

≤ (1 + 𝛿
−2

𝐾̃
(𝛼,𝛽)

𝑛,𝑞
((𝑡 − 𝑥)

2
; 𝑥)) 𝜔 (𝑓, 𝛿) .

(75)

In view of Lemma 5, take 𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 as a sequence
satisfying (38) and choose 𝛿 = √𝛿∗

𝑛
in (75); the desired result

follows immediately.

Finally, we give the rates of statistical convergence of both
𝐾
(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) and 𝐾̃

(𝛼,𝛽)

𝑛,𝑞
(𝑓; 𝑥) with the help of functions of the

Lipschitz class.We recall a function𝑓 ∈ Lip
𝑀

(𝜆) on [0, 𝑝+1],
if the inequality

󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨 ≤ 𝑀 |𝑡 − 𝑥|

𝜆
, 𝑡, 𝑥 ∈ [0, 𝑝 + 1] (76)

holds.

Theorem 12. Let 𝑓 ∈ Lip
𝑀

(𝜆) on [0, 𝑝 + 1], 0 < 𝜆 ≤ 1. Let
𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 be a sequence satisfying the condition given
in (38). If we take 𝛿𝑛 as in (71), then one has

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀𝛿

𝜆/2

𝑛
, 𝑥 ∈ [0, 1] . (77)

Proof. Let 𝑓 ∈ Lip
𝑀

(𝜆) on [0, 𝑝 + 1], 0 < 𝜆 ≤ 1. Since
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) is linear and positive, by using (76), we have
󵄨󵄨󵄨󵄨󵄨
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(
󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ; 𝑥)

≤ 𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(|𝑡 − 𝑥|
𝜆
; 𝑥) .

(78)

If we take 𝑝
󸀠

= 2/𝜆, 𝑞󸀠 = 2/(2 − 𝜆) and apply the Hölder
inequality and Lemma 2, then we obtain

󵄨󵄨󵄨󵄨󵄨
𝐾
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀(𝐾

(𝛼,𝛽)

𝑛,𝑞
𝑛

((𝑡 − 𝑥)
2
; 𝑥))
𝜆/2

≤ 𝑀𝛿
𝜆/2

𝑛
.

(79)

Theorem 13. Let 𝑓 ∈ Lip
𝑀

(𝜆) on [0, 𝑝 + 1], 0 < 𝜆 ≤ 1. Let
𝑞 = 𝑞𝑛, 0 < 𝑞𝑛 < 1 be a sequence satisfying the condition given
in (38). If we take 𝛿

∗

𝑛
as in (74), then one has

󵄨󵄨󵄨󵄨󵄨
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀 (𝛿

∗

𝑛
)
𝜆/2

, 𝑥 ∈ [0, 1] . (80)

Proof. Let 𝑓 ∈ Lip
𝑀

(𝜆) on [0, 𝑝 + 1], 0 < 𝜆 ≤ 1. Since
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) is linear and positive, by using (76), we have
󵄨󵄨󵄨󵄨󵄨
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(
󵄨󵄨󵄨󵄨𝑓 (𝑡) − 𝑓 (𝑥)

󵄨󵄨󵄨󵄨 ; 𝑥)

≤ 𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(|𝑡 − 𝑥|
𝜆
; 𝑥) .

(81)

If we take 𝑝
󸀠

= 2/𝜆, 𝑞󸀠 = 2/(2 − 𝜆) and apply the Hölder
inequality and Lemma 5, then we obtain

󵄨󵄨󵄨󵄨󵄨
𝐾̃
(𝛼,𝛽)

𝑛,𝑞
𝑛

(𝑓; 𝑥) − 𝑓 (𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀(𝐾̃

(𝛼,𝛽)

𝑛,𝑞
𝑛

((𝑡 − 𝑥)
2
; 𝑥))
𝜆/2

≤ 𝑀(𝛿
∗

𝑛
)
𝜆/2

.

(82)
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