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The existence and uniqueness of square-mean almost automorphic mild solution to a stochastic functional integrodifferential
equation is studied. Under some appropriate assumptions, the existence and uniqueness of square-mean almost automorphic mild
solution is obtained by Banach’s fixed point theorem. Particularly, based on Schauder’s fixed point theorem, the existence of square-
mean almost automorphic mild solution is obtained by using the condition which is weaker than Lipschitz conditions. Finally, an
example illustrating our main result is given.

1. Introduction

The almost periodic type solutions to stochastic differential
equations are among themost attractive topics inmathemati-
cal analysis due to their extensive applications in areas such as
physics, economics, mathematical biology, and engineering.
And the concept of almost automorphic functions, which
was initially introduced in the literature by Bochner [1], is
an important generalization of the almost periodic functions.
From then on, the almost automorphic functions and the
almost automorphic solutions for differential systems have
been investigated by many mathematicians [2–13].

Integrodifferential equations arose naturally in mechan-
ics, electromagnetic theory, heat flow, nuclear reactor dynam-
ics, and population dynamics [14]. The papers [5, 14–20] are
concerned with the existence of almost periodic type solu-
tions to stochastic functional integrodifferential equations.
Ding et al. [21] investigated the existence of pseudo almost
periodic solutions for an equation arising in the study of
heat conduction in materials with memory, which could be
transformed into the following abstract integrodifferential
equation:

𝑢
󸀠

(𝑡) = 𝐴𝑢 (𝑡) + ∫

𝑡

0

𝐵 (𝑡 − 𝑠) 𝑢 (𝑠) 𝑑𝑠 + 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 0.

(1)

Diagana et al. [5] established the existence and uniqueness
of asymptotically almost automorphic mild solution to an
abstract partial neutral integrodifferential equation with
unbounded delay

𝑑

𝑑𝑡

𝐷 (𝑡, 𝑢
𝑡
) = 𝐴𝐷 (𝑡, 𝑢

𝑡
) + ∫

𝑡

0

𝐵 (𝑡 − 𝑠)𝐷 (𝑠, 𝑢
𝑠
) 𝑑𝑠

+ 𝑔 (𝑡, 𝑢
𝑡
) , 𝑡 ∈ [𝜎, 𝜎 + 𝑎) ,

𝑢
𝜎
= 𝜑,

(2)

where𝐷(𝑡, 𝜑) = 𝜑(0) + 𝑓(𝑡, 𝜑).
Furthermore, noise or stochastic perturbation is unavoid-

able and omnipresent in nature as well as in man-made
systems. This paper is mainly focused on the existence and
uniqueness of square-mean almost automorphic mild solu-
tions to the following stochastic functional integrodifferential
equations in the abstract form:

𝑑𝑁 (𝑡, 𝑥 (𝑡)) = 𝐴𝑁 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 + ∫

𝑡

0

𝐵 (𝑡 − 𝑠)𝑁 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡

+ ℎ (𝑡, 𝑥 (𝛾
2
(𝑡))) 𝑑𝑡 + 𝑓 (𝑡, 𝑥 (𝛾

3
(𝑡))) 𝑑𝑊 (𝑡) ,

𝑡 ≥ 0,

(3)
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where 𝐴 : 𝐷(𝐴) ⊆ 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻), 𝐵(𝑡) :

𝐷(𝐵(𝑡)) ⊆ 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻), and 𝑡 ≥ 0 are linear,

closed, and densely defined operators on 𝐿
2
(𝑃,𝐻) and 𝑊(𝑡)

is a two-sided standard one-dimensional Brownian motion
defined on the filtered probability space (Ω,F, 𝑃,F

𝑡
), where

F
𝑡
= 𝜎{𝑊(𝑢) − 𝑊(V); 𝑢, V ≤ 𝑡}. Here 𝑁(𝑡, 𝑥(𝑡)) = 𝑥(𝑡) −

𝑎(𝑡, 𝑥(𝛾
1
(𝑡))), 𝑎, ℎ, 𝑓, and 𝛾

𝑖
(𝑖 = 1, 2, 3) are appropriate

functions to be specified later.
The Lipschitz condition is a very important condition

in the field of the existence and uniqueness of solutions
for differential equations. In [15], Chang et al. established
a new composition theorem for square-mean almost auto-
morphic functions under conditions which were different
from Lipschitz conditions in the literature. And they apply
this new composition theorem to investigate the existence
of square-mean almost automorphic mild solutions for a
stochastic differential equation. It can be proved that the
conditions in [15] (see assumption (H3)(ii)) are weaker than
Lipschitz condition. In other words, a functionwith Lipschitz
condition is satisfied (H3)(ii). However, there exists such a
functionwhich satisfies (H3)(ii) but does not satisfy Lipschitz
condition (see Remark 11).

In this paper, firstly, upon using Lipschitz condition
and other some appropriate assumptions, some sufficient
conditions for the existence and uniqueness of square-mean
almost automorphic mild solution to (3) are given. Secondly,
by virtue of new composition theorem in [15] together with
Schauder’s fixed point theorem, we investigate the existence
of square-mean almost automorphic mild solutions for a
stochastic differential equation in a real separable Hilbert
space, which is different from Lipschitz condition in the
literature. Finally, we discuss the existence and uniqueness of
an almost automorphic mild solution to a concrete integrod-
ifferential equation, which is an illustration to demonstrate
our main analyses.

2. Preliminaries

Throughout this paper, we assume that (𝐻, ‖ ⋅ ‖, ⟨⋅, ⋅⟩) and
(𝐾, ‖ ⋅ ‖

𝐾
, ⟨⋅, ⋅⟩
𝐾
) are two real separable Hilbert spaces. Let

(Ω,F, 𝑃) be a complete probability space. The notation
𝐿
2
(𝑃,𝐻) stands for the space of all 𝐻-valued random vari-

ables 𝑥 such that

𝐸‖𝑥‖
2
= ∫

Ω

‖𝑥‖
2
𝑑𝑃 < ∞. (4)

For 𝑥 ∈ 𝐿
2
(𝑃,𝐻), let

‖𝑥‖
2
= (∫

Ω

‖𝑥‖
2
𝑑𝑃)

1/2

. (5)

Then it is routine to check that 𝐿
2
(𝑃,𝐻) is a Hilbert space

equipped with the norm ‖ ⋅ ‖
2
. The notations 𝐶(𝑅; 𝐿

2
(𝑃,𝐻))

and𝐵𝐶(𝑅; 𝐿
2
(𝑃,𝐻)) stand for the collection of all continuous

stochastic processes from 𝑅 into 𝐿
2
(𝑃,𝐻) and the space of all

bounded continuous stochastic processes 𝑥 : 𝑅 → 𝐿
2
(𝑃,𝐻),

respectively. It is then easy to check that 𝐵𝐶(𝑅; 𝐿
2
(𝑃,𝐻))

is a Banach space when it is endowed with the norm

‖𝑥‖
𝐵𝐶(𝑅;𝐿

2
(𝑃,𝐻))

:= sup
𝑡∈𝑅

‖𝑥(𝑡)‖
2
. Let 𝐿(𝐾,𝐻) denote the

space of all linear bounded operators from 𝐾 into 𝐻, which
are equipped with the usual operator norm ‖ ⋅ ‖

𝐿(𝐾,𝐻)
; in

particular, it is simply denoted by L(𝐻) when 𝐾 = 𝐻.
In addition, 𝑊(𝑡) is a two-sided standard one-dimensional
Brownian motion defined on the filtered probability space
(Ω,F, 𝑃,F

𝑡
), whereF

𝑡
= 𝜎{𝑊(𝑢) − 𝑊(V); 𝑢, V ≤ 𝑡}.

Definition 1 (see [18]). A family of bounded linear operators
𝑇(𝑡) : 𝑡 ≥ 0 from 𝐿

2
(𝑃,𝐻) into 𝐿

2
(𝑃,𝐻) is a resolvent oper-

ator family for the problem

𝑑𝑥 (𝑡) = 𝐴𝑥 (𝑡) 𝑑𝑡 + ∫

𝑡

0

𝐵 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠 𝑑𝑡, 𝑡 ≥ 0,

𝑥 (0) = 𝑥
0
∈ 𝐿
2

(𝑃,𝐻) , 𝑡 ≥ 0,

(6)

if the following conditions are satisfied:

(a) 𝑇(0) = 𝐼 (the identity operator on 𝐿
2
(𝑃,𝐻)) and the

function𝑇(𝑡)𝑥 is continuous on [0, +∞) for every 𝑥 ∈

𝐿
2
(𝑃,𝐻);

(b) 𝑇(𝑡)𝐷(𝐴) ⊆ 𝐷(𝐴) for all 𝑡 ≥ 0 and for 𝑥 ∈

𝐷(𝐴), 𝐴𝑇(𝑡)𝑥 is continuous on [0, +∞), and 𝑇(𝑡)𝑥 is
continuously differentiable on [0, +∞);

(c) for 𝑥 ∈ 𝐷(𝐴), the following resolvent equations hold:

𝑑

𝑑𝑡

𝑇 (𝑡) 𝑥 = 𝐴𝑇 (𝑡) 𝑥 + ∫

𝑡

0

𝐵 (𝑡 − 𝑠) 𝑇 (𝑠) 𝑥 𝑑𝑠, 𝑡 ≥ 0,

𝑑

𝑑𝑡

𝑇 (𝑡) 𝑥 = 𝑇 (𝑡) 𝐴𝑥 + ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝐴𝐵 (𝑠) 𝑥 𝑑𝑠, 𝑡 ≥ 0.

(7)

For more details on semigroup theory and resolvent opera-
tors, we refer the reader to [16, 18, 22].

Definition 2 (see [17]). A stochastic process 𝑥 : 𝑅 → 𝐿
2
(𝑃,

𝐻) is said to be stochastically continuous if

lim
𝑡→ 𝑠

𝐸‖𝑥 (𝑡) − 𝑥 (𝑠)‖
2
= 0. (8)

Definition 3 (see [17]). A stochastically continuous stochastic
process 𝑥 : 𝑅 → 𝐿

2
(𝑃,𝐻) is said to be square-mean almost

automorphic if, for every sequence of real numbers, there
exists a subsequence {𝑠

𝑛
}
𝑛∈𝑁

and a stochastic process𝑦 : 𝑅 →

𝐿
2
(𝑃,𝐻) such that

lim
𝑛→∞

𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 (𝑡 + 𝑠

𝑛
) − 𝑦 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

= 0,

lim
𝑛→∞

𝐸
󵄩
󵄩
󵄩
󵄩
𝑦 (𝑡 − 𝑠

𝑛
) − 𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

= 0

(9)

for each 𝑡 ∈ 𝑅. The collection of all square-mean almost
automorphic stochastic processes 𝑥 : 𝑅 → 𝐿

2
(𝑃,𝐻) is

denoted by 𝐴𝐴(𝑅; 𝐿
2
(𝑃,𝐻)).

Definition 4. A function 𝑓 : 𝑅 × 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻),

(𝑡, 𝑥) → 𝑓(𝑡, 𝑥), which is jointly continuous, is said to be
square-mean almost automorphic if 𝑓(𝑡, 𝑥) is square-mean
almost automorphic in 𝑡 ∈ 𝑅 uniformly for all 𝑥 ∈ 𝐾, where
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𝐾 is any bounded subset of 𝐿2(𝑃,𝐻). That is to say, for every
sequence of real numbers {𝑠󸀠

𝑛
}
𝑛∈𝑁

, there exist a subsequence
{𝑠
𝑛
}
𝑛∈𝑁

and a function ̃
𝑓 : 𝑅 × 𝐿

2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻) such

that

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡 + 𝑠

𝑛
, 𝑥) −

̃
𝑓 (𝑡, 𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0,

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩

̃
𝑓 (𝑡 − 𝑠

𝑛
, 𝑥) − 𝑓 (𝑡, 𝑥)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0

(10)

for each 𝑡 ∈ 𝑅 and each 𝑥 ∈ 𝐾.

Lemma 5 (see [17]). (𝐴𝐴(𝑅; 𝐿
2
(𝑃,𝐻)), ‖ ⋅ ‖

∞
) is a Banach

space when it is equipped with the norm

‖⋅‖
∞

:= sup
𝑡∈𝑅

‖𝑥(𝑡)‖
2
= sup
𝑡∈𝑅

(𝐸‖𝑥 (𝑡)‖
2
)

1/2

(11)

for 𝑥 ∈ 𝐴𝐴(𝑅; 𝐿
2
(𝑃,𝐻)).

Lemma 6 (see [17]). If 𝑥, 𝑥
1
, and 𝑥

2
are all square-mean

almost automorphic stochastic processes, then the following
hold:

(i) 𝑥
1
+ 𝑥
2
is square-mean almost automorphic;

(ii) 𝜆𝑥 is square-mean almost automorphic for every scalar
𝜆;

(iii) there exists a constant𝑀 > 0 such that sup
𝑡∈𝑅

‖𝑥(𝑡)‖
2
≤

𝑀. That is, 𝑥 is bounded in 𝐿
2
(𝑃,𝐻).

Theorem 7 (see [17]). Let 𝑓 : 𝑅 × 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻),

(𝑡, 𝑥) → 𝑓(𝑡, 𝑥) be square-mean almost automorphic in 𝑡 ∈ 𝑅

for each 𝑥 ∈ 𝐿
2
(𝑃,𝐻), and assume that 𝑓 satisfies a Lipschitz

condition in the following sense:

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ ME󵄩󵄩󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2 (12)

for all 𝑥, 𝑦 ∈ 𝐿
2
(𝑃,𝐻) and for each 𝑡 ∈ 𝑅, where 𝑀 >

0 is independent of 𝑡. Then for any square-mean almost
automorphic process 𝑥 : 𝑅 → 𝐿

2
(𝑃,𝐻), the stochastic process

𝐹 : 𝑅 → 𝐿
2
(𝑃,𝐻) given by 𝐹(⋅) = 𝑓(⋅, 𝑥(⋅)) is square-mean

almost automorphic.

Theorem 8 (see [15]). Let 𝑓 : 𝑅 × 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻),

(𝑡, 𝑥) → 𝑓(𝑡, 𝑥) be square-mean almost automorphic, and
assume that 𝑓(𝑡, ⋅) is uniformly continuous on each bounded
subset 𝐾 ⊂ 𝐿

2
(𝑃,𝐻) uniformly for 𝑡 ∈ 𝑅; that is, for all 𝜀 > 0,

there exists 𝛿 > 0 such that 𝑥, 𝑦 ∈ 𝐾 and 𝐸‖𝑥 − 𝑦‖
2

< 𝛿

imply that 𝐸‖𝑓(𝑡, 𝑥) − 𝑓(𝑡, 𝑦)‖
2
< 𝜀 for all 𝑡 ∈ 𝑅. Then for any

square-mean almost automorphic process 𝑥 : 𝑅 → 𝐿
2
(𝑃,𝐻),

the stochastic process 𝐹 : 𝑅 → 𝐿
2
(𝑃,𝐻) given by 𝐹(⋅) :=

𝑓(⋅, 𝑥(⋅)) is square-mean almost automorphic.

3. Some Lemmas

In this section, we apply Theorems 7 and 8 to investigate the
existence of square-mean almost automorphicmild solutions
to problem (3).

Definition 9. A stochastically continuous stochastic process
𝑥 : [0,∞) → 𝐿

2
(𝑃,𝐻) is called a mild solution of the system

(3) if 𝑥(0) = 𝑥
0
and 𝑥(𝑡) satisfies

𝑥 (𝑡) = 𝑇 (𝑡) [𝑥
0
− 𝑎 (0, 𝑥 (𝛾

1
(0)))] + 𝑎 (𝑡, 𝑥 (𝛾

1
(𝑡)))

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

+ ∫

𝑡

0

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠)

(13)

for all 𝑡 ≥ 0.

Remark 10. It is easy to see that if 𝑇(𝑡) is exponentially stable,
then we obtain that the stochastic process 𝑥 is a mild solution
to problem (3) if and only if 𝑥 satisfies the stochastic integral
equation

𝑥 (𝑡) = 𝑎 (𝑡, 𝑥 (𝛾
1
(𝑡))) + ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠)

(14)

for all 𝑡 ≥ 0.

Let us list the following assumptions.

(H1) There exists a resolvent operator 𝑇(⋅) of (3), and 𝑇(⋅)

is exponentially stable; that is,

‖𝑇 (𝑡)‖ ≤ 𝑀𝑒
−𝛿𝑡 (15)

for all 𝑡 ≥ 0 and some constants 𝑀,𝛿 > 0. Moreover,
𝑇(𝑡) is compact for 𝑡 ≥ 0.

(H2) The functions 𝑎, ℎ, 𝑓 ∈ 𝐴𝐴(𝑅
+
× 𝐿
2
(𝑃,𝐻), 𝐿

2
(𝑃,𝐻))

and there exist positive numbers 𝑙
𝑎
, 𝑙
ℎ
, 𝑙
𝑓
such that

𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥) − 𝑎 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑙
𝑎
𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑡, 𝑥) − ℎ (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑙
ℎ
𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑙
𝑓
𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

(16)

for all 𝑡 ≥ 0 and each 𝑥, 𝑦 ∈ 𝐿
2
(𝑃,𝐻).

(H3) 𝛾
𝑖
(⋅) ∈ 𝐶(𝑅

+
, 𝑅
+
), 𝑖 = 1, 2, 3.

(H4) The functions 𝑎, ℎ, 𝑓 : 𝑅
+
× 𝐿
2
(𝑃,𝐻) → 𝐿

2
(𝑃,𝐻)

satisfy the following conditions.

(i) 𝑎, ℎ, 𝑓 are square-mean almost automorphic
and 𝑎(𝑡, ⋅), 𝑓(𝑡, ⋅), 𝑔(𝑡, ⋅) are uniformly contin-
uous in every uniformly bounded subset 𝐾 ⊂

𝐿
2
(𝑃,𝐻) for 𝑡 ≥ 0.

(ii) There exist integrable functions 𝑚
𝑎
, 𝑚
ℎ
, 𝑚
𝑓

:

𝑅 → [0,∞) and continuous nondecreasing
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functions 𝑊
𝑎
,𝑊
ℎ
,𝑊
𝑓

: [0,∞) → (0,∞) such
that

𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑚
𝑎
(𝑡)𝑊
𝑎
(𝐸

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

) ,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑚
ℎ
(𝑡)𝑊
ℎ
(𝐸

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

) ,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑔 (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝑚
𝑓
(𝑡)𝑊
𝑓
(𝐸

󵄩
󵄩
󵄩
󵄩
𝜑
󵄩
󵄩
󵄩
󵄩

2

)

(17)

for all (𝑡, 𝜑) ∈ 𝑅
+
× 𝐾.

(iii) Let 𝑥
𝑛

⊂ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) be uniformly

bounded in 𝑅
+ and uniformly convergent in

each compact subset of 𝑅
+. Then 𝑎(⋅, 𝑥

𝑛
(⋅)),

ℎ(⋅, 𝑥
𝑛
(⋅)), and 𝑓(⋅, 𝑥

𝑛
(⋅)) are relatively compact

in 𝐵𝐶(𝑅
+
; 𝐿
2
(𝑃,𝐻)).

Remark 11. Obviously, when the continuous function 𝑓

satisfies Lipschitz condition like (H2) and 𝑓(𝑡, 0) = 0, then
function 𝑓 satisfies (H4)(ii). However, the function 𝑓(𝑡, 𝑥) =

√𝑥[sin 𝑡+sin√2𝑡] satisfies (H4)(ii) but does not satisfy (H2).

In the proof of the existence theorem, we need the
following technical lemmas.

Lemma 12. Assume that conditions (H1)–(H3) hold. Let 𝐿 be
the operator defined by, for each 𝑥 ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)),

(𝐿𝑥) (𝑡) := 𝑎 (𝑡, 𝑥 (𝛾
1
(𝑡))) + ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠)

:= 𝑎 (𝑡, 𝑥 (𝛾
1
(𝑡))) + Φ𝑥 (𝑡) + Ψ𝑥 (𝑡) .

(18)

Then 𝐿 maps 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) into itself.

Proof. Firstly, let 𝑥 ∈ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)); then 𝑠 → 𝑥(𝛾

1
(𝑠)) is

in𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) as 𝛾

1
(⋅) ∈ 𝐶(𝑅

+
, 𝑅
+
). Hence, by (H2) and

Theorem 7, one can easily see that 𝑠 → 𝑎(𝑠, 𝑥(𝛾
1
(𝑠))) belongs

to 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)).

Similarly, 𝑠 → ℎ(𝑠, 𝑥(𝛾
2
(𝑠))) and 𝑠 → 𝑓(𝑠, 𝑥(𝛾

3
(𝑠)))

belong to𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻))whenever 𝑥 ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)).

Secondly, we show that Φ is square-mean almost auto-
morphic.

Let {𝑠
󸀠

𝑛
}
𝑛∈𝑁

be an arbitrary sequence of real numbers.
Since 𝐻(⋅) = ℎ(⋅, 𝑥(𝛾

2
(⋅))) ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)), there exists

a subsequence {𝑠
𝑛
}
𝑛∈𝑁

of {𝑠
󸀠

𝑛
}
𝑛∈𝑁

such that, for a certain
stochastic process 𝐻̃,

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻 (𝑡 + 𝑠

𝑛
) − 𝐻̃ (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0,

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻̃ (𝑡 − 𝑠

𝑛
) − 𝐻 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0

(19)

hold for each 𝑡 ≥ 0. Moreover, if we let Φ̃𝑥(𝑡) = ∫

𝑡

−∞
𝑇(𝑡 −

𝑠)𝐻̃(𝑠)𝑑𝑠, by using Cauchy-Schwarz inequality, we have

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Φ𝑥(𝑡 + 𝑠

𝑛
) − Φ̃𝑥(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡+𝑠
𝑛

−∞

𝑇 (𝑡 + 𝑠
𝑛
− 𝑠)𝐻 (𝑠) 𝑑𝑠 − ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝐻̃ (𝑠) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐸(∫

𝑡

−∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡 − 𝑠) [𝐻 (𝑠 + 𝑠

𝑛
) − 𝐻̃ (𝑠)]

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑠)

2

≤ 𝑀
2
𝐸(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 󵄩󵄩

󵄩
󵄩
󵄩
𝐻 (𝑠 + 𝑠

𝑛
) − 𝐻̃ (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
𝑑𝑠)

2

≤ 𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻 (𝑠 + 𝑠

𝑛
) − 𝐻̃ (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

≤ 𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡≥0

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻 (𝑡 + 𝑠

𝑛
) − 𝐻̃(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝑀
2

𝛿
2
sup
𝑡≥0

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐻(𝑡 + 𝑠

𝑛
) − 𝐻̃(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(20)

Thus, by (19), we immediately obtain that

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Φ𝑥 (𝑡 + 𝑠

𝑛
) − Φ̃𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0 (21)

for each 𝑡 ≥ 0. And we can show in a similar way that

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Φ̃𝑥 (𝑡 − 𝑠

𝑛
) − Φ𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0 (22)

for each 𝑡 ≥ 0. Thus we conclude that Φ𝑥(𝑡) ∈ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,

𝐻)).
Thirdly, we show that Ψ is square-mean almost automor-

phic.
Since 𝐹(⋅) = 𝑓(⋅, 𝑥(𝛾

3
(⋅))) ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)), there

exists a subsequence {𝑠
𝑛
}
𝑛∈𝑁

of {𝑠󸀠
𝑛
}
𝑛∈𝑁

such that, for a certain
stochastic process 𝐹,

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡 + 𝑠

𝑛
) − 𝐹 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0,

lim
𝑛→∞

𝐸 ‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡 − 𝑠

𝑛
) − 𝐹 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0

(23)

hold for each 𝑡 ≥ 0.
This is more complicated than the previous case because

of the involvement of the Brownian motion𝑊. To overcome
such a difficulty, we make extensive use of the properties of
𝑊̃ defined by

𝑊̃ (𝜎) := 𝑊 (𝜎 + 𝑠
𝑛
) − 𝑊 (𝑠

𝑛
) (24)
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for each 𝜎. Note that 𝑊̃ is a Brownian motion and has the
same distribution as𝑊. Moreover, if we let Ψ̃𝑥(𝑡) = ∫

𝑡

−∞
𝑇(𝑡−

𝑠)𝐹(𝑠)𝑑𝑠, then, by making a change of variable 𝜎 = 𝑠 − 𝑠
𝑛
, we

get

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Ψ𝑥(𝑡 + 𝑠

𝑛
) − Ψ̃𝑥(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡+𝑠
𝑛

−∞

𝑇 (𝑡 + 𝑠
𝑛
− 𝑠) 𝐹 (𝑠) 𝑑𝑊 (𝑠)

−∫

𝑡

−∞

𝑇(𝑡 − 𝑠)𝐹(𝑠)𝑑𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

= 𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇(𝑡 − 𝜎) [𝐹(𝜎 + 𝑠
𝑛
) − 𝐹(𝜎)] 𝑑𝑊̃(𝜎)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(25)

Then, using an estimate on the Ito integral established, we
obtain

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Ψ𝑥 (𝑡 + 𝑠

𝑛
) − Ψ̃𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐸(∫

𝑡

−∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡 − 𝜎) [𝐹 (𝜎 + 𝑠

𝑛
) − 𝐹 (𝜎)]

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜎)

≤ 𝑀
2
∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝜎)

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 (𝜎 + 𝑠

𝑛
) − 𝐹 (𝜎)

󵄩
󵄩
󵄩
󵄩
󵄩

2

𝑑𝜎

≤

𝑀
2

2𝛿

sup
𝑡≥0

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹 (𝑡 + 𝑠

𝑛
) − 𝐹(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(26)

Thus, by (23), we immediately obtain that

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Ψ𝑥 (𝑡 + 𝑠

𝑛
) − Ψ̃𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0 (27)

for each 𝑡 ≥ 0. And we can show in a similar way that

lim
𝑛→∞

𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
Ψ̃𝑥 (𝑡 − 𝑠

𝑛
) − Ψ𝑥 (𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩

2

= 0 (28)

for each 𝑡 ≥ 0. Thus we conclude that Ψ𝑥(𝑡) ∈ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,

𝐻)).
According to Lemma 6, we can easily obtain that 𝐿 maps

𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) into itself.

Lemma 13. Assume that conditions (H1), (H3), and (H4)(i)
are satisfied.Then 𝐿 is continuous andmaps𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻))

into itself, where 𝐿 is defined by Lemma 12.

Proof.

Step 1. We prove that 𝐿maps 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) into itself.

Firstly, let 𝑥 ∈ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)); then 𝑠 → 𝑥(𝛾

1
(𝑠)) is in

𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)) as 𝛾

1
(⋅) ∈ 𝐶(𝑅

+
, 𝑅
+
). Hence, by (H4)(i) and

Theorem 8, one can easily see that 𝑠 → 𝑎(𝑠, 𝑥(𝛾
1
(𝑠))) belongs

to 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)).

Similarly, 𝑠 → ℎ(𝑠, 𝑥(𝛾
2
(𝑠))) and 𝑠 → 𝑓(𝑠, 𝑥(𝛾

3
(𝑠)))

belong to𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻))whenever 𝑥 ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)).

Secondly, from Lemma 12, we can prove thatΦ andΨ are
square-mean almost automorphic.

According to Lemma 6, we can easily obtain that 𝐿 is
continuous and maps 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)) into itself.

Step 2. We prove that 𝐿 is continuous on 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)).

Let {𝑥
𝑛
} ⊂ (𝑅

+
; 𝐿
2
(𝑃,𝐻)) be a sequence which converges

to some 𝑥 ∈ (𝑅
+
; 𝐿
2
(𝑃,𝐻)) with respect to ‖ ⋅ ‖

∞
; that is,

‖𝑥
𝑛
− 𝑥‖
∞

→ 0 as 𝑛 → ∞. There exists a bounded subset
𝐾 ⊂ 𝐿

2
(𝑃,𝐻) such that 𝑥

𝑛
(𝑡), 𝑥(𝑡) ⊂ 𝐾 for 𝑡 ≥ 0, 𝑛 = 1, 2, . . ..

By (H3), (H4)(i), and Theorem 8, for any 𝜀 > 0, there exist
𝛿 > 0 and 𝑁 > 0 such that 𝐸‖𝑥

𝑛
(𝛾
𝑖
(𝑡)) − 𝑥(𝛾

𝑖
(𝑡))‖
2
< 𝛿 (𝑖 =

1, 2, 3), which imply that

𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥

𝑛
(𝛾
1
(𝑡))) − 𝑎 (𝑡, 𝑥 (𝛾

1
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

<

𝜀

9

,

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑡, 𝑥

𝑛
(𝛾
2
(𝑡))) − ℎ (𝑡, 𝑥 (𝛾

2
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

<

𝛿
2
𝜀

9𝑀
2
,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥

𝑛
(𝛾
3
(𝑡))) − 𝑓 (𝑡, 𝑥 (𝛾

3
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

<

2𝛿𝜀

9𝑀
2

(29)

for all 𝑛 > 𝑁 and 𝑡 ≥ 0, where 𝛿,𝑀 are given in (H1). Then

𝐸
󵄩
󵄩
󵄩
󵄩
(𝐿𝑥
𝑛
) (𝑡) − (𝐿𝑥) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥

𝑛
(𝛾
1
(𝑡))) − 𝑎 (𝑡, 𝑥 (𝛾

1
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸(∫

𝑡

−∞

󵄩
󵄩
󵄩
󵄩
𝑇 (𝑡 − 𝑠) [ℎ (𝑡, 𝑥

𝑛
(𝛾
2
(𝑡)))

− ℎ (𝑡, 𝑥 (𝛾
2
(𝑡)))]

󵄩
󵄩
󵄩
󵄩
𝑑𝑠)

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇 (𝑡 − 𝑠)

× [𝑓 (𝑡, 𝑥
𝑛
(𝛾
3
(𝑡))) − 𝑓 (𝑡, 𝑥 (𝛾

3
(𝑡)))] 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

𝜀

3

+ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑡, 𝑥

𝑛
(𝛾
2
(𝑡))) − ℎ (𝑡, 𝑥 (𝛾

2
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

+3𝑀
2
∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥

𝑛
(𝛾
3
(𝑡)))−𝑓 (𝑡, 𝑥 (𝛾

3
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠

≤

𝜀

3

+ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠) 𝛿

2
𝜀

9𝑀
2
𝑑𝑠)

+ 3𝑀
2
(∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠) 2𝛿𝜀

9𝑀
2
𝑑𝑠)

≤

𝜀

3

+

𝛿
2
𝜀

3

(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

+

2𝛿𝜀

3

∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝑑𝑠 = 𝜀

(30)

for all 𝑛 > 𝑁 and all 𝑡 ≥ 0. This implies that 𝐿 is continuous.
The proof is completed.
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4. Existence of Square-Mean Almost
Automorphic Solutions

Theorem 14. If the assumptions (H1)–(H3) are satisfied, then
the system (3) has a unique square-mean almost periodic
automorphic mild solution, whenever Θ < 1/3, where

Θ = 𝑙
𝑎
+

𝑀
2

𝛿
2
𝑙
ℎ
+

𝑀
2

2𝛿

𝑙
𝑓
. (31)

Proof. Let 𝐿 : 𝐴𝐴(𝑅
+
, 𝐿
2
(𝑃,𝐻)) → 𝐶(𝑅

+
, 𝐿
2
(𝑃,𝐻)) be the

operator defined by

𝐿𝑥 (𝑡) := 𝑎 (𝑡, 𝑥 (𝛾
1
(𝑡))) + ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

+ ∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠) .

(32)

From the proof of Lemma 12, we see that 𝐻(⋅), 𝐹(⋅) ∈

𝐴𝐴(𝑅
+
, 𝐿
2
(𝑃,𝐻)).Therefore, 𝐿𝑥(𝑡) ∈ 𝐴𝐴(𝑅

+
, 𝐿
2
(𝑃,𝐻)); thus

𝐿𝑥(⋅) maps 𝐴𝐴(𝑅
+
, 𝐿
2
(𝑃,𝐻)) into itself.

To complete the proof, it suffices to prove that 𝐿𝑥(⋅) is a
contraction. Since (𝑎+𝑏+𝑐)

2
≤ 3𝑎
2
+3𝑏
2
+3𝑐
2, for 𝑥(𝑡), 𝑦(𝑡) ∈

𝐴𝐴(𝑅
+
, 𝐿
2
(𝑃,𝐻)), we obtain

𝐸
󵄩
󵄩
󵄩
󵄩
𝐿𝑥(𝑡) − 𝐿𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎(𝑡, 𝑥(𝛾

1
(𝑡))) − 𝑎(𝑡, 𝑦(𝛾

1
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇(𝑡 − 𝑠) [ℎ(𝑠, 𝑥(𝛾
2
(𝑠))) − ℎ(𝑠, 𝑦(𝛾

2
(𝑠)))] 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇 (𝑡 − 𝑠) [𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠)))

−𝑓 (𝑠, 𝑦 (𝛾
3
(𝑠)))] 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

.

(33)

Evaluating the three terms of the right-hand side, we have

3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎(𝑡, 𝑥(𝛾

1
(𝑡))) − 𝑎(𝑡, 𝑦(𝛾

1
(𝑡)))

󵄩
󵄩
󵄩
󵄩

2

≤ 3𝑙
𝑎
sup
𝑠≥0

𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 (𝛾
2
(𝑠)) − 𝑦 (𝛾

2
(𝑠))

󵄩
󵄩
󵄩
󵄩

2

≤ 3𝑙
𝑎

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∞
,

3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇(𝑡 − 𝑠) [ℎ(𝑠, 𝑥(𝛾
2
(𝑠))) − ℎ(𝑠, 𝑦(𝛾

2
(𝑠)))] 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 3𝑀
2
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) − ℎ (𝑠, 𝑦 (𝛾

2
(𝑠)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

≤ 3𝑀
2
𝑙
ℎ
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

× (∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 (𝛾
2
(𝑠)) − 𝑦 (𝛾

2
(𝑠))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

≤ 3𝑀
2
𝑙
ℎ
(∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑠≥0

𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 (𝛾
2
(𝑠)) − 𝑦 (𝛾

2
(𝑠))

󵄩
󵄩
󵄩
󵄩

2

≤

3𝑀
2

𝛿
2

𝑙
ℎ

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∞
,

3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

−∞

𝑇(𝑡 − 𝑠) [𝑓(𝑠, 𝑥(𝛾
3
(𝑠))) − 𝑓(𝑠, 𝑦(𝛾

3
(𝑠)))] 𝑑𝑊(𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 3𝑀
2
∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠)))−𝑓 (𝑠, 𝑦 (𝛾

3
(𝑠)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠

≤ 3𝑀
2
𝑙
𝑓
(∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝑑𝑠) sup
𝑠≥0

𝐸
󵄩
󵄩
󵄩
󵄩
𝑥 (𝛾
3
(𝑠)) − 𝑦 (𝛾

3
(𝑠))

󵄩
󵄩
󵄩
󵄩

2

≤

3𝑀
2

2𝛿

𝑙
𝑓

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∞
.

(34)

Thus, we obtain that

𝐸
󵄩
󵄩
󵄩
󵄩
𝐿𝑥(𝑡) − 𝐿𝑦(𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ (3𝑙
𝑎
+

3𝑀
2

𝛿
2

𝑙
ℎ
+

3𝑀
2

2𝛿

𝑙
𝑓
)

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∞
= 3Θ

󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

∞

(35)

for each 𝑡 ≥ 0.
Consequently, if Θ < 1/3, then (3) has a unique fixed

point, which is the unique square-mean almost periodic
automorphic mild solution to (3), such that 𝐿𝑥(𝑡) = 𝑥(𝑡).

Theorem 15. Assume that conditions (H1), (H3), and (H4) are
satisfied; then problem (3) admits at least one square-mean
almost automorphic mild solution on 𝑅 provided that

𝐿
ℎ
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑚
ℎ
(𝑠) 𝑑𝑠 < ∞,

𝐿
𝑓
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝑚
𝑓
(𝑠) 𝑑𝑠 < ∞,

(36)

𝑚
𝑎
(𝑡) lim inf
𝑟→∞

𝑊
𝑎
(𝑟)

𝑟

+

𝑀
2
𝐿
ℎ

𝛿

lim inf
𝑟→∞

𝑊
ℎ
(𝑟)

𝑟

+ 𝑀
2
𝐿
𝑓
lim inf
𝑟→∞

𝑊
𝑓
(𝑟)

𝑟

<

1

3

.

(37)

Proof. For the sake of convenience, we break the proof into
several steps.

Step 1. 𝐿 is continuous.
From the proof of the previous lemmas it is clear that

the nonlinear operator 𝐿 is well defined and continuous.
Moreover, by Lemma 13, we infer that 𝐿𝑥 ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻))
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whenever 𝑥 ∈ 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)); that is, 𝐿 maps 𝐴𝐴(𝑅

+
;

𝐿
2
(𝑃,𝐻)) into itself.

Step 2. 𝐿maps bounded sets into bounded sets.
Let 𝐵
𝑟
= {𝑥 ∈ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)) : ‖𝑥‖

∞
≤ 𝑟} for each 𝑟 >

0. We prove that there exists a number 𝑟 such that 𝐿(𝐵
𝑟
) ⊆ 𝐵
𝑟
.

Clearly, for each positive number 𝑟,𝐵
𝑟
is a bounded closed

convex set in 𝐴𝐴(𝑅
+
; 𝐿
2
(𝑃,𝐻)). We claim that there exists a

positive number 𝑟 such that 𝐿(𝐵
𝑟
) ⊆ 𝐵
𝑟
. If it is not true, then

for every 𝑟 > 0 there exist 𝑥
𝑟
(⋅) ∈ 𝐵

𝑟
and 𝑡
𝑟
≥ 0 such that

𝐸‖(𝐿𝑥
𝑟
)(𝑡
𝑟
)‖
2
> 𝑟. However, on the other hand, we have

𝑟 < 𝐸
󵄩
󵄩
󵄩
󵄩
(𝐿𝑥
𝑟
)(𝑡
𝑟
)
󵄩
󵄩
󵄩
󵄩

2

≤ 3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡
𝑟
, 𝑥 (𝛾
1
(𝑡
𝑟
)))

󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡
𝑟

−∞

𝑇 (𝑡
𝑟
− 𝑠) ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡
𝑟

−∞

𝑇 (𝑡
𝑟
− 𝑠) 𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠))) 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 3𝑚
𝑎
(𝑡)𝑊
𝑎
(𝑟)

+ 3𝑀
2
[(∫

𝑡
𝑟

−∞

𝑒
−𝛿(𝑡
𝑟
−𝑠)

𝑑𝑠)

×(∫

𝑡
𝑟

−∞

𝑒
−𝛿(𝑡
𝑟
−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑠, 𝑥 (𝛾

2
(𝑠)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)]

+ 3𝑀
2
(∫

𝑡
𝑟

−∞

𝑒
−2𝛿(𝑡

𝑟
−𝑠)

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠)))

󵄩
󵄩
󵄩
󵄩

2

𝑑𝑠)

≤ 3𝑚
𝑎
(𝑡)𝑊
𝑎
(𝑟) +

3𝑀
2

𝛿

∫

𝑡
𝑟

−∞

𝑒
−𝛿(𝑡
𝑟
−𝑠)

𝑚
ℎ
(𝑠)𝑊
ℎ
(𝑟) 𝑑𝑠

+ 3𝑀
2
∫

𝑡
𝑟

−∞

𝑒
−2𝛿(𝑡

𝑟
−𝑠)

𝑚
𝑓
(𝑠)𝑊
𝑓
(𝑟) 𝑑𝑠

≤ 3𝑚
𝑎
(𝑡)𝑊
𝑎
(𝑟) +

3𝑀
2
𝐿
ℎ

𝛿

𝑊
ℎ
(𝑟) + 3𝑀

2
𝐿
𝑓
𝑊
𝑓
(𝑟) .

(38)

Dividing both sides by 𝑟 and taking the lower limit as 𝑟 →

∞, we obtain

1 ≤ 3𝑚
𝑎
(𝑡) lim inf
𝑟→∞

𝑊
𝑎
(𝑟)

𝑟

+

3𝑀
2
𝐿
ℎ

𝛿

lim inf
𝑟→∞

𝑊
ℎ
(𝑟)

𝑟

+ 3𝑀
2
𝐿
𝑓
lim inf
𝑟→∞

𝑊
𝑓
(𝑟)

𝑟

,

(39)

which contradicts condition (37). Thus, for some positive
number 𝑟, 𝐿(𝐵

𝑟
) ⊆ 𝐵
𝑟
.

Step 3. 𝐿maps bounded sets into equicontinuous sets.
Next we prove that the operator 𝐿 is completely contin-

uous on 𝐵
𝑟
. It suffices to prove that the following statements

are true.

(i) 𝑉(𝑡) = {(𝐿𝑥)(𝑡) : 𝑥 ∈ 𝐵
𝑟
} is relatively compact in

𝐿
2
(𝑃,𝐻) for each 𝑡 ≥ 0.

(ii) {𝐿𝑥 : 𝑥 ∈ 𝐵
𝑟
} ⊂ 𝐴𝐴(𝑅

+
; 𝐿
2
(𝑃,𝐻)) is a family of

equicontinuous functions.
Firstly, we show that (i) holds. Let 0 < 𝜀 < 1 be given. For

each 𝑡 ≥ 0 and 𝑥 ∈ 𝐵
𝑟
, we define

(𝐿
𝜀
𝑥) (𝑡) = 𝑎 (𝑡 − 𝜀, 𝑥 (𝛾

1
(𝑡 − 𝜀))) + 𝑇 (𝜀)

× [∫

𝑡−𝜀

−∞

𝑇 (𝑡 − 𝜀 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

+∫

𝑡−𝜀

−∞

𝑇 (𝑡 − 𝜀 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠)]

= 𝑎 (𝑡 − 𝜀, 𝑥 (𝛾
1
(𝑡 − 𝜀)))

+ 𝑇 (𝜀) [(Φ𝑥) (𝑡 − 𝜀) + (Ψ𝑥) (𝑡 − 𝜀)] .

(40)
Since 𝑇(𝑡) (𝑡 ≥ 0) is compact and (H4)(iii), then the set

𝑉
𝜀
(𝑡) = {(𝐿

𝜀
𝑥)(𝑡) : 𝑥 ∈ 𝐵

𝑟
} is relatively compact in 𝐿

2
(𝑃,𝐻)

for each 𝑡 ≥ 0. Moreover, for every 𝑥 ∈ 𝐵
𝑟
, we have

𝐸
󵄩
󵄩
󵄩
󵄩
(𝐿𝑥) (𝑡) − (𝐿

𝜀
𝑥) (𝑡)

󵄩
󵄩
󵄩
󵄩

2

≤ 3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥 (𝛾

1
(𝑡))) − 𝑎 (𝑡 − 𝜀, 𝑥 (𝛾

1
(𝑡 − 𝜀)))

󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

𝑡−𝜀

𝑇 (𝑡 − 𝑠) ℎ (𝑠, 𝑥 (𝛾
2
(𝑠))) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 3𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡

𝑡−𝜀

𝑇 (𝑡 − 𝑠) 𝑓 (𝑠, 𝑥 (𝛾
3
(𝑠))) 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 3𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥 (𝛾

1
(𝑡))) − 𝑎 (𝑡 − 𝜀, 𝑥 (𝛾

1
(𝑡 − 𝜀)))

󵄩
󵄩
󵄩
󵄩

+ 3𝑀
2
(∫

𝑡

𝑡−𝜀

𝑒
−𝛿(𝑡−𝑠)

𝑑𝑠)

2

sup
𝑡≥0

𝐸‖ℎ (𝑡)‖
2

+ 3𝑀
2
(∫

𝑡

𝑡−𝜀

𝑒
−2𝛿(𝑡−𝑠)

𝑑𝑠) sup
𝑡≥0

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

.

(41)

Observe that 𝑎(⋅, 𝑥(𝛾
1
(⋅))) is continuous; therefore, letting

𝜀 → 0, there are relatively compact sets𝑉
𝜀
(𝑡) arbitrarily close

to 𝑉(𝑡) and hence 𝑉(𝑡) is also relatively compact in 𝐿
2
(𝑃,𝐻)

for each 𝑡 ≥ 0 and 𝐿 is completely continuous on 𝐵
𝑟
.

We now show that (ii) holds. Let 𝑡
1
, 𝑡
2
≥ 0, 𝑡
1
< 𝑡
2
, 𝑥 ∈ 𝐵

𝑟
.

Then
𝐸
󵄩
󵄩
󵄩
󵄩
(𝐿𝑥) (𝑡

2
) − (𝐿𝑥) (𝑡

1
)
󵄩
󵄩
󵄩
󵄩

2

≤ 𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝑎 (𝑡
2
, 𝑥 (𝛾
1
(𝑡
2
))) − 𝑎 (𝑡

1
, 𝑥 (𝛾
1
(𝑡
1
)))

+ ∫

𝑡
2

−∞

𝑇 (𝑡
2
− 𝑠) ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠

− ∫

𝑡
1

−∞

𝑇 (𝑡
1
− 𝑠) ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠

+ ∫

𝑡
2

−∞

𝑇 (𝑡
2
− 𝑠) 𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠))) 𝑑𝑊 (𝑠)

−∫

𝑡
1

−∞

𝑇 (𝑡
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠))) 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2
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≤ 4𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡
2
, 𝑥 (𝛾
1
(𝑡
2
))) − 𝑎 (𝑡

1
, 𝑥 (𝛾
1
(𝑡
1
)))

󵄩
󵄩
󵄩
󵄩

2

+ 4𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡
2

𝑡
1

𝑇 (𝑡
2
− 𝑡
1
) 𝑇 (𝑡
1
− 𝑠) ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 4𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

∫

𝑡
2

𝑡
1

𝑇 (𝑡
2
− 𝑡
1
) 𝑇 (𝑡
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠))) 𝑑𝑊 (𝑠)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 4𝐸

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

(𝑇 (𝑡
2
− 𝑡
1
) − 𝐼)

× (∫

𝑡
1

−∞

𝑇 (𝑡
1
− 𝑠) ℎ (𝑠, 𝑥 (𝛾

2
(𝑠))) 𝑑𝑠

−∫

𝑡
1

−∞

𝑇 (𝑡
1
− 𝑠) 𝑓 (𝑠, 𝑥 (𝛾

3
(𝑠))) 𝑑𝑊 (𝑠))

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤ 4𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡
2
, 𝑥 (𝛾
1
(𝑡
2
))) − 𝑎 (𝑡

1
, 𝑥 (𝛾
1
(𝑡
1
)))

󵄩
󵄩
󵄩
󵄩

2

+ 4𝑀
2
(∫

𝑡
2

𝑡
1

𝑒
−𝛿(𝑡
2
−𝑠)𝑑𝑠

)

2

sup
𝑡≥0

‖ℎ (𝑡)‖
2

+ 4𝑀
2
(∫

𝑡
2

𝑡
1

𝑒
−2𝛿(𝑡

2
−𝑠)𝑑𝑠

) sup
𝑡≥0

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡)

󵄩
󵄩
󵄩
󵄩

2

+ 4 sup
𝑦∈𝑉(𝑡)

𝐸
󵄩
󵄩
󵄩
󵄩
(𝑇 (𝑡
2
− 𝑡
1
) − 𝐼) 𝑦

󵄩
󵄩
󵄩
󵄩

2

.

(42)

The right-hand side tends to 0 independently of 𝑥 ∈ 𝐵
𝑟
as

𝑡
1

→ 𝑡
2
, which implies that the set {𝐿𝑥 : 𝑥 ∈ 𝐵

𝑟
} is right

equicontinuous at 𝑡. By a similar procedure we can show that
{𝐿𝑥 : 𝑥 ∈ 𝐵

𝑟
} is left equicontinuous at 𝑡. Thus, the set {𝐿𝑥 :

𝑥 ∈ 𝐵
𝑟
} is equicontinuous; that is, 𝐿 maps 𝐵

𝑟
into a family of

equicontinuous functions.
As a consequence of Steps 1–3 together with Schauder’s

fixed point theorem, we deduce that 𝐿 has a fixed point in 𝐵
𝑟

which is a square-mean almost periodic mild solution to (3).
The proof is completed.

5. Example

Consider the neutral stochastic partial functional integrodif-
ferential equations of the form

𝑑𝑁 (𝑡, 𝑥 (𝑡)) = 𝐴𝑁 (𝑡, 𝑥 (𝑡)) 𝑑𝑡 + ∫

𝑡

0

𝐵 (𝑡 − 𝑠)𝑁 (𝑠, 𝑥 (𝑠)) 𝑑𝑠 𝑑𝑡

+ ℎ (𝑡, 𝑥 (𝛾
2
(𝑡))) 𝑑𝑡 + 𝑓 (𝑡, 𝑥 (𝛾

3
(𝑡))) 𝑑𝑊 (𝑡) ,

𝑡 ≥ 0,

(43)

for (𝑡, 𝜉) ∈ [0,∞)×[0, 𝜋], where𝑊(𝑡) is a two-sided standard
one-dimensional Brownian motion defined on the filtered
probability space (Ω,F, 𝑃,F

𝑡
),F
𝑡
= 𝜎{𝑊(𝑢) − 𝑊(V); 𝑢, V ≤

𝑡}. Here 𝑁(𝑡, 𝑥(𝑡)) = 𝑥(𝑡) − 𝑎(𝑡, 𝑥(𝛾
1
(𝑡))) and 𝛾

1
(𝑡) = 𝛾

2
(𝑡) =

𝛾
3
(𝑡) = 𝜆𝑡 + 𝜆

0
, the constants 𝜆 > 0, 𝜆

0
> 0.

For that, let Ω ⊂ 𝑅
2 be an open subset whose boundary

𝜕Ω is sufficiently regular. Let 𝑋 = 𝐻
1

0
(Ω) × 𝐿

2
(Ω) and

consider the linear operator 𝐴 whose domain is given by
𝐷(𝐴) = (𝐻

2
(Ω)⋂𝐻

1

0
(Ω)) × 𝐻

1

0
(Ω) and

𝐴(

𝑥

𝑦
) = (

𝑦

𝛼 (0) 𝑥
󸀠󸀠
− 𝛽 (0) 𝑦

) , (44)

where𝛼(⋅),𝛽(⋅) are real-valued functions of class𝐶2 on [0,∞)

such that 𝛼(0) > 0, and 𝛽(0) > 0.
From Chen [23], we see that 𝐴 is the infinitesimal

generator of a uniformly exponentially stable 𝐶
0
-semigroup

(
̃
𝑇(𝑡))
𝑡≥0

on 𝐻
1

0
(Ω) × 𝐿

2
(Ω). In what follows, we will assume

that𝑀,𝛿 > 0 are positive constants such that ‖̃𝑇(𝑡)‖ ≤ 𝑀𝑒
−2𝛿𝑡

for all 𝑡 > 0.
Let 𝐵(𝑡) = 𝐴𝐹(𝑡), where 𝐹 : 𝐻

1

0
(Ω) × 𝐿

2
(Ω) → 𝐻

1

0
(Ω) ×

𝐿
2
(Ω) is the operator family defined by

𝐹 = (𝐹
𝑖𝑗
) = (

0 0

−𝛽
󸀠
(𝑡) + 𝛽 (0)

𝛼
󸀠
(𝑡)

𝛼 (0)

𝛼
󸀠
(𝑡)

𝛼 (0)

) , (45)

and assume that

max {
󵄩
󵄩
󵄩
󵄩
𝐹
22

(𝑡)
󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝐹
21

(𝑡)
󵄩
󵄩
󵄩
󵄩
} ≤

𝛿

𝑀̃

𝑒
−2𝛿𝑡

, 𝑡 ≥ 0,

max {

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠

22
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
,

󵄩
󵄩
󵄩
󵄩
󵄩
𝐹
󸀠

21
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩
} ≤

𝛿
2

𝑀̃
2

𝑒
−2𝛿𝑡

, 𝑡 ≥ 0.

(46)

From the results in Grimmer [22], we see that the abstract
integrodifferential system,

𝑥
󸀠

(𝑡) = 𝐴𝑥 (𝑡) + ∫

𝑡

0

𝐴𝐹 (𝑡 − 𝑠) 𝑥 (𝑠) 𝑑𝑠, (47)

has an associated uniformly exponentially stable resolvent of
operators {𝑇(𝑡)}

𝑡≥0
with ‖𝑇(𝑡)‖ ≤ 𝑀𝑒

−𝛿𝑡 for 𝑡 ≥ 0.
Let

𝑎 (𝑡, 𝜑) (𝜉) = 𝛽𝜑 (𝜉) [sin 𝑡 + sin√2𝑡] ,

ℎ (𝑡, 𝜑) (𝜉) = 𝛽𝜑 (𝜉) [sin 𝑡 + sin√3𝑡] ,

𝑓 (𝑡, 𝜑) (𝜉) = 𝛽𝜑 (𝜉) [sin 𝑡 + sin√5𝑡] .

(48)

Thus, one has

𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝑥) − 𝑎 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 4𝛽
2󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑡, 𝑥) − ℎ (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 4𝛽
2󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝑥) − 𝑓 (𝑡, 𝑦)

󵄩
󵄩
󵄩
󵄩

2

≤ 4𝛽
2󵄩
󵄩
󵄩
󵄩
𝑥 − 𝑦

󵄩
󵄩
󵄩
󵄩

2

.

(49)

It follows that 𝑙
𝑎

= 𝑙
ℎ

= 𝑙
𝑓

= 4𝛽
2. Therefore, according to

Theorem 14, (43) has a unique square-mean almost periodic
mild solution provided that 𝛽 < 𝛿/√6(2𝛿

2
+ 2𝑀

2
+ 𝑀
2
𝛿).

Let

𝑎 (𝑡, 𝜑) (𝜉) = 𝛽 sin (𝜑 (𝜉)) [sin 𝑡 + sin√2𝑡] ,

ℎ (𝑡, 𝜑) (𝜉) = 𝛽 sin (𝜑 (𝜉)) [sin 𝑡 + sin√3𝑡] ,

𝑓 (𝑡, 𝜑) (𝜉) = 𝛽 sin (𝜑 (𝜉)) [sin 𝑡 + sin√5𝑡] .

(50)
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Thus, one has

𝐸
󵄩
󵄩
󵄩
󵄩
𝑎 (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛽
2
[sin 𝑡 + sin√2𝑡]

2

𝐸
󵄩
󵄩
󵄩
󵄩
𝜑 (𝜉)

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
ℎ (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛽
2
[sin 𝑡 + sin√3𝑡]

2

𝐸
󵄩
󵄩
󵄩
󵄩
𝜑 (𝜉)

󵄩
󵄩
󵄩
󵄩

2

,

𝐸
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑡, 𝜑)

󵄩
󵄩
󵄩
󵄩

2

≤ 𝛽
2
[sin 𝑡 + sin√5𝑡]

2

𝐸
󵄩
󵄩
󵄩
󵄩
𝜑 (𝜉)

󵄩
󵄩
󵄩
󵄩

2

.

(51)

It follows that

𝑚
𝑎
(𝑡) = 𝛽

2
[sin 𝑡 + sin√2𝑡]

2

,

𝑚
ℎ
(𝑡) = 𝛽

2
[sin 𝑡 + sin√3𝑡]

2

,

𝑚
𝑓
(𝑡) = 𝛽

2
[sin 𝑡 + sin√5𝑡]

2

(52)

and𝑊
𝑎
(𝑟) = 𝑊

ℎ
(𝑟) = 𝑊

𝑓
(𝑟) = 𝑟.

Obviously,

𝐿
ℎ
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

𝑚
ℎ
(𝑠) 𝑑𝑠

= 𝛽
2sup
𝑡≥0

∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

(sin 𝑡 + sin√3𝑡)

2

𝑑𝑠 < ∞,

𝐿
𝑓
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

𝑚
𝑓
(𝑠) 𝑑𝑠

= 𝛽
2sup
𝑡≥0

∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

(sin 𝑡 + sin√5𝑡)

2

𝑑𝑠 < ∞.

(53)

Let

𝐿̃
𝑎
= sup
𝑡≥0

(sin 𝑡 + sin√2𝑡)

2

,

𝐿̃
ℎ
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−𝛿(𝑡−𝑠)

(sin 𝑡 + sin√3𝑡)

2

𝑑𝑠,

𝐿̃
𝑓
= sup
𝑡≥0

∫

𝑡

−∞

𝑒
−2𝛿(𝑡−𝑠)

(sin 𝑡 + sin√5𝑡)

2

𝑑𝑠.

(54)

Therefore, according to Theorem 15, (43) has a square-mean
almost periodic mild solution provided that

𝛽 < √

𝛿

3 (𝛿𝐿̃
𝑎
+ 𝑀
2
𝐿̃
ℎ
+ 𝛿𝑀

2
𝐿̃
𝑓
)

. (55)
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