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We first propose in this paper a new test method for detecting heteroscedasticity of the error term in nonparametric regression.
Some simulation experiments are then conducted to evaluate the performance of the proposed methodology. A real-world data set
is finally analyzed to demonstrate the application of the method.

1. Introduction

In recent years, nonparametric regression models have been
widely applied in a variety of areas for data analysis. The
estimation of the regression function and related statistical
inferences in nonparametric models are usually based on the
assumption that the error term is homoscedastic. However, in
many real-world problems, we rarely know a priori whether
this assumption can be guaranteed. Therefore, it is necessary
to develop a method for detecting heteroscedasticity in the
error terms before we embark on the model fitting and
inferential issues.

In the literature of the statistical nonparametric regres-
sion, there have been many papers on testing heteroscedas-
ticity (see, e.g., [1–8]). Among these papers, a procedure was
developed by Dette and Munk [2] based on an estimator
for the best 𝐿

2-approximation of the variance function by
a constant and was extended by You and Chen [5] to par-
tially linear regression models. Dette [1] proposed a test for
heteroscedasticity in nonparametric regression. A residual-
based statistic was suggested by Eubank and Thomas [3] to
detect heteroscedasticity of the error term in nonparametric
models. Furthermore, Zhang and Mei [7] obtained a test for
the constant variance of the model errors based on residual
analysis.

Most of the existing procedures, including those men-
tioned above, belong to the class of parametrically hypothesis

test methods. That is, the methods work quite well when
the model errors coincide with the preassumed distribution,
while the performance significantly decreases when the
distribution cannot be guaranteed. Therefore, it is necessary
to develop a test which is robust to the error distributions. To
the best of our knowledge, however, there has been little work
done on this issue.

In this paper, we propose a completely nonparametrically
hypothesis test method for detecting heteroscedasticity of the
error term in nonparametric regression. In this method, the
test statistic is constructed on the basis of an appropriate
transformation of the residuals after fitting the regression
model with the local linear estimation. In order to evaluate
the performance of the proposed method, we conduct a
simulation comparison with Zhang and Mei’s procedure [7]
and a real-world data set is analyzed to show the application
of the method.

The remainder of this paper is organized as follows.
In Section 2, we briefly describe the local linear estimation
method. By using the residuals after fitting the regression
model with the local linear estimation and applying the
idea of trend analysis in nonparametric statistics, a testing
procedure is described in Section 3. In Section 4, we conduct
some simulations to assess the performance of the test. A real-
world data set is analyzed in Section 5 to demonstrate the
application of the proposed method.The paper is then ended
with some final remarks.
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2. A Brief Description of the Local
Linear Estimation

Consider the univariate nonparametric regression model

𝑌
𝑖
= 𝑚 (𝑋

𝑖
) + 𝜎 (𝑋

𝑖
) 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (1)

where 𝑌 and 𝑋 indicate the response and explanatory
variable, respectively, and (𝑌

𝑖
, 𝑋
𝑖
) (𝑖 = 1, 2, . . . , 𝑛) is a

random sample from model (1). 𝑚(⋅) and 𝜎(⋅) are unknown
regression and variance functions. 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛
are generally

assumed to be independently and identically distributed
random variables with zero mean and unit variance. Also 𝑋

and 𝑒 are independent.
Due to its several attractive mathematical properties (see

[9–11] for details), the local linear estimation procedure is
used to calibrate the model in (1). Specifically, suppose that
the second order derivative of the regression function 𝑚(𝑥)

in model (1) is continuous in the domain of the variable 𝑋,
say D, and 𝑥

0
is a given point in D. According to Taylor’s

expansion, we have in the neighborhood of 𝑥
0
that

𝑚(𝑥) ≈ 𝑚 (𝑥
0
) + 𝑚
󸀠
(𝑥
0
) (𝑥 − 𝑥

0
) , (2)

where𝑚
󸀠
(𝑥
0
) denotes the first order derivative of𝑚(𝑥) at 𝑥

0
.

By replacing𝑚(𝑥) in model (1) with its linear approximation
in (2) and combining the least-squares procedure, the local
linear estimate of the regression function 𝑚(𝑥) at 𝑥

0
can

be obtained by solving the following weighted least-squares
problem:

minimize
𝑛

∑

𝑖=1

[𝑌
𝑖
− 𝑚(𝑥

0
) − 𝑚
󸀠
(𝑥
0
)(𝑋
𝑖
− 𝑥
0
)]
2

𝐾
ℎ
(𝑋
𝑖
− 𝑥
0
)

(3)

with respect to 𝑚(𝑥
0
) and 𝑚

󸀠
(𝑥
0
), where 𝐾

ℎ
(⋅) = 𝐾(⋅/ℎ)/ℎ

and 𝐾(⋅) is a given kernel function that is generally taken
to be a symmetric probability density function and ℎ is the
bandwidth which can be determined by some data-driven
methods such as the cross-validation, generalized cross-
validation methods, and corrected Akaike information crite-
rion (see [12–14] for more details). Specifically, in the cross-
validation procedure, the optimal value of the bandwidth ℎ is
chosen to minimize the following expression:

CV (ℎ) =

𝑛

∑

𝑖=1

[𝑌
𝑖
− 𝑌̂
(𝑖)
(ℎ)]
2

, (4)

where 𝑌̂
(𝑖)
(ℎ) stands for the 𝑖th predicted value of the response

𝑌 under the bandwidth ℎ with the 𝑖th observation omitted
from the calibration process.

For convenience, we introduce the matrix notations. Let

X (0) = (

1 𝑋
1
− 𝑥
0

1 𝑋
2
− 𝑥
0

...
...

1 𝑋
𝑛
− 𝑥
0

), Y = (

𝑌
1

𝑌
2

...
𝑌
𝑛

),

𝜀 = (

𝜀
1

𝜀
2

...
𝜀
𝑛

) = (

𝜎(𝑋
1
) 𝑒
1

𝜎 (𝑋
2
) 𝑒
2

...
𝜎 (𝑋
𝑛
) 𝑒
𝑛

),

W (0) = Diag (𝐾
ℎ
(𝑋
1
− 𝑥
0
) ,

𝐾
ℎ
(𝑋
2
− 𝑥
0
) , . . . , 𝐾

ℎ
(𝑋
𝑛
− 𝑥
0
)) .

(5)

By solving the weighted least-squares problem in (3), we can
obtain the local linear estimate of𝑚(𝑥) at 𝑥 = 𝑥

0
as

𝑚̂ (𝑥
0
) = eT
1
[XT

(0)W(0)X(0)]
−1

XT
(0)W (0)Y, (6)

where e
1
indicates a two-dimensional vector with its first

element being 1 and the other being 0.
Taking 𝑥

0
in (6) to be 𝑋

1
, 𝑋
2
, and 𝑋

𝑛
, respectively, we

can get the fitted value of Y = (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
)
T, denoted by

Ŷ = (𝑌̂
1
, 𝑌̂
2
, . . . , 𝑌̂

𝑛
)
T, as

Ŷ = (

𝑚̂ (𝑋
1
)

𝑚̂ (𝑋
2
)

...
𝑚̂ (𝑋
𝑛
)

)

= (

eT
1
[XT

(1)W(1)X(1)]
−1

XT
(1)W (1)Y

eT
1
[XT

(2)W(2)X(2)]
−1

XT
(2)W (2)Y

...
eT
1
[XT

(𝑛)W(𝑛)X(𝑛)]
−1

XT
(𝑛)W (𝑛)Y

) = LY,

(7)

where

L = (

eT
1
[XT

(1)W(1)X(1)]
−1

XT
(1)W (1)

eT
1
[XT

(2)W(2)X(2)]
−1

XT
(2)W (2)

...
eT
1
[XT

(𝑛)W(𝑛)X(𝑛)]
−1

XT
(𝑛)W (𝑛)

) (8)

is called “hat” matrix or smoothing matrix.
Further, the residual vector can be computed from

𝜀̂ = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
)
T
= Y − Ŷ = (I − L)Y, (9)

which will be used in the next section.

3. A Procedure for Detecting
Heteroscedasticity in
Nonparametric Regression

As mentioned in introduction, in real-world data analysis,
we rarely know in advance whether the error term is
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homoscedastic, which deals with the problem of testing for
heteroscedasticity. That is, the hypothesis to be tested is

H
0
: 𝜎
2
(𝑋
𝑖
) = 𝜎
2
←→ H

1
: 𝜎
2
(𝑋
𝑖
) ̸= 𝜎
2
, (10)

where 𝜎
2
> 0 is a certain constant.

Let 𝜀̂ = (𝜀
1
, 𝜀
2
, . . . , 𝜀

𝑛
)
T

= Y − Ŷ = (I − L)Y be the
residual vector which is described in (9). In order to construct
a test statistic suitable for quantifying the heteroscedasticity
of the error term in nonparametric regression, we use the
transformed residuals

𝑟
𝑖
=

𝜀
𝑖

√𝜎̂
2

0
ℎ
𝑖𝑖

, 𝑖 = 1, 2, . . . , 𝑛, (11)

where

𝜎̂
2

0
=
YT

(I − L)T (I − L)Y
tr [(I − L)T (I − L)]

(12)

with “tr” standing for the trace of a matrix and ℎ
𝑖𝑖
is the 𝑖th

diagonal element of the matrixH = (I − L)T(I − L).
If the null hypothesis H

0
in (10) is true, which means

that the variance of the error term in model (1) is constant,
the values of 𝑟

2

𝑖
(𝑖 = 1, 2, . . . , 𝑛) should not have any

trend, whereas there will be some variations in 𝑟
2

1
, 𝑟
2

2
, . . . , 𝑟

2

𝑛

if heteroscedasticity is present. Therefore, we can test het-
eroscedasticity of the error term by analyzing the trend of
𝑟
2

𝑖
(𝑖 = 1, 2, . . . , 𝑛). Along this line of thinking, the hypothesis

in (10) amounts to the hypothesis

H
0
: 𝑟
2

1
, 𝑟
2

2
, . . . , 𝑟

2

𝑛
have no trend

←→ H
1
: 𝑟
2

1
, 𝑟
2

2
, . . . , 𝑟

2

𝑛
have certain trend.

(13)

According to the literatures Diblasi and Bowman [15]
and Wei et al. [16], the random variables 𝑟

1
, 𝑟
2
, . . . , 𝑟

𝑛
are

approximately independent and identically distributed. Let

𝑐 =

{{{

{{{

{

𝑛

2
, 𝑛 is even;

𝑛 + 1

2
, 𝑛 is odd,

𝑛
󸀠
= {

𝑐, 𝑛 is even;
𝑐 − 1, 𝑛 is odd,

𝐷
𝑖
= 𝑟
2

𝑖
− 𝑟
2

𝑖+𝑐
, 𝑖 = 1, 2, . . . , 𝑛

󸀠
.

(14)

Then 𝐷
1
, 𝐷
2
, . . . , 𝐷

𝑛
are approximately independent under

H
0
and 𝑃H0(𝐷𝑖 > 0) = 𝑃H0(𝐷𝑖 < 0) = 1/2. Therefore, the

test statistic is constructed as follows:

𝑇 =

𝑛

∑

𝑖=1

𝐼 (𝐷
𝑖
> 0) , (15)

where 𝐼(⋅) is the indicative function.
If the null hypothesis H

0
in (10) (or (13)) is true, which

means the model error term is homoscedastic, we have

𝑇 ∼ 𝐵(𝑛
󸀠
,
1

2
) , (16)

where 𝐵(𝑛
󸀠
, 1/2) denotes the binomial distribution with the

parameter being 1/2 and the sample size being 𝑛
󸀠. By noting

the fact that the test statistic 𝑇 is symmetric or approximately
symmetric with respect to 𝑛

󸀠
/2, the value of the test statistic

|𝑇 − 𝑛
󸀠
/2| tends to be large if the error heteroscedasticity is

present. Therefore, the 𝑝-value of testing H
0
versus H

1
based

on the statistic 𝑇 is

𝑝 = 𝑃H0 (

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑇 −
𝑛
󸀠

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡 −
𝑛
󸀠

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

= 𝑃H0 (𝑇 ≤
𝑛
󸀠

2
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡 −
𝑛
󸀠

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

) + 𝑃H0 (𝑇 ≥
𝑛
󸀠

2
+

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡 −
𝑛
󸀠

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

= 2𝑃H0 (𝑇 ≤
𝑛
󸀠

2
−

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑡 −
𝑛
󸀠

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

)

= 2 ×
1

2𝑛
󸀠

(𝑛
󸀠
/2)−|𝑡−𝑛

󸀠
/2|

∑

𝑘=0

𝐶
𝑘

𝑛
󸀠

≈ 2[1 − Φ(

󵄨󵄨󵄨󵄨󵄨
𝑇 − 𝑛
󸀠
/2

󵄨󵄨󵄨󵄨󵄨

√𝑛󸀠/2

)] ,

(17)

where 𝑡 is the observed value of 𝑇 computed by (15). For a
given significance level 𝛼, reject H

0
if 𝑝 < 𝛼; otherwise, do

not reject H
0
.

4. Simulation Studies

As mentioned in the introduction, Zhang and Mei [7] also
proposed a test method for detecting heteroscedasticity in
nonparametric models. The particular method that they
used is the 𝑡-test applied to the squared residuals 𝜀

2

𝑖
(𝑖 =

1, 2, . . . , 𝑛), which are shown in (9). A comparisonwithZhang
and Mei’s method is conducted in this section to assess the
validity of the proposed test method.

The following three types of regression and variance
functions are considered:

(1) 𝑚(𝑥) = 1 + 𝑥, 𝜎(𝑥) = 𝜎(1 + 𝑎 sin(8𝑥))2;
(2) 𝑚(𝑥) = 1 + sin𝑥, 𝜎(𝑥) = 𝜎(4 + 4 𝑎 cos(4𝑥));
(3) 𝑚(𝑥) = 1 + sin𝑥, 𝜎(𝑥) = 𝜎 exp(𝑎𝑥),

where 𝜎 = 0.5 and 𝑎 is a constant.
Using the above regression and variance functions, we can

formulate three models to generate the experimental data.
For convenience, the models that correspond to those three
settings of regression and variance functions are denoted by
Model 1, Model 2, and Model 3, respectively.

In each model, the observations 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑛
of the

explanatory variable𝑋 are equidistantly taken on the interval
[0, 1]; that is, 𝑋

𝑖
= 𝑖/𝑛, 𝑖 = 1, 2, . . . , 𝑛. The constant 𝑎 in

the variance functions is considered to be 0, 0.5, and 1.0,
respectively. Note that 𝑎 = 0 refers to the model with the
error term being homoscedastic, and the variance function
deviates from homoscedasticity more and more significantly
with the value of 𝑎 increasing. The sample sizes are taken to
be 𝑛 = 100 and 𝑛 = 200, respectively.
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Table 1: Rejection frequencies of 500 replications of the testing procedure.

Model 𝑎
𝑁(0, 1) 𝑈(−√3,√3) 𝜒

2
(4)

Proposed method Zhang and
Mei [7] Proposed method Zhang and

Mei [7] Proposed method Zhang and
Mei [7]

𝑛 = 100

Model 1
0 0.022 0.038 0.032 0.022 0.058 0.024

0.50 0.346 0.014 0.402 0.002 0.348 0.026
1.00 0.540 0.020 0.570 0.006 0.506 0.012

Model 2
0 0.020 0.038 0.038 0.024 0.048 0.030

0.50 0.294 0.020 0.490 0.048 0.352 0.064
1.00 0.996 0.032 1.000 0.056 0.996 0.080

Model 3
0 0.024 0.038 0.038 0.026 0.044 0.032

0.50 0.162 0.510 0.258 0.796 0.202 0.248
1.00 0.544 0.954 0.736 1.000 0.574 0.714

𝑛 = 200

Model 1
0 0.034 0.034 0.034 0.018 0.062 0.032

0.50 0.596 0.012 0.678 0.002 0.620 0.014
1.00 0.870 0.014 0.884 0.004 0.952 0.016

Model 2
0 0.032 0.040 0.038 0.018 0.058 0.030

0.50 0.436 0.022 0.690 0.052 0.514 0.068
1.00 1.000 0.034 1.000 0.058 1.000 0.072

Model 3
0 0.038 0.042 0.038 0.018 0.058 0.030

0.50 0.236 0.692 0.358 0.946 0.318 0.362
1.00 0.714 0.996 0.912 1.000 0.750 0.862

Furthermore, in order to evaluate the robustness of the
test methods (the proposed and Zhang and Mei’s methods)
on the error distributions, the random numbers 𝑒

1
, 𝑒
2
, . . . , 𝑒

𝑛

are independently drawn from 𝑁(0, 1), 𝑈(−√3,√3), and
the standardized Chi-square distribution with 4 degrees of
freedom, respectively.

Given each of Models 1, 2, and 3 for each combination
of the values of the constant 𝑎, the error distributions, and
the sample sizes, we ran 𝑁 = 500 attempts of replication
of the testing procedure either for our proposed method or
Zhang andMei’s method, in which the Gauss kernel function
𝐾(𝑥) = exp(−𝑥2/2)/√2𝜋 is adopted and the bandwidth
ℎ is selected by the cross-validation procedure. Throughout
𝑁 = 500 attempts of replication, we record the frequency
of rejecting the null hypothesis under the significance level
𝛼 = 0.05 and the related results are reported in Table 1.

We see fromTable 1 that, under the normality distribution
of the error term, the rejection frequency of both methods
underH

0
(i.e., 𝑎 = 0) is reasonably close to the corresponding

significance levels for both sample sizes. On the other hand,
two test methods perform quite differently for different
types of variance functions under the alternative hypothesis.
Although the rejection frequency computed by our method
tends to be undersized for monotone variance function (see
Model 3), it is much larger than that obtained by Zhang
and Mei’s method for high frequency variance functions
(see Models 1 and 2), which means that our method is of
satisfactory power in detecting heteroscedasticity, especially
when the variance function shows many alternations.

Under the situations where the distribution of the model
error term is nonnormal, we see from Table 1 that, under
H
0
(i.e., 𝑎 = 0), the estimated values of the nominal

probability computed from our method are more stable and
more close to the corresponding significance levels than

those obtained by Zhang and Mei’s method with respect to
different types of error distributions, which indicates that the
proposed test approach is more robust to the choices of the
error distributions. Furthermore, the values of the rejection
frequency for both test methods under 𝑎 ̸= 0 show the same
patterns, which demonstrate that our test approach is more
powerful in detecting high frequency variance functions.

5. An Example on the Application of
the Proposed Method

A real-world data set is analyzed in this section to demon-
strate the application of the proposed method. Specifically,
with the observed data of the average temperature (AT) of
each day inXi’an, China, from January 1, 1951, toDecember 31,
2000, the mean of the average temperatures collected on the
same days of the 50 years is taken as the values of the average
temperature (unit: degree). It is worth pointing out that the
data on February 29 during the 50 years have been excluded.
Furthermore, the observations of the explanatory variable 𝑋

in the regression function are taken as the time orders from
January 1 to December 31.

Based on the observations (AT
𝑖
, 𝑋
𝑖
) (𝑖 = 1, 2, . . . , 365)

which are graphically shown in Figure 1, the following non-
parametric regression model is considered:

AT
𝑖
= 𝑚 (𝑋

𝑖
) + 𝜎 (𝑋

𝑖
) 𝑒
𝑖
, 𝑖 = 1, 2, . . . , 365, (18)

where 𝑒
𝑖
is assumed to satisfy E(𝑒

𝑖
| 𝑋
𝑖
) = 0 and Var(𝑒

𝑖
|

𝑋
𝑖
) = 1. Here, we test whether or not the model error term is

homoscedastic. By using the proposed test method with the
Gauss kernel function, the optimal value of the bandwidth ℎ

selected by the cross-validation procedure is ℎ = 2 and the
resulting 𝑝-value is 4.713 × 10

−27. Because of the extremely
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Figure 1: The original data of the response AT in model (18).

small 𝑝-value of the test statistic, we may conclude that the
heteroscedasticity of the model error is significant over the
time that ranges from January 1 to December 31.

6. Final Remarks

In this paper, a test which is free of the types of the error
distributions is developed for detecting heteroscedasticity in
nonparametric regression models. Specifically, the statistic
is constructed on a basis of appropriate transformation of
the residuals after fitting the regression model with the local
linear estimation as well as the idea of trend analysis in non-
parametric statistics. In order to assess the performance of the
proposed method, we conduct a simulation comparison with
other procedures and the results are satisfactory, especially for
high frequency variance functions.

Compared to Zhang and Mei’s method, the power of
the proposed test when heteroscedasticity is present tends to
be underestimated for monotone variance function. This is
reasonable because the former is mainly formulated based on
the monotone trend of the squared residuals, while the latter
is a sign-based testing method.

Anyhow, due to its conceptual simplicity and easy imple-
mentation, our method is useful in testing heteroscedasticity
in nonparametric regression, especially for the variance
functions with many alternations.
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