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We consider curves of AW(𝑘)-type (1 ≤ 𝑘 ≤ 3) in the equiform geometry of the Galilean space𝐺
3
. We give curvature conditions of

curves of AW(𝑘)-type. Furthermore, we investigate Bertrand curves in the equiform geometry of𝐺
3
. We have shown that Bertrand

curve in the equiform geometry of 𝐺
3
is a circular helix. Besides, considering AW(𝑘)-type curves, we show that there are Bertrand

curves of weak AW(2)-type and AW(3)-type. But, there are no such Bertrand curves of weak AW(3)-type and AW(2)-type.

1. Introduction

A Galilean space may be considered as the limit case
of a pseudo-Euclidean space in which the isotropic cone
degenerates to a plane. This limit transition corresponds to
the limit transition from the special theory of relativity to
classical mechanics. On the other hand, Galilean space-time
plays an important role in nonrelativistic physics. The fact
that the fundamental concepts such as velocity, momentum,
kinetic energy, and principles; laws of motion and conser-
vation laws of classical physics are expressed in terms of
Galilean space [1]. As it is well known, geometry of space is
associated with mathematical group. The idea of invariance
of geometry under transformation group may imply that
on some spacetimes of maximum symmetry there should
be a principle of relativity, which requires the invariance of
physical laws without gravity under transformations among
inertial systems. Besides, the theory of curves and the curves
of constant curvature in the equiform differential geometry
of the isotropic spaces 𝐼1

3
and 𝐼

2

3
and the Galilean space 𝐺

3

are described in [2, 3], respectively. Although the equiform
geometry has minor importance related to the usual one,
the curves that appear here in the equiform geometry can
be seen as generalizations of well-known curves from the
above mentioned geometries and therefore could have been
of research interest. Many interesting results on curves of

AW(𝑘)-type have been obtained by many mathematicians
(see [4–7]). For example, in [4], Özgür and Gezgin studied a
Bertrand curve of AW(𝑘)-type, and furthermore they showed
that there was no such Bertrand curve of AW(1)-type and
it was of AW(3)-type if and only if it was a right circular
helix. In addition they studied weak AW(2)-type and AW(3)-
type conical geodesic curves in 𝐸

3. Besides, in 3-dimensional
Galilean space and Lorentz space, the curves of AW(𝑘)-type
were investigated by Külahcı et al. [8] and Külahcı and Ergüt
[6], respectively. Kızıltuğ and Yaylı investigated quaternionic
AW(𝑘)-type curves [9]. Also, Kızıltuğ and Yaylı [7] studied
curves of AW(𝑘)-type in three Lie groups and gave some
interesting results.

The purpose of the present paper is to provide AW(𝑘)-
type curves in the equiform geometry of the Galilean space
𝐺
3
and provide the properties of Bertrand curve of AW(𝑘)-

type in the equiform geometry of the Galilean space 𝐺
3
.

2. Preliminaries

The Galilean space 𝐺
3
is a Cayley-Klein space equipped with

the projective metric of signature (0, 0, +, +). The absolute
figure of the Galilean space consists of an ordered triple
{𝑤, 𝑓, 𝐼}, where 𝑤 is the ideal (absolute) plane, 𝑓 is the line
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(absolute line) in 𝑤, and 𝐼 is the fixed elliptic involution of
points of 𝑓.

In the nonhomogeneous coordinates the similarity group
𝐻
8
has the form

𝑥 = 𝑎
11
+ 𝑎
12
𝑥,

𝑦 = 𝑎
21
+ 𝑎
22
𝑥 + 𝑎
23
𝑦 cos 𝜃 + 𝑎

23
𝑧 sin 𝜃,

𝑧 = 𝑎
31
+ 𝑎
32
𝑥 − 𝑎
23
𝑦 sin 𝜃 + 𝑎

23
𝑧 cos 𝜃,

(1)

where 𝑎
𝑖𝑗
and 𝜃 are real numbers [10]. In what follows the real

numbers 𝑎
12

and 𝑎
23

will play the special role. In particular,
for 𝑎
12

= 𝑎
23

= 1, (1) defines the group 𝐵
6
⊂ 𝐻
8
of isometries

of the Galilean space 𝐺
3
. The Galilean scalar product can be

written as

⟨𝑥, 𝑦⟩ = {
𝑥
1
𝑥
2
, if 𝑥

1
̸= 0 or 𝑥

2
̸= 0,

𝑦
1
𝑦
2
+ 𝑧
1
𝑧
2
, if 𝑥

1
̸= 0, 𝑥
2
= 0,

(2)

where 𝑥 = (𝑥
1
, 𝑦
1
, 𝑧
1
) and 𝑦 = (𝑥

2
, 𝑦
2
, 𝑧
2
). It leaves invariant

the Galilean norm of the vector 𝑥 defined by

‖𝑥‖ = {
𝑥
1
, if 𝑥

1
̸= 0,

√𝑦2
1
+ 𝑧2
1
, if 𝑥

1
= 0.

(3)

A curve 𝛼 : 𝐼 ⊂ R → 𝐺
3
of the class 𝐶∞ in the Galilean

space 𝐺
3
is defined by the parameterization

𝛼 (𝑠) = (𝑠, 𝑦 (𝑠) , 𝑧 (𝑠)) , (4)

where 𝑠 is a Galilean invariant arc-length of 𝛼. Then the
curvature 𝜅(𝑠) and the torsion 𝜏(𝑠) are given by, respectively,

𝜅 (𝑠) = √ ̈𝑦(𝑠)
2
+ 𝑧̈(𝑠)

2
,

𝜏 (𝑠) =
det (𝛼̇ (𝑠) , 𝛼̈ (𝑠) , 𝛼⃛ (𝑠))

𝜅2 (𝑠)
.

(5)

On the other hand, the Frenet vectors of𝛼(𝑠) in𝐺
3
are defined

by

𝑡 (𝑠) = 𝛼̇ (𝑠) = (1, ̇𝑦 (𝑠) , 𝑧̇ (𝑠)) ,

𝑛 (𝑠) =
1

𝜅 (𝑠)
𝛼̈ (𝑠) =

1

𝜅 (𝑠)
(0, ̈𝑦 (𝑠) , 𝑧̈ (𝑠)) ,

𝑏 (𝑠) =
1

𝜅 (𝑠)
(0, −𝑧̈ (𝑠) , ̈𝑦 (𝑠)) .

(6)

The vectors 𝑡, 𝑛, 𝑏 are called the vectors of tangent, principal
normal, and binormal of 𝛼, respectively. For their derivatives,
the following Frenet formula satisfies [10]:

̇𝑡 (𝑠) = 𝜅 (𝑠) 𝑛 (𝑠) ,

̇𝑛 (𝑠) = 𝜏 (𝑠) 𝑏 (𝑠) ,

𝑏̇ (𝑠) = − 𝜏 (𝑠) 𝑛 (𝑠) .

(7)

3. Frenet Formulas in
Equiform Geometry in 𝐺

3

Let𝛼 : 𝐼 → 𝐺
3
be a curve in theGalilean space𝐺

3
.We define

the equiform parameter of 𝛼 by

𝜎 := ∫
1

𝜌
𝑑𝑠 = ∫ 𝜅 𝑑𝑠, (8)

where 𝜌 = (1/𝜅) is the radius of curvature of the curve 𝛼.
Then, we have

𝑑𝑠

𝑑𝜎
= 𝜌. (9)

Let ℎ be a homothety with the center in the origin and the
coefficient 𝜆. If we put 𝛼̃ = ℎ(𝛼), then it follows

𝑠 = 𝜆𝑠, 𝜌 = 𝜆𝜌, (10)

where 𝑠 is the arc-length parameter of 𝛼̃ and 𝜌 the radius of
curvature of this curve. Therefore, 𝜎 is an equiform invariant
parameter of 𝛼 [10].

From now on, we define the Frenet formula of the curve
𝛼 with respect to the equiform invariant parameter 𝜎 in 𝐺

3
.

The vector

𝑇 =
𝑑𝛼

𝑑𝜎
(11)

is called a tangent vector of the curve 𝛼. From (7) and (9) we
get

𝑇 =
𝑑𝛼

𝑑𝑠

𝑑𝑠

𝑑𝜎
= 𝜌 ⋅

𝑑𝛼

𝑑𝑠
= 𝜌 ⋅ 𝑡. (12)

We define the principal normal vector and the binormal
vector by

𝑁 = 𝜌 ⋅ 𝑛, 𝐵 = 𝜌 ⋅ 𝑏. (13)

Then, we easily show that {𝑇,𝑁, 𝐵} are an equiform invariant
orthonormal frame of the curve 𝛼.

On the other hand, the derivations of these vectors with
respect to 𝜎 are given by

𝑇
󸀠
=

𝑑𝑇

𝑑𝜎
= ̇𝜌𝑇 + 𝑁,

𝑁
󸀠
=

𝑑𝑁

𝑑𝜎
= ̇𝜌𝑁 + 𝜌𝜏𝐵,

𝐵
󸀠
=

𝑑𝐵

𝑑𝜎
= 𝜌𝜏𝑁 + ̇𝜌𝐵.

(14)

Definition 1. The functionK : 𝐼 → R defined by

K = ̇𝜌 (15)

is called the equiform curvature of the curve 𝛼.

Definition 2. The functionT : 𝐼 → R defined by

T = 𝜌𝜏 =
𝜏

𝜅
(16)

is called the equiform torsion of the curve 𝛼.
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Thus, the formula analogous to the Frenet formula in the
equiform geometry of the Galilean space has the following
form:

𝑇
󸀠
= K ⋅ 𝑇 + 𝑁,

𝑁
󸀠
= K ⋅ 𝑁 +T ⋅ 𝐵,

𝐵
󸀠
= −T ⋅ 𝑁 +K ⋅ 𝐵.

(17)

The equiform parameter 𝜎 = ∫ 𝜅(𝑠)𝑑𝑠 for closed curves
is called the total curvature, and it plays an important role
in global differential geometry of Euclidean space. Also, the
function (𝜏/𝜅) has been already known as a conical curvature,
and it also has interesting geometric interpretation.

Remark 3. Let 𝛼 : 𝐼 → 𝐺
3
be a curve in the equiform geom-

etry of the Galilean space 𝐺
3
. So the following statements are

true (see for details [2, 10]).
(i) If 𝛼(𝑠) is an isotropic logarithmic spiral in 𝐺

3
, then

K = const. ̸= 0 andT = 0.
(ii) If 𝛼(𝑠) is an circular helix in 𝐺

3
, thenK = 0 andT =

const. ̸= 0.
(iii) If 𝛼(𝑠) is an isotropic circle in 𝐺

3
, then K = 0 and

T = 0.

4. AW(𝑘)-Type Curves in
Equiform Geometry in 𝐺

3

Let𝛼 : 𝐼 → 𝐺
3
be a curve in theGalilean space𝐺

3
.The curve

𝛼 is called a Frenet curve of osculating order 3 if its derivatives
𝛼
󸀠
(𝑠), 𝛼󸀠󸀠(𝑠), 𝛼󸀠󸀠󸀠(𝑠), 𝛼󸀠󸀠󸀠󸀠(𝑠) are linearly dependent, and 𝛼

󸀠
(𝑠),

𝛼
󸀠󸀠
(𝑠), 𝛼󸀠󸀠󸀠(𝑠), 𝛼󸀠󸀠󸀠󸀠(𝑠) are no longer linearly independent for

all 𝑠 ∈ 𝐼.

Proposition 4. Let 𝛼 : 𝐼 → 𝐺
3
be a curve in the equiform

geometry of the Galilean space 𝐺
3
; one has

𝛼
󸀠
(𝑠) = 𝑇 (𝑠) ,

𝛼
󸀠󸀠
(𝑠) = K (𝑠) 𝑇 (𝑠) + 𝑁 (𝑠) ,

𝛼
󸀠󸀠󸀠
(𝑠) = (K

󸀠
(𝑠) +K

2
(𝑠)) 𝑇 (𝑠)

+ 2K (𝑠)𝑁 (𝑠) +T (𝑠) 𝐵 (𝑠) ,

𝛼
󸀠󸀠󸀠󸀠

(𝑠) = (K
󸀠󸀠
(𝑠) + 3K (𝑠)K

󸀠
(𝑠)) 𝑇 (𝑠)

+ (3K
󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠))𝑁 (𝑠)

+ (3K (𝑠)T (𝑠) +T
󸀠
(𝑠)) 𝐵 (𝑠) .

(18)

Notation. Let us write
𝑁
1
(𝑠) = 𝑁 (𝑠) , (19)

𝑁
2
(𝑠) = 2K (𝑠)𝑁 (𝑠) +T (𝑠) 𝐵 (𝑠) , (20)

𝑁
3
(𝑠) = (3K

󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠))𝑁 (𝑠)

+ (3K (𝑠)T (𝑠) +T
󸀠
(𝑠)) 𝐵 (𝑠) .

(21)

Remark 5. 𝛼󸀠(𝑠), 𝛼󸀠󸀠(𝑠), 𝛼󸀠󸀠󸀠(𝑠), 𝛼󸀠󸀠󸀠󸀠(𝑠) are linearly dependent
if and only if𝑁

1
(𝑠),𝑁

2
(𝑠),𝑁

3
(𝑠) are linearly dependent.

As the definition of AW(𝑘)-type curves in [5], we have the
following definition.

Definition 6. Curves (of osculating order 3) in the equiform
geometry of the Galilean space are given as

(i) of type weak AW(2) if they satisfy

𝑁
3 (𝑠) = ⟨𝑁

3 (𝑠) ,𝑁
∗

2
(𝑠)⟩𝑁

∗

2
(𝑠) , (22)

(ii) of type weak AW(3) if they satisfy

𝑁
3
(𝑠) = ⟨𝑁

3
(𝑠) ,𝑁

∗

1
(𝑠)⟩𝑁

∗

1
(𝑠) , (23)

where

𝑁
∗

1
(𝑠) =

𝑁
1
(𝑠)

󵄩󵄩󵄩󵄩𝑁1 (𝑠)
󵄩󵄩󵄩󵄩

,

𝑁
∗

2
(𝑠) =

𝑁
2
(𝑠) − ⟨𝑁

2
(𝑠) ,𝑁

∗

1
(𝑠)⟩𝑁

∗

1
(𝑠)

󵄩󵄩󵄩󵄩𝑁2 (𝑠) − ⟨𝑁
2 (𝑠) ,𝑁

∗

1
(𝑠)⟩𝑁

∗

1
(𝑠)

󵄩󵄩󵄩󵄩

.

(24)

Proposition 7. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
. Then 𝛼 is

of type weak AW(2) if and only if

3K (𝑠)T (𝑠) +T
󸀠
(𝑠) = 0. (25)

Corollary 8. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
.

(i) If 𝛼 is an isotropic logarithmic spiral in 𝐺
3
, then 𝛼 is

type weak AW(2) curve.
(ii) If 𝛼 is a circular helix in 𝐺

3
, then 𝛼 is type weak AW(2)

curve.
(iii) If 𝛼 is an isotropic circle in 𝐺

3
, then 𝛼 is type weak

AW(2) curve.

Proof. By using Remark 3 and Proposition 7, we have the
results.

Proposition 9. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
. If 𝛼 is of

type weak AW(3), then

3K
󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠) = 0. (26)

Corollary 10. If 𝛼 is an isotropic circle in 𝐺
3
. Then 𝛼 is of type

weak AW(3) curve.

Proof. It is obvious from Remark 3 and Proposition 9.

Corollary 11. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of theGalilean space𝐺
3
.Then there

is no isotropic logarithmic spiral or circular helix of type weak
AW(3).
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Proof. If 𝛼 is an isotropic logarithmic spiral or circular helix,
then from Remark 3 we have, respectively,

K (𝑠) = const. ̸= 0, T (𝑠) = 0, (27)

K (𝑠) = 0, T (𝑠) = const. ̸= 0. (28)

Substituting (27) and (28) in (26), we get, respectively,

K
2
(𝑠) = 0, T

2
(𝑠) = 0. (29)

SinceK(𝑠) is nonzero constant andT(𝑠) is nonzero constant,
this is impossible, so 𝛼 is not isotropic logarithmic spiral or
circular helix of type weak AW(3).

Definition 12. Curves (of osculating order 3) in the equiform
geometry of the Galilean space are given as

(i) of type AW(1) if they satisfy𝑁
3
(𝑠) = 0,

(ii) of type AW(2) if they satisfy
󵄩󵄩󵄩󵄩𝑁2(𝑠)

󵄩󵄩󵄩󵄩
2
𝑁
3
(𝑠) = ⟨𝑁

3
(𝑠) ,𝑁

2
(𝑠)⟩𝑁

2
(𝑠) , (30)

(iii) of type AW(3) if they satisfy
󵄩󵄩󵄩󵄩𝑁1(𝑠)

󵄩󵄩󵄩󵄩
2
𝑁
3
(𝑠) = ⟨𝑁

3
(𝑠) ,𝑁

1
(𝑠)⟩𝑁

1
(𝑠) . (31)

Theorem 13. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
. Then 𝛼 is

of type AW(1) if and only if

3K
󸀠
(s) + 3K

2
(𝑠) −T

2
(𝑠) = 0,

3K (𝑠)T (𝑠) +T
󸀠
(𝑠) = 0.

(32)

Proof. Since 𝛼 is a curve of type AW(1), we have 𝑁
3
(𝑠) = 0.

Then from (21), we have

(3K
󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠))𝑁 (𝑠)

+ (3K (𝑠)T (𝑠) +T
󸀠
(𝑠)) 𝐵 (𝑠) = 0.

(33)

Furthermore, since 𝑁(𝑠) and 𝐵(𝑠) are linearly independent,
we get

3K
󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠) = 0,

3K (𝑠)T (𝑠) +T
󸀠
(𝑠) = 0.

(34)

The converse statement is trivial. Hence our theorem is
proved.

Corollary 14. If 𝛼(𝑠) is an isotropic circle in 𝐺
3
, then 𝛼 is of

type AW(1) curve.

Proof. The proof is obvious from Remark 3 and Theorem 13.

Theorem 15. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
. Then 𝛼 is

of type AW(2) if and only if

6K
2
(𝑠)T (𝑠) − 2K (𝑠)T

󸀠
(𝑠) − 3T (𝑠)K

󸀠
(𝑠)

−T
3
(𝑠) − 3K

2
(𝑠)T (𝑠) = 0.

(35)

Proof. Suppose that 𝛼 is a Frenet curve of order 3; then from
(20) and (21), we can write

𝑁
2
(𝑠) = 𝛾 (𝑠)𝑁 (𝑠) + 𝛽 (𝑠) 𝐵 (𝑠) ,

𝑁
3
(𝑠) = 𝜂 (𝑠)𝑁 (𝑠) + 𝛿 (𝑠) 𝐵 (𝑠) ,

(36)

where 𝛾, 𝛽, 𝜂, and 𝛿 are differentiable functions. Since 𝑁
2
(𝑠)

and𝑁
3
(𝑠) are linearly dependent, coefficients determinant is

equal to zero and hence one can write

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾 (𝑠) 𝛽 (𝑠)

𝜂 (𝑠) 𝛿 (𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (37)

Here,

𝛾 (𝑠) = 2K (𝑠) , 𝛽 (𝑠) = T (𝑠) ,

𝜂 (𝑠) = 3K
󸀠
(𝑠) + 3K

2
(𝑠) −T

2
(𝑠) ,

𝛿 (𝑠) = 3K (𝑠)T (𝑠) +T
󸀠
(𝑠) .

(38)

Substituting these into (37), we obtain (35). Conversely if (35)
holds, it is easy to show that𝛼 is of typeAW(2).This completes
the proof.

Corollary 16. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
.

(i) If 𝛼 is an isotropic logarithmic spiral in 𝐺
3
, then 𝛼 is of

type AW(2) curve.
(ii) If 𝛼 is a circular helix in 𝐺

3
, then there is not circular

helix of type AW(2).
(iii) If 𝛼 is an isotropic circle in 𝐺

3
, then 𝛼 is of type AW(2)

curve.

Theorem 17. Let 𝛼 : 𝐼 → 𝐺
3
be a curve (of osculating order

3) in the equiform geometry of the Galilean space 𝐺
3
. If 𝛼 is of

type AW(3), then

3K (𝑠)T (𝑠) +T
󸀠
(𝑠) = 0. (39)

Proof. Since 𝛼 curve is of type AW(3), (31) holds on 𝛼. So
substituting (19) and (21) into (31), we have (39).The converse
statement is trivial. Hence our theorem is proved.

5. Bertrand Curves of AW(𝑘)-Type in
the Equiform Geometry of 𝐺

3

This section characterizes the curvatures of AW(𝑘)-type
Bertrand curves in the equiform geometry of the Galilean
space 𝐺

3
. We provided some theorems and conclusion to

show that there are Bertrand curves of weak AW(2)-type and
AW(3)-type in the equiform geometry of the Galilean space
𝐺
3
.

Definition 18. A curve 𝛼 : 𝐼 → 𝐺
3
with 𝜅(𝑠) ̸= 0 is called a

Bertrand curve if there exists a curve 𝛼̃ : 𝐼 → 𝐺
3
such that

the principal normal lines of 𝛼 and 𝛼̃ at 𝑠 ∈ 𝐼 are equal. In this
case 𝛼̃ is called a Bertrand mate of 𝛼 [11].
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The curve 𝛼̃ is called a Bertrand mate of 𝛼 and vice versa.
A Frenet framed curve is said to be a Bertrand curve if it
admits a Bertrand mate.

By definition, for a Bertrand pair (𝛼, 𝛼̃), there exists a
functional relation 𝑠 = 𝑠(𝑠) such that

𝜆̃ (𝑠 (𝑠)) = 𝜆 (𝑠) . (40)

Let (𝛼, 𝛼̃) be a Bertrandmate in the equiform geometry of the
Galilean space 𝐺

3
. Then we can write

𝛼̃ (𝑠) = 𝛼 (𝑠) + 𝜆𝑁 (𝑠) . (41)

Theorem 19. Let (𝛼, 𝛼̃) be Bertrand mate in the equiform
geometry of the Galilean space 𝐺

3
. Then the function 𝜆 defined

by relation (41) is a constant, and the equiform curvature
K(𝑠) = 0.

Proof. Let {𝑇(𝑠),𝑁(𝑠), 𝐵(𝑠)} and {𝑇̃(𝑠), 𝑁̃(𝑠), 𝐵(𝑠)} be the
Frenet frames according to the equiform geometry of the
Galilean space 𝐺

3
along 𝛼(𝑠) and 𝛼̃(𝑠), respectively. Since

(𝛼(𝑠), 𝛼̃(𝑠)) is a Bertrand mate, from (41) we can write

𝛼̃ (𝑠) = 𝛼 (𝑠) + 𝜆𝑁 (𝑠) . (42)

By differentiation of (42) with respect to 𝑠, we obtain

𝑇̃
𝑑𝑠

𝑑𝑠
= 𝑇 + 𝜆

󸀠
𝑁(𝑠) + 𝜆𝑁

󸀠
(𝑠) , (43)

where 𝑠 and 𝑠 are parameters on 𝛼 and 𝛼̃, respectively;
(𝑑𝑠/𝑑𝑠) ̸= 0. By using relation (17) we have

(𝛼̃ (𝑠))
󸀠
= 𝑇̃

𝑑𝑠

𝑑𝑠
= 𝑇 (𝑠) + (𝜆

󸀠
+ 𝜆K (𝑠))𝑁 (𝑠) + 𝜆T (𝑠) 𝐵 (𝑠) .

(44)

Since (𝛼̃(𝑠))󸀠 is parallel to 𝑇̃(𝑠), then

(𝛼̃ (𝑠))
󸀠
⊥ 𝑁̃ (𝑠) . (45)

Since 𝑁̃(𝑠) is parallel to𝑁(𝑠), then

(𝛼̃ (𝑠))
󸀠
⊥ 𝑁 (𝑠) . (46)

Thus, from (45) and (46), we have

⟨(𝛼̃ (𝑠))
󸀠
, 𝑁 (𝑠)⟩ = 0. (47)

Substituting (44) into (47), we obtain

𝜆
󸀠
+ 𝜆K (𝑠) = 0. (48)

Thus, from (48), we get that 𝜆 is constant, and K(𝑠) = 0.
Hence, the proof is completed.

Theorem 20. Let (𝛼, 𝛼̃) be Bertrand mate in the equiform
geometry of the Galilean space 𝐺

3
. Then angle measurement

of this curve between tangent vectors at corresponding points is
constant.

Proof. If we show ⟨𝑇̃(𝑠), 𝑇(𝑠)⟩
󸀠

= 0, then the proof is
complete:

⟨𝑇̃ (𝑠) , 𝑇 (𝑠)⟩
󸀠

= ⟨(𝑇̃ (𝑠))
󸀠

, 𝑇 (𝑠)⟩ + ⟨𝑇̃ (𝑠) , (𝑇 (𝑠))
󸀠
⟩

= ⟨K̃ (𝑠) 𝑇̃ (𝑠) + 𝑁̃ (𝑠) , 𝑇 (𝑠)⟩

+ ⟨𝑇̃ (𝑠) ,K (𝑠) 𝑇 (𝑠) + 𝑁 (𝑠)⟩

= K̃ (𝑠) ⟨𝑇̃ (𝑠) , 𝑇 (𝑠)⟩ + ⟨𝑁̃ (𝑠) , 𝑇 (𝑠)⟩

+K (𝑠) ⟨𝑇̃ (𝑠) , 𝑇 (𝑠)⟩

+ ⟨𝑇̃ (𝑠) ,𝑁 (𝑠)⟩ .

(49)

Since 𝑁̃(𝑠) is parallel to𝑁(𝑠) and𝑁(𝑠) ⊥ 𝑇(𝑠), then

⟨𝑁̃ (𝑠) , 𝑇 (𝑠)⟩ = 0. (50)

Since 𝑁̃(𝑠) is parallel to𝑁(𝑠) and 𝑇̃(𝑠) ⊥ 𝑁̃(𝑠), then

⟨𝑇̃ (𝑠) ,𝑁 (𝑠)⟩ = 0. (51)

Since (𝛼, 𝛼̃) is Bertrandmate in the equiform geometry of the
Galilean space 𝐺

3
, fromTheorem 19 we have

K (𝑠) = 0, K̃ (𝑠) = 0. (52)

So, substituting (50), (51), and (52) into (49), we have

⟨𝑇̃ (𝑠) , 𝑇 (𝑠)⟩
󸀠

= 0. (53)

Hence, the proof is completed.

Theorem 21. Let 𝛼 : 𝐼 → 𝐺
3
be a curve in the equiform

geometry of the Galilean space 𝐺
3
. Then 𝛼 is a Bertrand curve

if and only if 𝛼 is a curve with constant torsionT(𝑠).

Proof. Deneote the Frenet frames of 𝛼(𝑠) and 𝛼̃(𝑠) by
{𝑇(𝑠),𝑁(𝑠), 𝐵(𝑠)} and {𝑇̃(𝑠), 𝑁̃(𝑠), 𝐵(𝑠)}, respectively. Let
angle between 𝑇(𝑠) and 𝑇̃(𝑠) which is tangent vector of 𝛼̃(𝑠)
be 𝜃. As (𝑁(𝑠), 𝑁̃(𝑠)) is a linearly dependent set, we can write

𝑇̃ (𝑠) = cos 𝜃𝑇 (𝑠) + sin 𝜃𝐵 (𝑠) . (54)

If we differentiate (54) and consider (𝑁(𝑠), 𝑁̃(𝑠)) is a linearly
dependent set, we can easily see that 𝜃 is a constant function.
Since 𝛼(𝑠) and 𝛼̃(𝑠) are Bertrand curve mates, we have

𝛼̃ (𝑠) = 𝛼 (𝑠) + 𝜆𝑁 (𝑠) . (55)

If Differentiating (55) with respect to 𝑠 and with the help of
Theorem 19, we get

𝑇̃
𝑑𝑠

𝑑𝑠
= 𝑇 (𝑠) + 𝜆T𝐵 (𝑠) . (56)

If we consider (54) and (56), we obtain

cot 𝜃𝜆T (𝑠) = 1. (57)
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Taking 𝜐 = cot 𝜃𝜆, we get

T (𝑠) =
1

𝜐
. (58)

This means that T is constant. The converse statement is
trivial. Hence, theorem is proved.

Corollary 22. Let 𝛼 : 𝐼 → 𝐺
3
be Bertrand curve in the

equiform geometry of theGalilean space𝐺
3
.Then𝛼 is a circular

helix in 𝐺
3
.

Proof. Since 𝛼 is Bertrand curve in the equiform geometry of
the Galilean space 𝐺

3
, fromTheorems 19 and 21 we have

K (𝑠) = 0, T (𝑠) is constant. (59)

Thus, 𝛼 is a circular helix in 𝐺
3
. Hence, theorem is proved.

Theorem 23. Let 𝛼 : 𝐼 → 𝐺
3
be Bertrand curve in the

equiform geometry of the Galilean space 𝐺
3
. Then 𝛼 is a weak

AW(2)-type or AW(3)-type curve.

Proof. Now suppose that 𝛼 : 𝐼 → 𝐺
3
is Bertrand curve in

the equiform geometry of the Galilean space 𝐺
3
. Then, from

Theorems 19 and 21 we have

K (𝑠) = 0, T (𝑠) is constant, (60)

if (60) is substituted into (25) and (39), which completes the
proof of the theorem.

Theorem 24. Let 𝛼 : 𝐼 → 𝐺
3
be Bertrand curve in the

equiform geometry of the Galilean space 𝐺
3
.Then 𝛼 is not a

weak AW(3)-type or AW(2)-type curve.

Proof. Since 𝛼 : 𝐼 → 𝐺
3
is Bertrand curve according to

the equiform geometry of the Galilean space 𝐺
3
, then, (60)

holds on 𝛼. If (60) is substituted in (26) and (35), we get,
respectively,

T
2
(𝑠) = 0, (61)

T
3
(𝑠) = 0. (62)

SinceT is nonzero constant, this is impossible. So, 𝛼 is not a
weak AW(3)-type or type AW(2) curve. Hence, the theorem
is proved.
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