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Based on the analysis of the existing land use change simulation model, combined with macroland use change driving factors and
microlocal land use competition, and through the application of Python language integrated technical approaches such as CA, GIS,
AHP, and Markov, a multitarget land use change simulation model based on cellular automata(CA) is established. This model was
applied to conduct scenario simulation of land use/cover change of the Jinzhou New District, based on 1:10000 map scale land use,
planning, topography, statistics, and other data collected in the year of 1988, 2003, and 2012. The simulation results indicate the
following: (1) this model can simulate the mutual transformation of multiple land use types in a relatively satisfactory ways; it takes
land use system as a whole and simultaneously takes the land use demand in the macrolevel and the land use suitability in the local
scale into account; and (2) the simulation accuracy of the model reaches 72%, presenting higher creditability. The model is capable
of providing auxiliary decision-making support for coastal regions with the analysis of the land use change driving mechanism,

prediction of land use change tendencies, and establishment of land resource sustainable utilization policies.

1. Introduction

Land use change refers to a complicated change caused by the
interaction of natural and social systems in different temporal
and spatial scales [1]. As a typical reflection of LUCC in terms
ofland use layout structure, land use change involves not only
natural factors such as soil, water, and atmosphere, but also
social factors including government policies, economy, pop-
ulation, and values. Land use change plays an important role
in ecological systems, global environmental changes, and sus-
tainable development. With the development of society and
growth of population, the contradictions among population,
resources, and environment have become increasingly severe,
and people are also paying growing attention to research
on land use change [2, 3]. In addition, with China’s rapidly
growing economy, the country is currently experiencing a
period dominated by the great transformation of social and
economic structures, which result in deeper changes faced by
land use in China.

The land use change simulation model can reveal the
causes of temporal and spatial changes of land use, driving

mechanism of impact factors, and acting approaches. It can
also provide a decision-making basis for the prediction of
future development and changing trends and the establish-
ment of relevant policies [4]. Throughout the world, the
model currently includes the following several relatively
representative land use change simulation and prediction
models: the conversion of land use and its effects at small
regional extent (CLUE-S), system dynamics (SD), Markov
model, multiagent system (MAS), cellular automata (CA).
The CLUE-S model was built by Verburg et al., based on
the CLUE model and high-resolution spatial graphic data.
Although it has a relatively strong capacity to simulate land
use scenario patterns of different scales, the model mainly
takes statistical and empirical models as the basis for the evo-
lution and distribution of local land use patterns. As a result,
it is difficult for this model to fully reflect the complicated
characteristics of the evolution of microcosmic pattern of
land use [5, 6]. SD can reflect the complicated behaviors of
land systems in macroterms and boasts long-degree simula-
tion characteristics and the advantage of scenario simulation.
However, as a top-to-bottom macroquantitative model, clear
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shortcomings still exist in this model, in respect to the
reflection of spatial pattern characteristics of land use [7, 8].
The Markov model is capable of predicting change in quantity
of land use types, and the area proportion of each land use
type in the future can be precisely predicted using this model.
However, it cannot be used to determine its spatial position
or the characteristics of spatial change and distribution [9].
The MAS model generates a macroglobal pattern through the
interaction of microindividuals, mainly based on a bottom-
to-top mathematical modeling concept. It has outstanding
characteristics in terms of its flexible setting and strong
applicability concerning the simulation of dynamic changes
of temporal and spatial changes of land use. However,
the model’s decision-making framework must be further
perfected and its inspection and verification methods require
further exploration [10]. Nevertheless, land use change is a
result of nonlinear complicated and comprehensive actions of
humanistic and natural factors in different scales. Thus, it is
still a great challenge for land use change simulation models
to fully reflect the macrodriving factors of land use system
change and the complicated characteristics of the evolution
process of microcosmic patterns, as well as to improve the
reliability of land use change simulation [11].

Cellular automata (CA) was first proposed by Ulan and
Von Neumann in the late 1940s. It is a grid dynamical model
in which time, space, and state are all discrete, and spatial
interaction and temporal casual relationship are both local,
and it is able to simulate the temporal and spatial evolution
process of complicated systems [12]. The parts constituting
CA are called as “cells,” and each cell has a state which can only
be a concentrated finite state. The states of the cells change
with time and are determined according to local transition
rules [13]. Wolfram proved that the CA model could simulate
complicated natural phenomena and established the basis
of CA theory. CA is defined as a discrete dynamical model
which can evolve a global change pattern in terms of time and
space, through local behaviors among individuals [14, 15]. For
these reasons, CA has been widely applied in LUCC [16, 17],
urban growth [18,19], fire [20, 21], ecology [22, 23], traffic flow
[24, 25], and simulation in other relevant areas.

CA also adopts a bottom-to-top modeling concept with
strong spatial modeling and computing capacity and is thus
able to effectively simulate spatial changes of systems, but
it mainly focuses on the interaction of the local neighbor-
hood of cells. During the simulation process, it emphasizes
the elements of the natural environment. However, it fails
to consider complicated spatial decision-making behaviors
and humanistic factors, thus presenting certain limitations.
During LUCC simulation, in order to more effectively match
CA with the research subject, many limiting conditions of
CA model must be solved in a proper manner, and macroim-
pact factors such as society and economy must be taken
into account so as to combine CA with other models and
techniques. Liand Yeh have put forward a CA model based on
artificial neural networks [26] and ant colony algorithm [27]
and conducted simulation for the Pearl River Delta region
on multiple times. Breakthroughs have also been obtained in
the research of automatic extraction of cell transition rules
using artificial intelligence technology. Lauf et al. researched
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an improved CA model, which discusses the expansion of
residential construction land with SD as the basis and family
and housing factors as the driving forces. Furthermore, it
has been pointed out that population mobility and change of
age structure are currently two important reasons for either
the urban growth or shrinking of European countries and
USA [28]. Arsanjani et al. combined the Markov model,
logistic regression model, and CA model, thus enormously
improving the accuracy rate of the simulation of urban
expansion [18].

Domestic and foreign experts and scholars have per-
formed abundant research regarding the simulation and
prediction of land use change, but we must also be aware
of the following problems existing in the research of the
driving mechanism and simulation of land use change and
which urgently require solutions: the research on driving
force generated by the interaction between macrofactors and
regional land use types on the land use change is insufficient;
although there has been relatively abundant research on the
one-way transformation from nonurban land use types to
urban land use types during simulation of land use change,
research on mutual transformation among multiple land use
types and multitarget land use type simulation is insufficient;
in addition, research on the inner mechanism in which
oceanic impact factors in coastal regions influence land
use spatial pattern is also insufficient. If viewed from these
aspects, new models and methods of long term and large
scale are employed to conduct research on LUCC simulation
and prediction of coastal regions, which is of great theoretic
and realistic significance for the exploration of the reasonable
utilization of land resources, orderly expansion of urban
space, and development and protection of cultivated land and
unused land under the background of new urbanization. This
is also an important research topic for realizing the harmonic
development of the human race and the environment and the
sustainable development of human society.

In summary, based on technical approaches such as CA,
GIS, AHP, and Markov, the present study comprehensively
considers the influence of macrodriving factors and local land
use competition on land use change, establishes a multitarget
land use change model based on CA, studies the land use
change simulation of the Jinzhou New District of Dalian City,
and verifies the reliability of the model, so as to provide model
support and empirical study of multitarget land use change
simulation.

2. Multitarget Land Use Change Simulation
Model Based on Cellular Automata

The theoretic precondition of the multitarget land use change
simulation model based cellular automata is that the land use
change is mainly driven by the land macrodemand of this
region and the interaction among microlocal neighborhoods,
and there are phenomena of mutual conversion among each
land use type in land use change. The entire model mainly
consists of CA, GIS, AHP, and Markov and is implemented
by the method of loose integration. The CA module is
implemented through Python language programming, and
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FIGURE 1: Flowchart of multitarget land use change simulation model based on cellular automata.

the GIS spatial analysis module is completed by relying on
the ArcGIS Desktop of ESRI. The CA model and GIS adopt
tightly integrated models, and Python language is adopted
to call the ArcGIS Raster module function to implement
the CA model. The change of area of each land use type is
calculated and simulated from the initial year to the terminate
year through the Markov model, so as to acquire the total
demand of land use. The weights of the indexes which
influence land use suitability are calculated by AHP. The
optimum probability selection strategy is adopted to conduct
the dynamic simulation of spatial configuration of land use
until the demand has been satisfied. The flow chart of the
multitarget land use change simulation model based on CA
is shown in Figure 1.

The main technique process of this study is as follows:
GIS can provide abundant spatial information and a powerful
spatial data processing platform for land use change simu-
lation. GIS is then applied to process land use data, basic
elements data, topographic data, and planning data to obtain
a comprehensive geographic information database with con-
sistent data structures and unified geographic coordinates.
The massive spatial information provided by GIS may be used
as various spatial variables and restrictions required for CA
input. In addition, the powerful spatial analysis function of
GIS can be utilized to obtain the layer required for evaluation
of land use suitability. The transition rules of the model

are often expressed by transition probability or transition
potential. Based on macro- and microfactors influencing land
use change, the AHP decision-making analysis method is
applied to acquire the weight parameters of different impact
factors driving land use change, so as to obtain the land use
suitability, after which it can be transited to the multitarget
transition probability through a certain algorithm. In this
model, the Markov prediction method is mainly used to
calculate the change of area of each land use type from the
initial year to the terminate year of simulation. In the CA
model, based on the defining neighborhood and transition
rules, various parameters mentioned above and optimum
probability selection strategy are utilized to judge the changes
of cell land use types one by one on the basis of the input of
land use map until all land use demands have been satisfied.
Then, the spatial iterative process is ended and a new land use
simulation layer of the targeted year is obtained.

2.1. Multitarget Land Use Change. Land use change process
involves the mutual transition among multiple land use
types. Spatial autocorrelation exists when a value observed in
one geographic location relies on the values of neighboring
locations. Spatial autocorrelation relationship exists in the
geographic study object, and this kind of relation can not only
function among plots of the same land use type, but also play



FIGURE 2: Moore neighborhood (r = 2).

a part in plots of different land use types. Before implement-
ing the multitarget land use change simulation model based
on CA, we have to study the function relationship between
the initial land use type and terminate land use type of the
central cell under different neighborhood scenarios. These
requires the quantity of cells of each land use type within the
cell neighborhood as the neighborhood scenario, the initial
land use type of the central cell as the input variable and
the terminate land use type of the central cell simulated as
the output variable. The interaction between land use type
of the central cell and land use type of the neighborhood
cell is usually equivalent during calculation [29], which has
simplified the computation complicacy. However, this also
covered the issue of acting direction of land use type, as
the transition of land use type of central cell is based on
independent neighborhood scenario. Therefore, the influence
relation among land use types is that of nonequivalence.

During land use change, the cell states mainly refer to
the different current situations of land use, for example,
agricultural land, construction land, and unused land. The
neighborhood structure of cell determines its transition
state; that is, the closer to the central cell, the greater the
effect on the state transition in the transition rules. Moore
neighborhood is adopted as the neighborhood structure of
cell in this model. Radius of neighborhood r = 2 (i.e., 5 * 5
neighborhoods, as shown in Figure 2).

Three land use types with large area proportion and
obvious change, namely, agricultural land (A), construction
land (B), and unused land (U), are selected as the study
objects in this model to study the competitive relation of
cells in the neighborhood and multitarget land use change.
Water area (S) with small change in area and stable position
is selected as the protective land and, during the simulation
process, cells of this type do not go through land use type
transition. Furthermore, other cells do not transit to this land
use type either. Different land use type cells are indicated by
different colors. As shown in Figure 3, the initial land use type
of the central cell is agricultural land; the number of cells of
agricultural land in the neighborhood scenario is 7 (Num (A)
= 7); the number of cells of construction land is 8 (Num (B)
= 8); the number of cells of unused land is 7 (Num (U) = 7).
The probabilities of the final land use type of the central cell
as agricultural land, construction land, or unused land are
different under the influence of the neighborhood scenario.

Abstract and Applied Analysis

___________

——————————— - ——--=---=
I

! Initial state | 'Neighborhood X 'Terminate state,
| | ! b :
1 ! | ! | !
! | ! . i
| I f |
| i | Num (A) = 7 : Out type A i
1 1 I 1 I |
I I

1 [ ! ! N Ll
: ! 1 N : /T ] i
: ! : L1 1! 1 [1 !
! ! ! Num (B)=8 Out type B |
1 ! 1 ) [ !
: LY 2 |
| | | b l
| o ] |
H I i Num (U) =71 , OuttypeU

O Agricultural land (A)
B Construction land (B)

O Unused land (U)
[ Conservation land (S)

FIGURE 3: Multitarget land use change in neighborhood.

The initial land use condition of each cell will be known
during land use change simulation, and some training data
will be available in order to establish a model which can reflect
the true land use evolution. Such training data can be used
to calibrate and verify the land use change simulation model
[13]. According to the development of the study area and
the continuity of land use change, two periods of land use
data are adopted in the model correction stage to calculate
the multitarget transition probability of the land use type
of the central cell under each neighborhood scenario. The
calculation method is shown as follows.

First, we can record a land use change process as Trans:

Trans (S; — Si 18 = n), ¢))

where S; — S indicates the transition state of the central
cell from §; to §;, and S, = n indicates a neighborhood
scenario in which the quantity of cells with state of S in the
neighborhood is .

The initial land use types, terminate land use types, and
neighborhood scenarios of all of the cells calculated in the
research area are indicated as follows:

Count (Si — 81§ = n). (2)

This formula indicates that the quantity of cases of cells
with state of S, under the neighborhood scenario within the
neighborhood is nand with central cell transited from §; to S ;.
It can further indicate the potential of transition of the central
cell from land use type i to j when the quantity of cells with
state of S, within the scope of the neighborhood is as follows:

Count (S; — §;8; =n)

€)
Count (S;S;, = n)

P(S;— 88 =n)=
Based on the different values of n, the transition potential

is indicated by the following set:
Cioju=1{P(S;— SIS =n)Ineon]}, ()

where # indicates the sum of cell quantities within the
neighborhood except central cell (1 = 24 in this model).
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The potential of transition state of the central cell con-
taining all neighborhood scenarios from §; to §; is indicated
through the following formula:

m
L= Zci—>j|k’ (5)
%

where m indicates the quantity of cell state within this
neighborhood.

Therefore, the local land use type state transition potential
matrix can be expressed as follows:

7Ti=|Ii—>i Ly - Ii—»ml’
Ii—»i Ii—»j Ii—>m
= . .
Lo Im—>j o Iyom

It is worth noting that the transition potential indicates the
degree of competitive advantage of the central cell when going
through such type of change. Therefore, the sum of all values
in m; is not equal to 1.

2.2. Transition Rules and Comprehensive Transition Probabil-
ity. The core part of CA is the definition of the transition
rules. The state transition of a cell from moment f to moment
t + 1 is decided by the states of itself and its neighbors
at moment ¢, as well as the relevant transition rules. The
transition rules of CA are reflected by the expression of the
neighborhood function. During the simulation process, it is
required to conduct dynamic iterative computation of the
change of neighborhood. The function expression is shown
as follows:

S = 1 (Sip Q4 T'). )

where /! and §j; indicate the land use states of cell ij at
moment ¢ + 1 and moment £, respectively; ij indicates the
development condition of the neighborhood space of cell ij
(representing the neighborhood effect); T* refers to a series of
transition rules; and f refers to the state transition function.
The formula indicates that land use change is a history
dependent process, as the past land use state influences future
land use through interaction among plots. In the simulation,
the interaction among local neighborhood cells is captured
through a movable 5 * 5 window which will be applied to
each pixel and return a value to indicate the ratio of state Sfj
among its 24 neighbors. Such local and dynamic information
is reflected through a series of impact factors. We then utilize
the weighing and addition of the evaluation score of impact
factors and transit it to the probability of cell ij at moment
t+1.

If analyzed from the perspective whether factors influ-
encing land use change alter during the land use change
process, the impact factors of land use change can be classified
as either dynamic factors or static factors. Dynamic factors
continuously change during the entire simulation process and

reflect the results of transition state of cells in each iterative
process. If the cell state within the scope of the neighborhood
changes, then the transition potential matrix will be updated
accordingly. Static factors remain as constants throughout the
entire simulation process and reflect the global configuration
of cell space, for example, spatial distance from the urban
center. Static and dynamic factors impose different influences
on the land use change simulation, which are mainly reflected
by the respective weights of different factors.

Land use change process is very complicated. Besides the
action of the local neighborhood (dynamic factor), a suitable
condition (static factor) also plays a very important role in the
transition of land use types. Therefore, in this model a land
use suitability layer L, corresponding to each land use type,
has been built:

« B
L= <2Fik‘/vik> HFik’ (8)
k=1 k=1

where F;, refers to the scoring of impact factor k to class i
land use type. When 1 < k < a, Fj; indicates a nonrestrictive
suitable condition composed of a group of spatial distance
variables; when 1 < k < 3, Fj, indicates restrictive suitable
condition composed of protective land, topography, and so
forth, and the value of this score is either 0 or 1. Wy, indicates
the weight of nonrestrictive suitable condition k for class i
land use type and is acquired by using AHP. During each
simulation process, the comprehensive transition probability
of land use type of each cell is obtained based on the
transition potential of the land use type generated through
the interaction of local neighborhood land use types and the
suitability of land use. It can be indicated as follows:

X L.
Pij:eXP[“<L_l>]) 9)
max(ﬂixLJ-)

where p;; indicates probability of transition from class i
land use type to class j land use type, and « indicates the
variable of discrete degree with the value determined as 0-1.
Since the states of the neighborhood cells are dynamic, the
comprehensive transition probability is also dynamic. As a
result, the transition rules of the CA model in each time step
length are updated.

2.3. Acquisition of Weights. In land suitability evaluation, the
setting of weights of different factors must be considered
based on various different evaluation factors. How to set these
weights is essential, and weights can be acquired through
expert scoring by utilizing AHP [30]. AHP acquires priority
from the comparison of application coupling (degrading
from general criterion to secondary criterion). It is only
required to compare a couple of criteria before making an
effective decision. A 9-point scale can be applied in the
comparison to measure the priority of a couple of criteria.
Matrix A is determined as follows:

A:ai.:

j ) (10)

E &



where W = (wi)T refers to the feature vector of matrix A
and w; indicates the weight of vector W which is distributed
from 1to 9; meanwhile, g;; is distributed from 1/9 to 9. When
the main feature vector g;; is normalized, the priority of the
decision maker has been reflected and is described as follows:

AW = (3> 5 (@) = "W, (1)
@j
where A™ refers to the maximum eigenvalue of matrix A.

Consistency index

Amax -n

n—1

CI (12)
When CI = 0, the matrix is judged as fully consistent; on the
contrary, the greater the Cl is, the poorer the judgment of the
matrix consistency will become.

2.4. Optimum Probability Selection Strategy. CA simulation
is completed by several loops. In order to express the
uncertainty of the land evolution, the optimum probability
selection strategy is adopted in each loop to determine if
this cell has gone through state transition. In order to define
whether or not transition of land use type occurs to the cell, it
is necessary to introduce a threshold to indicate the resistance
of the transition of land use type. When the comprehensive
transition probability of the cell is greater than this threshold,
the cell land use type transits [31]. The transition potential of
each cell to different land use types can be calculated during
each iterative process of the multitarget land use change
simulation model based on CA. If a unified threshold is used
to uniformly process all cells, then the condition that a cell
is transited toward multiple directions will present itself. If
these data are recorded one by one, a very large quantity of
simulation results is certain to be generated, which is not
permitted by either the algorithm efficiency or computer
storage space. By referring to the CA-Markov model, the
optimum probability selection strategy is adopted in this
model to judge the change of land use type of cells one by
one, based on the initial land use map input. The cell with
the maximum comprehensive transition probability will be
selected with priority to pass through transition, so as to
judge the transition direction of the cells from an overall
perspective, until all land use demands have been satisfied.
Then, the spatial iterative process is concluded to obtain a new
land use simulation layer in the targeted year (as shown in
Figure 4).

3. Case Application and Results

3.1. Overview of Study Area and Data Sources. The Jinzhou
New District of Dalian is located in the southern area of
the Liaodong Peninsula and the middle of Dalian, with
coordinates of 121°26'-122°18'E and 38°56'-39°24'N. It faces
the Yellow Sea on the east and approaches the Bohai Sea
on the west. The isthmus separates Jinzhou Bay and Dalian
Bay. The district borders on the Ganjingzi District of Dalian
to the south and connects with Pulandian to the north.
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FIGURE 4: Sketch of the optimal probability selection strategy.

Separated from Wafangdian by sea, the district grips the
throat of Dalian (as shown in Figure 5). The district covers a
total area of 1,483.22 km?. The favorable geographical location
advantages and national policies have enabled Jinzhou New
District to realize rapid economic and social development
and continuous improvement of urbanization level over the
past twenty years. At the same time, the demands for land
resources, especially construction land, have significantly
increased; the spatial pattern of land use has changed rapidly;
the difference of internal structure has become obvious;
and the contradictions between men and land have become
increasingly prominent. Therefore, it is typical and represen-
tative to use the Jinzhou New District as an empirical case in
the land use change study of coastal regions.

Multidate land usage and cover data is adopted in the
model for simulation. The research data of this paper is
mainly obtained from the 1:10000 map scale vector land
use database of 1988, 2003, and 2012, provided by the
Dalian Municipal Bureau of Land Resources and Hous-
ing. These data comply with the Present Status Classifica-
tion of Land Utilization (GB/T 21010-2007) of the People’s
Republic of China. The topographic data is obtained from
the International Scientific Data Mirror Site of Computer
Network Information Center, China Academy of Sciences
(http://www.gscloud.cn) (detailed in Table 1).

In order to simplify the simulation process, according
to the “PRC Law on Land Management,” the land use types
are classified into agricultural land (A), construction land
(B), and unused land (U). Meanwhile, the rivers, reservoirs,
intertidal zones, and so forth are extracted as conservation
land (S) prohibited for change, as well as restrictive layer
(specific classification shown in Table 2), since they are
protected in the land use planning.

3.2. Driving Factors and Setting of Model Parameters. In
land use change simulation, land use/land cover changes
dynamically. A series of natural and social factors drive land
use change. Before the model is used for formal simulation,
it is required to set and continuously correct the param-
eters, in order to ensure smooth simulation, as well as to
guarantee the accuracy of the simulation result. The model
parameters mainly consist of two parts: weights of driving
factors and land use transition probability matrix. Driving
factors here mainly refer to static factors influencing land use
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FIGURE 5: Location of the Jinzhou New District.

TaBLE 1: Data sources and description.

Data sources

Data type Data features

Land use real maps Polygon (1988, 2003, and 2012)
Roads Polyline (2012)

City/town center Point (2012)

Coastline Polyline (2012)

Land use zoning Land use planning (2006-2020)

DEM GDEM DEM (30 m resolution)

Provided by the Dalian Municipal Bureau of Land
Resources and Housing

Provided by the International Scientific & Technical
Data Mirror Site, Computer Network Information
Center, and Chinese Academy of Sciences
(http://www.gscloud.cn)

change. For example, the construction of roads, highways,
and railways will improve accessibility and land transition
probability, especially for railways and highways connecting
rural areas which can be easily developed; and topography
is a main factor restricting agricultural and urban activities,
especially in areas with complicated landform characteristics
where uneven topography has obstructed urban development
and agricultural production. Due to the fact that abundant
memory space will be occupied during the simulation, the
size of a pixel of present status map of input/output land
use and suitability layer of this model is 30 * 30 m. The
layer of this spatial resolution can ensure that no memory

overflow occurs during the simulation, and relatively accurate
simulation result is obtained.

According to Formula (8), in comprehensive consid-
eration of the influences of cities, organic towns, roads,
coastlines, and terrain factors on land use change, the simple
expression form of the comprehensive suitability of land use
is as follows:

L; = (B,dCity + B,d Town + f33d Road
(13)
+p3,d Coastline + f35 Slope) Restrict,
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TaBLE 2: Classification of land use types.
Land use type ~ Meaning
. Refers to land directly used for agricultural
Agricultural L . .
production, including cultivated land, garden
land (A)
land, and grassland.
Refers to the land used for construction of the
buildings and structures, including land for
Construction commercial service, industry, mining,
land (B) warehouse, residential, public management,
public service, transportation, and special
demands.
Unused land Refers to upt‘apped forests, land less disturbed by
) human activity, and other lands except
agricultural and construction land.
Conservation  Refers to the water surface of rivers, lakes, and
land (S) reservoirs, tidal flat swamps, and so forth.

TABLE 3: Weights of driving factors.

Driving factors Meaning A B U

dCity Distance to city center  0.1045 0.2636 0.0856
dTown Distance to town center 0.3700 0.1315 0.1253
dRoad Distance to main road  0.1641 0.4438 0.0758
dCoastline Distance to coastline  0.0900 0.0557 0.3380
Slope Slope 0.2714 0.1054 0.3753
where f3,,..., 55 refer to the weights acquired from AHP;

d City, d Town, d Road, and d Coastline, respectively, indicate
the spatial distance scores of city centers, centers of organic
towns, roads, and coastlines; Slope refers to slope score; and
Restrict refers to the general score of restrictive factors.

The land use suitability layer is generated by using
the spatial analysis function of GIS, and the results are
normalized (value determined from 0 to 1). The method of
expert scoring is adopted and AHP is utilized to acquire the
weights of the driving factors as the global static decision-
making basis of each iterative process. The driving factors and
their weights selected in this study are shown in Table 3. The
Markov model can effectively predict the amount of change
ofland use within the time period of simulation. The land use
transition probability matrix (Table 4) takes the present status
maps of land use 01988, 2003, and 2012 as the initial and final
land use types. It is acquired through the method stipulated
in 2.1 as the reference in the initial stage of simulation.

3.3. Simulation Results and Accuracy Evaluation and Analysis.
According to the proportion of each land use type in 2003,
transition probability matrix, and the total area of the study
area, the land use landscape pattern of the Jinzhou New
District in 2012 is simulated with nine years as the step
length. Figure 6 indicates the present status map of actual
land use of the Jinzhou New District in 2012 (Figure 6(a))
and comparison diagram of simulation results of land use
(Figure 6(b)). It is discovered through visual comparison that
the simulation results are very similar to the overall pattern
of the actual land conditions, thus presenting a high degree of
accuracy. The accuracy of the land simulation in the southern
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Land use type
I Agricultural land
I Construction land

Unused land

Conservation land

(b) Simulated map

FIGURE 6: Actual and simulated land use maps of Jinzhou New
District.

and western regions is the most outstanding, but the error
of simulation result in northwestern and middle regions is
relatively significant.

It is discovered from the comparison of this simulation
results and real land use map that the distribution of land
use of each type indicated in the two images is generally
consistent. The area matrix contrast test is shown in Table 5.
We can see from the table that the area of each type of land
use is of relatively favorable simulation accuracy, of which the
conservation land has no change in the process of simulation.
The accuracy of the agricultural land area is relatively low,
because the degree of advantage of this land use type is
relatively low compared with other land use types; it is in a
passive changing status and large volatility fluctuation.
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TABLE 4: Transition probability matrix.

Transition probability

Periods of time ~ Land use type
A B U
A 0.8763 0.0528 0.0709
1988-2003 B 0.0678 0.9151 0.0171
U 0.1049 0.0431 0.8520
A 0.7483 0.1525 0.0993
2003-2012 B 0.1530 0.7722 0.0748
U 0.2210 0.1077 0.6713

TaBLE 5: Comparison of simulated area and actual area (area unit:

km?).

Land use type  Simulated area Actual area Deviation
A 624.6621 636.7995 -12.1374
B 408.0852 398.2689 9.8163
U 300.5964 298.2753 2.3211

S 149.8770 149.8770 0

In order to improve the accuracy of the follow-up sim-
ulation and realize more accurate prediction, it is neces-
sary to conduct an accuracy evaluation of the simulation
results. The Kappa coefficient inspection method is the most
common quantitative inspection method used to compare
the consistency of two images [32]. The higher the Kappa
coeflicient is, the greater the consistency between the two
images will be, that is, higher simulation accuracy. The three
tables below (Tables 6, 7, and 8), respectively, indicate the
inspection results of the Kappa coeflicients of the three land
use types, that is, agricultural land, construction land, and
unused land. From these tables, we can see that the Kappa
coeflicients of these three land use types are 0.7269, 0.7519,
and 0.7192, respectively, thus presenting a certain level of
creditability. Therefore, they can be used to predict the future
land use change.

4. Conclusions and Discussion

Land use change is a very complicated geographical process.
Due to the influence of multiple factors, such as natural
conditions, humanistic factors, and social and economic fac-
tors, it is very difficult to precisely simulate land use change.
Under most circumstances, single-target transition relation
among land use types is only considered in traditional land
use change models. For example, during the simulation of
urban expansion, only the transition from nonurban cells to
urban cells is considered, the transition from agricultural land
cells to construction land cells, or the transition from unused
land cells to construction land cells, that is, one-to-one or
multiple-to-one transition. However, the phenomenon of
multitarget transition inevitably exists in the actual land use
change or urbanization progress (i.e., multiple-to-multiple
transition among various land use types). Based on the
analysis of the existing land use change simulation model,

in comprehensive consideration of the influence of macro-
driving factors and local land use competition on land use
change and through the coupling of modeling methods such
as CA, GIS, AHP, and Markov, this paper has established a
multitarget land use change simulation model based on CA
and applied it in the simulation of land use change of the
Jinzhou New District of Dalian. The method proposed in
the paper has improved multiple CA-based models in the
past and enabled the CA model to realize the multitarget
simultaneous simulation of transition among multiple land
use types. The simulation output results depend on the
neighborhood effect of cells and the comprehensive driv-
ing force of macrodriving factors. The simulation accuracy
of the model reaches 72%, thus presenting relatively high
creditability. Therefore, it has provided an analyzing and
predicting approach for urban land expansion, analysis of
land use change driving mechanism of coastal regions, devel-
opment and protection of unused land like agricultural land
and natural reserve, prediction of future development and
change trends, and establishment of land resource sustainable
utilization policies.

The simulation results of the model are greatly influenced
by the model parameters. The setting of the model parameters
and the correction of the model have always been a bottleneck
for land use change simulation. Land use is the result of inter-
action between human and nature. Under the comprehensive
influence of various natural, social, and economic driving
factors, the local land use types are changed as a direct result
of change of land use demand and land suitability. Despite the
abundant work which has already been performed, the conti-
nuity, variation, and functional indexes of the transition rules
in different time intervals require further study in the context
in which society, economy, and nature drive the land use
evolution together, due to their complicated acting relations.
However, since the multitarget land use change simulation
model established in this paper has only considered the
operation of nature, in order to simulate the land use change
in a more accurate way, the protected area and planning
objective can be embedded as restrictions of the model to
simulate possible development models in the research area,
so as to evaluate the influence of planning policies on land
use change; when setting the weights of the impact factors,
the standards can be refined; for example, roads can be
refined to different grades of roads such as highways, railways,
and provincial roads. In the calculation process, the model
occupied large memory space; caching technique needs to be
improved. Before making decisions, the planners may use CA
to simulate different regional development patterns and select
relevant optimum regional development model according
to different planning scenarios, so as to provide scientific
basis for regional sustainable development and reasonable
utilization of land resources.
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TABLE 6: Kappa coefficient of agricultural land.

Number of pixels Observation Expectation Kappa
Agricultural  Nonagricultural ¢ = © . () Total pixels (n) consistency (Py)  consistency (P,)
land land pix pix
Actual data 707535 940468 1428003 1648023 0.8665 0.5111 0.7269
Simulated data 694069 953954
TaBLE 7: Kappa coeflicient of construction land.
Number of pixels Observation Expectation Kappa
Construction  Nonconstruction . . consistency (P;)  consistency (P,)
Same pixels (s)  Total pixels (n)
land land
Actual data 442521 1205502 1486182 1648023 0.9018 0.6041 0.7519
Simulated data 453428 1194595
TaBLE 8: Kappa coefficient of unused land.
Number of pixels Observation Expectation Kappa
Unused land Used land Same pixels (s)  Total pixels (1) consistency (F;) consistency (P,)
Actual data 331417 1316606 1498922 1648023 0.9095 0.6777 0.7192
Simulated data 333996 1314027
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