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We consider the global existence of solutions to the 2D incompressible generalized liquid crystal flow. It is proved that the local

solution exists globally with § = 0, & > 2.

1. Introduction

In this paper, we consider the following 2D liquid crystal flow:

ut+u-Vu+Vp+A2“u:—Vd'Ad, 1)
d,+u-vd+APd=—f(d), )
divu =0, (3)

(u, A, = (ug, dy) > (4)

where o > 0, 8 > 0 are real parameters and u is the velocity, d
is a vectorial function modeling the orientation of the crystal
molecules, and p is the scalar pressure. Here f(d) := (d)* -
1)dand A = (—A)l/ 2 is defined in terms of Fourier transform
by

AfE =8 f@©. 5)

When « = B = 1, it has been shown that (1)-(4)
has unique global weak and smooth solutions [1-3]. In [4],
global regularity for this system with mixed partial viscosity is
proved. Some regularity criteria are established for the system
with zero dissipation in [5].

The aim of this paper is to establish the following global
regularity for the 2D liquid crystal model with fractional
diffusion.

Theorem 1. Assume (uy,d,) € H3(R?) x H*(R?). Let (u,d)
be the local strong solution to the problem (1)-(4). If « and 3

satisfy B = 0, « > 2, then the 2D liquid crystal model has a
unique global classical solution (u, d) satisfying

uel® (o, T;H’ (IRZ)), uel® (o, T; H>*™ (IRZ)),
deL®(0,T;H' (R?)).
(6)

Remark 2. This work is partially motivated by the recent
progress on the 2D incompressible MHD system with frac-
tional diffusion; we refer to [6-10] and references therein. In
[7], Tran et al. obtained the global regularity of 2D GMHD
equations for the following three cases: 1) « > 1, 8 > 1;
(2)0<a<1/2,2a0+ > 2;,3) a > 2, = 0. Combining
them with the result in [10], we know that if « + 8 > 2,
2D incompressible MHD system with fractional diffusion
possesses a global smooth solution. Fan et al. [8] proved the
global existence of smooth solutions with « > 0, 8 = 1. Global
regularity for the case « = 0, 3 > 1 was established by Jiu and
Zhao [9] which improves the result in [6]. Very recently, the
authors improved the case « = 0, § > 1 for the 2D liquid
crystal model in [11].

2. Proof of Theorem 1

It is sufficient to prove Theorem 1 with ¢ = 2, f = 0.

We will prove Theorem 1 if we can demonstrate the
boundedness of IIullfp +d ||12q4. In order to reach our purpose,
we will show this by contradiction: assume

Tim sup Julp + I = 0 @)
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for some finite time T' > 0. Our thought is that when T, is

close enoughto T, IIulli,a +\d ||§{4 remains uniformly bounded
for T, < t < T under such assumption, thus reaching a
contradiction.

First, we do L* estimate for d. Multiplying (2) by d and
using (3), after integration by parts, we see that

d .2 4 2
Sl + 1l = 11 ®)
By using the Gronwall inequality, we have

T
Il + j ] .dr < C. )
0

Then, we will show the L? estimate for u and Vd. Multiplying
(1) and (2) by u and —Ad, respectively, we find that

2 112
Nl + IVl ) + | A%,

ol

- j Vf (d) Vd dx (10)
RZ

<3 J APV dx + VAP
RZ
Thanks to Gronwall’s inequality and (9), we have

T
Jull + 19l + || (1)
0

which means Vu € L*(0, T; BMO).

The H' estimate for u and H* estimate for d will be
shown as follows. Multiplying (1) by Au, applying A to (2),
multiplying by Ad, and then summing them up, we obtain

1 d
(||Vu||Lz +1AdI7:) + 1AVull,

SJ Vd-Ad-Au—-A(u-Vd)-Ad
RZ

— Af (d)- Addx

< CllAdIIE: |Vl oo
N J 31dIPIAdP — dIVIPAd + |AdPdx
RZ

< ClAd|%: VUl o — 2dAd|3 + CIVA|l1s + A

< ClAd|: (19ulle + 1) - 2dAd]

< ClAd|%: (IVullpe + 1)
(12)

Let us introduce the following commutator and bilinear
estimates established in [12, 13]:

|4°(f9) = FN gl
< C (1 s
|4

< C A 1Al o + 147 f N2 [ g 122)
withs>0and 1/p=1/p, +1/q, = 1/p, + 1/4,.

As_lg"[jn + "g“LPl ”ASf"qu ) >
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Now, we do the H* estimate for u and H> estimate for d.
Applying A? to (1), multiplying by A®u, and dealing with (2)
in the same way by A”> and A’d, after summing them up, we
have

2
L2)+

= J —A? (u- Vu) A*u— A*(Vd - Ad) A*u
[RZ

s (I

(14)

~ N w-Vd)Nd - N f(d) N’ddx
L+ L+ I+ .

Using Holder’s inequality, Gagliardo-Nirenberg inequality,
Young’s inequality, and (13), we have the following estimates:

Ll = H (A? (u-Vu) —u- VA®u) Azudxl
RZ

< CIVul %]

>’

|| < LIVl

< C|[A*ul Ivdl2
N e I (15)

L) <C U A (u-Vd) APd - u- VAYdAYd dxl
RZ

<c [ |auiadi|ad] + |2 [a%d] |
RZ

+ |Au| |A3d|2dx
= I, + IL, + II5.

Now we estimate II;, I,, and II; one by one:

LA
<C“A 1/4 3/4||Ad|| 5/4
;+c||A2 Al
Al
<C“A 3/4 4 1/4”AdII 7/4
IR IS

11, < C|| V]| oo ||A d

>’
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- | 2 (ara) 2
RZ

I, =|

c| [adindia|ndl+c| iaar|ad]
R? R?

= | dl + K.
(16)
K, and K, can be estimated as follows:
< ClIAd]
3/4 1/4
< ClAdll 2 1Adl
17)
K, < CllAd|s
1/3
< C<||Ad||2/3 ) |A%d] . <
Combining K, and K, we have
2
I, <clndf, 8)
Summing all the above estimates to (14), we obtain
4 |2
& (sl + o ) llAuLz
(19)
< C(IVullo + %] ) (47 n)

Now, we will show the H> estimate for u and H* estimate for
d. Applying A* to (1), multiplying by A’u, and dealing with
(2) in the same way by A* and A*d, after summing them up,

we have
4 2
At

= J A (u-Vu) Nu—- A’ (Vd - Ad) Au
[RZ

(I

(20)
~A*(u-Vd)A'd - A*f (d) A*ddx

=L+ L+]3+],

Using Holder’s inequality, Gagliardo-Nirenberg inequality,
Young’s inequality, and (13), we have the following estimates:

AE

Ll <c [ 1avand) |3°u dx < 1aVd - D

“ul, (I1AdIZ: + | Ad]| [ A°

< C|A%],. <||Ad||Lz e

A4d|| + [ Ad]?

5/6)

x [|Ad]

sl =C U (A* (u-Vd) - u-VA*d) A*d dx‘
RZ
CJ |A'u| Vd| |A'd] + |A%u| |A%d| |a'd]
RZ

+[A%u] |A%] [A%d] + [Au] |A%d] dx

=T+ s+ 33+ Jage
(21)

Now we estimate J5, ]32 ]33, and ]34 one by one:

V| <

1/6 5/6

7/6
2 IAdIl

3/7

sg'

1/2 1/2

3/2
2 1Adl

2/3

sg'

5/6 11/6

llu ||”6||Ad||
5/6'

11/6

< Cfla’ul o,

aal < ClIVulo | A .
(22)

The estimate for J, is as follows:

- | A*(1ard)a'a
RZ

_3 j dP|atd]’
RZ

|]4|:' !

iC J ] [Ad] |A%d] [a*d]
R (23)

v | 1dijataf |a%d]
RZ

+C | 1adP |a%d][a'd)
RZ

+ pn + s

We calculate J,;, 4y, and Jy5:

|]41 =

||dA

5/6

1/6
2 1AdI

< CllAd] >




| < C|A%d|| ,|dA‘d

2
4

LZ

< ClAd|l|A%d| L ||data

L2 ?

<l + Sandly,

| < C||A%d A'd

2
LA

LZ

< cladi?|atal, S iadi atal ) |ata

LZ

<c|ad]’..

(24)
Combining J,;, J4,, and J,5, we get
J, < C|a'dl.. (25)

Combining the above estimates to (20), we get
d
ar (Il ) + aul

)

11/6
-

<C(1+ Vullyo + %] ) A%, 26)

+#C(1+ [a%],) 2]

Now we estimate the term j; A% ul|2 by applying the
0
Gronwall inequality to (12):

t
j [A%
Ty

2
L (1) dr < [ Vulf: + |Ad]7

t
. j 1AVl (1) dr
Ty
< (”V”o”i2 + "Ado“iz)

t
X exp (CJ 1+ |Vul e (-, T) d‘r> .
T,
(27)
Here T, € (0,T) will be fixed later and we denote Vu, :=
Vu(,Ty) Ady = Ad(, Ty). Set A(t) = maxcr, »(lulfp +
Id ||12114)(T). Now applying the logarithmic inequality [14]

IVullpo < C(1+ [Vatllgyo (1+In (1 + ullzs))),  (28)

we get

t
j [A%u
T,

t
< C(T,) exp (C JT Vil 0 (-5 T) dT>

2
L Gdr
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t
< C(Tp) exp (C JT 1+ [Vullgymo
0
x (1+In(1+ ullfp)) G 0) d-r)
t
< C(T,)exp <C JT IVullgmo (5 7)

x (1+In(1+ A(t)))dr)
< C(T,) exp <C JT IVullgao (> 7) dr

X (1+1In(1+A())) )

(29)

Since [|[Vullgpo € Ll(To, T), we can take T, close enough to
T, so that

t
cJ IVetluio (- 7) dr < 26 (30)
Ty

for some small positive number § to be fixed later. With such
choice of T, we have

Lr<C(T) A+ AMP. @D

t
J, wuen
TO
Holder’s inequality gives

[ wutn
T,

LTSC(T,) 1+ A®). (32)
Fix T, satisfying
t
CJ Vu(, )llpmoT < 26, In(1+A(Ty)>1 (33)
TO
Combining the above estimates together, we get

d
7 (i + Nl )

<C(1+|A%u

p) A0
+ (IValyeo + |V, + 1) A1)
< C[1+ Vullgyo (1 +1In (1 + A(8)))
+ |Voul ] A @)+ C(1+ A%y ,) A

< C(Ty) [ (IVullpyo + |V?u

L2+1)A(t)

xIn(1+A®@®)+(1+ |Au

Lz)A(t)11/12]~
(34)
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Integrating the above inequality, we have

t
A(t) < C(Ty) Ay +C(T,) J 1+ | A%, (7 dra
Ty

t
+C(T,) L (1+ 1 Vullppo + ||A2u Lz)A(t)
0

xIn(1+ A(t))dr,
(35)

where A = ||ull?5 (Ty) + [1d)1 4 (Ty).
Taking § = 1/24, we have

j L+ A%

Thus (35) tells us that

Ldr<C(T,) 1+ A®)'™.  (36)

A(t) <C(T,) Ay + C(T,) (A1) + A

+C(T,) JT (1+ 1Vullgyo + |A%u,.) A®)  (37)

xIn(1+ A(t))dr.
This in turn gives

L+A(t) < C(Ty) (1+Ag) +C(Ty) (A(t) + 1)/

+ C(TO)J (1+ 1Vullgio + A% ) G39)

t
Ty
x (A(t)+ )In(1+ A1) dr.

We set B(f) := (1+A(£))/*, B, := (1+ A,)"/** and divide the

above inequality by (1 + A1)/ using the monotonicity of

A(t) we reach

B(t) < C(T,) [BO +1+ L (1+ IVullgyo + | V24| 2)
° (39)
x B(t)In B(t) dr] :

The standard Gronwall’s inequality now gives
B(t) < [C(Ty) (1 + B,)| ™00 by iVl udzde) - (40)
which leads to

A(t) < [C(TO)(l + BO)]Mexp[C(TO)JTo 1+"Vu"BMO+"A2u"L2dT]‘
(41)

As I;O IVullgyvo + IIAZuIIdeT remains bounded as t /' T, the

above inequality contradicts that A(t) /" coast /T, so we
complete our proof of Theorem 1.
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