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An accurate estimation of the state of charge (SOC) of the battery is of great significance for safe and efficient energy utilization of
electric vehicles. Given the nonlinear dynamic system of the lithium-ion battery, the parameters of the second-order RC equivalent
circuit model were calibrated and optimized using a nonlinear least squares algorithm in the Simulink parameter estimation
toolbox. A comparisonwasmade between this finite difference extendedKalman filter (FDEKF) and the standard extendedKalman
filter in the SOC estimation. The results show that the model can essentially predict the dynamic voltage behavior of the lithium-
ion battery, and the FDEKF algorithm can maintain good accuracy in the estimation process and has strong robustness against
modeling error.

1. Introduction

In the context of countries vigorously promoting energy
conservation and low carbon economy to solve energy crisis
and mitigate global warming, the solar photovoltaic power
generation is emerging as the technology of choice for
energy-saving and environmentally sustainable transporta-
tion. It is suggested that the storage battery is second only
to the photovoltaic modules as the most important part of
solar photovoltaic system; thus its performance will directly
affect the operational state and reliability of the system. It
highlights the need to quickly and accurately estimate the
state of charge (SOC) of the battery. A battery management
system is required to ensure safe and reliable operation of
the battery. One of its basic functions is to measure the SOC,
which indicates the remaining charge of the battery so that
the driver can be reminded to charge the battery prior to its
depletion.

SOC is usually estimated indirectly by some measurable
quantities [1]. In recent years, many methods have been
proposed to improve the SOC estimation. Among them,
the ampere-hour integral (coulomb counting) method is
the most simple and convenient one [2], but it requires a
prior knowledge of initial SOC and suffers from accumulated

errors from noise andmeasurement.The open circuit voltage
(OCV) method is sufficiently accurate because there is a
one-to-one correspondence between OCV and SOC, but it
needs a long rest time and thus cannot be used in real time
applications [3]. A number of intelligent approaches have
been developed in an attempt to achieve a more accurate
SOC estimation, such as the neural network method and
Kalman filter (KF) method [4]. The neural network method
can provide an accurate SOC estimation given an appropri-
ate training dataset. However, the training process is very
computationally intensive and at risk of over fitting, and the
model performance strongly relies on the amount and quality
of the training data, which could limit its application range.
The KF method uses sample data (current, voltage, and tem-
perature) to recursively calculate theminimummean squared
error estimate of true SOC, which can solve the problem of
uncertain initial SOC and cumulative error. However, it is
only suitable for linear system. Given the nonlinear nature of
the dynamics of electrochemical cells, a linearization process
is usually used to approximate the nonlinear system by a
linear time varying system.The extendedKalman filter (EKF)
is a nonlinear extension of the conventional KF, which has
been developed particularly for systems having nonlinear
dynamic models, using Taylor series expansions [5–7]. The
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divergence of EKF is primarily due to the linearization error
for ignoring high-order terms, and the accuracy of EKF-
based SOC estimation is sensitive to the precision of the
battery model.

We introduced an alternative nonlinear Kalman filtering
technique known as finite difference extended Kalman filter
(FDEKF) in this study and used the finite difference method
instead of the Taylor series expansions to estimate the
covariance matrix. It has theoretical advantages that manifest
themselves in more accurate predictions and also strong
robustness against modeling uncertainty by making full use
of the error information generated by model linearization.

The remainder of this paper is arranged as follows.
Section 2 describes a model structure and discusses how the
parameters of this model can be automatically estimated
using the Simulink parameter estimation, Section 3 briefs the
EKF and deduces the FDEKF algorithm, Section 4 shows the
simulation results of the proposed algorithm to the exper-
imental data, Section 5 shows the experimental verification
of the proposed algorithm on a test bench, and Section 6
concludes the paper.

2. Modeling for the LiFePO4 Battery and
Parameter Identification Method

2.1. Lithium-Ion Battery Model. The commonly used battery
models include the electrochemicalmodel and equivalent cir-
cuit model (ECM) [8]. The electrochemical models describe
the electrochemical reactions in the electrodes and electrolyte
in a mathematical way, which can achieve high accuracy.
However, they typically deploy partial differential equations
with a large number of unknown parameters. Due to the
intensive computation involved, these models are often used
for battery performance analysis and battery design. ECMs
have been developed especially for the purpose of vehicle
power management control and battery management system
development and have less parameters, such as the Rint
model [9], Thevenin model [10], and PNGV model [11].
Literature [12] gives a comparative study of these ECMs for
lithium-ion batteries. Due to the complicated polarization
characteristics of battery, it is suggested that models with
more parallel RC networks connected in series should have
a much higher accuracy [13]. Clearly, the higher the order
is, the more complicated the model becomes. Therefore,
considering the details in the model is a tradeoff between
accuracy and complexity. In this paper, a second-order RC
model is considered, as shown in Figure 1.

Here 𝑈oc is the open circuit voltage, 𝑈
𝑡
is the terminal

voltage of the battery, 𝐼
𝑡
is the outflow current,𝑅

0
is the ohmic

resistance of the connectors, electrodes and electrolyte, and
the two sets of parallel resistor-capacitor elements connected
in series 𝑅

𝑒
, 𝐶
𝑒
, and 𝑅

𝑑
, 𝐶
𝑑
are the mass transport effects

and double-layer effects, respectively. Commonly, the time
constants of the two dynamics differ by at least an order of
magnitude.

2.2. Parameter Identification. The model parameters need
to be accurately estimated from the test data to establish
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Figure 1: Equivalent circuit of second-order RC model.

a battery model with good performance. In this paper, the
model is parameterized using a semiautomatic process that
can satisfy the constraints on the optimized parameters. This
process uses a number of measured data sets under a variety
of conditions. The parameters are optimized by minimizing
the error between measured and simulated results using the
nonlinear least squares algorithm in the Simulink parameter
estimation toolbox. The battery model can be established in
Simulink based on the second-order RC model, as shown in
Figure 2.

3. SOC Estimation

3.1. EKF-Based SOC Estimation. In order to use EKF meth-
ods for battery SOC estimation, the cell should bemodeled in
a discrete-time state-space form. Specifically, we model the
nonlinear battery system by a state equation and an output
equation below:

𝑥
𝑘+1

= 𝑓 (𝑥
𝑘
, 𝑢
𝑘
) + 𝑤
𝑘
,

𝑦
𝑘
= 𝑔 (𝑥

𝑘
, 𝑢
𝑘
) + V
𝑘
,

(1)

where 𝑥
𝑘
is the system state vector at discrete-time index 𝑘,

vector 𝑢
𝑘
is the measured system input at time 𝑘, and 𝑤

𝑘
is

unmeasured “process noise” that affects the system state. The
output of the system is 𝑦

𝑘
and V
𝑘
is measurement noise. 𝑓(⋅, ⋅)

and 𝑔(⋅, ⋅) are (possibly nonlinear) functions, determined by
the particular cell model used.

At each time step, 𝑓(𝑥
𝑘
, 𝑢
𝑘
) and 𝑔(𝑥

𝑘
, 𝑢
𝑘
) are linearized

by a first-order Taylo -series expansion. The model can be
rewritten as

𝑥
𝑘+1

= 𝐴
𝑘
𝑥
𝑘
+ 𝐵
𝑘
𝑢
𝑘
+ 𝑤
𝑘
,

𝑦
𝑘
= 𝐶
𝑘
𝑥
𝑘
+ 𝐷
𝑘
𝑢
𝑘
+ V
𝑘
,

(2)

where,

𝐴
𝑘
=
𝑑[𝑓(𝑥

𝑘
, 𝑢
𝑘
)]

𝑑[𝑥
𝑘
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘,𝑢𝑘

,

𝐵
𝑘
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𝑘
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𝑘
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Figure 2: Second-order RC model in Simulink.

𝐶
𝑘
=
𝑑 [𝑔 (𝑥

𝑘
, 𝑢
𝑘
)]

𝑑 [𝑥
𝑘
]
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,

𝐷
𝑘
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𝑘
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𝑘
)]

𝑑 [𝑢
𝑘
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.

(3)

The state of the ECM in Figure 1 is set to be SOC. 𝑈
𝑒
and

𝑈
𝑑
are the voltage across the RC network, the input of the

model is the current 𝐼
𝑡
, and the output is the terminal voltage

𝑈
𝑡
. Thus, the dynamic ECM could be described in state space

as

(

SOC (𝑘 + 1)
𝑈
𝑒
(𝑘 + 1)

𝑈
𝑑
(𝑘 + 1)
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)𝐼
𝑡
(𝑘)

+ 𝑤
𝑘
,

𝑈
𝑡
(𝑘) = 𝑈oc (SOC (𝑘)) − 𝑈

𝑒
(𝑘)

− 𝑈
𝑑
(𝑘) − 𝑅

0
𝐼
𝑡
(𝑘) + V

𝑘
,

(4)

where 𝜂 is the cell coulombic efficiency, 𝑇 is the inter-sample
period,𝑄

𝑛
is the cell capacity, 𝐼

𝑡
(𝑘) is the current at time index

𝑘which is negative at charge and positive at discharge, 𝜏
𝑒
and

𝜏
𝑑
are the time constants of the 𝑅

1
𝐶
1
and 𝑅

2
𝐶
2
circuit, and

𝜏
𝑒
= 𝑅
𝑒
𝐶
𝑒
, 𝜏
𝑑
= 𝑅
𝑑
𝐶
𝑑
. Both 𝑤

𝑘
and V

𝑘
are assumed to be

mutually uncorrelatedwhiteGaussian randomprocesses, and
the statistical characteristics are as follows:

𝐸 [𝑤
𝑘
] = 0, Cov [𝑤

𝑘
, 𝑤
𝑇

𝑗
] = 𝑄

𝑘
𝛿
𝑘𝑗
,

𝐸 [V
𝑘
] = 0, Cov [V

𝑘
, V𝑇
𝑗
] = 𝑅
𝑘
𝛿
𝑘𝑗
,

Cov [𝑤
𝑘
, V
𝑘
] = 0,

(5)

where both 𝑄
𝑘
and 𝑅

𝑘
are positive definite symmetric matri-

ces, and 𝛿
𝑘
is the Kronecker function. The OCV corresponds

to a certain SOC, which can be identified by the nonlinear
characteristic curve 𝑈oc(SOC(𝑘)) [14]. The hysteresis effect,
which is beyond the scope of this paper, can cause the
discharging curve to stay below the charging curve for the
same amount of SOC.

Obviously, the relationship between OCV and SOC is
nonlinear. The EKF approach is to linearize the equations at
each sample point usingTaylor series expansions.The specific
steps are as follows.

Define 𝑥
𝑘
= [SOC(𝑘) 𝑈

𝑒
(𝑘) 𝑈

𝑑
(𝑘)]; the superscripts

“ — ” and “̂” indicate the prior and posterior estimation,
respectively. We linearize the nonlinear state and output
equations around the present operating point using Taylor
series expansions, and ignore the second- and higher-order
terms

𝐴
𝑘
=
𝜕𝑓 (𝑥
𝑘
, 𝑢
𝑘
)

𝜕𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘=𝑥𝑘

= (

1 0 0

0 𝑒
−𝑇/𝜏𝑒 0

0 0 𝑒
−𝑇/𝜏𝑑

) ,

𝐵
𝑘
=(

−𝜂𝑇/𝑄
𝑛

𝑅
𝑒
(1 − 𝑒

−𝑇/𝜏𝑒)

𝑅
𝑑
(1 − 𝑒

−𝑇/𝜏𝑑)

) ,
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𝐶
𝑘
=
𝜕𝑔 (𝑥
𝑘
, 𝑢
𝑘
)

𝜕𝑥
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑥𝑘= ̄𝑥𝑘

= [
𝜕𝑈oc
𝜕SOC

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨SOC=SOC(𝑘)
−1 −1 ] ,

𝐷
𝑘
= −𝑅
0
(𝑘) .

(6)

Initialization is

𝑥
0
= [SOC (0) 0 0] ,

𝑃̂
0
= 𝐸 [(𝑥

0
− 𝑥
0
) (𝑥
0
− 𝑥
0
)
𝑇

] .

(7)

Recursive calculation is

𝑥̄
𝑘+1

= 𝐴
𝑘
𝑥
𝑘
+ 𝐵
𝑘
𝐼
𝑡
(𝑘) , (8)

𝑃̄
𝑘+1

= 𝐴
𝑘
𝑃̂
𝑘
𝐴
𝑇

𝑘
+ 𝑄
𝑘
, (9)

𝐾
𝑘
= 𝑃̄
𝑘+1
𝐶
𝑇

𝑘
[𝐶
𝑘
𝑃̄
𝑘+1
𝐶
𝑇

𝑘
+ 𝑅
𝑘
]
−1

, (10)

𝑥
𝑘+1

= 𝑥̄
𝑘+1
+ 𝐾
𝑘
[𝑈
𝑡
(𝑘) − 𝑈̄

𝑡
(𝑘)] , (11)

𝑃̂
𝑘+1

= 𝑃̄
𝑘+1
− 𝐾
𝑘
𝐶
𝑘
𝑃̄
𝑘+1
. (12)

3.2. FDEKF-Based SOC Estimation. There are two problems
for EKF in SOC estimation: (1) when the higher-order terms
of Taylor series expansions are not negligible, the lineariza-
tion process will cause significant errors to the system or
even make the filter unstable and divergent; and (2) Jacobian
matrix needs to be calculated at every sample time, thereby
leading to a multiplication of the calculation amount for
complicated system. FDEKF is another iterative minimum
mean variance error estimator, which has a higher precision
than the first-order Taylor series expansions by applying
finite difference method and is applicable for all nonlinear
functions.

Schei first conceived the thought of finite difference [15].
It uses polynomial approximations obtained with a Sterling
interpolation formula for the derivation of state estima-
tors for nonlinear systems. The estimators perform better
than that based on Taylor approximations. Nevertheless, the
implementation is significantly simpler as no derivatives are
required. A nonlinear function 𝑦 = 𝑓(𝑥) is assumed and
approximated by the interpolation formula

𝑓 (𝑥) ≈ 𝑓 (𝑥̄) + 𝑓
󸀠

𝐷𝐷
(𝑥̄) (𝑥 − 𝑥̄) , (13)

𝑓
󸀠

𝐷𝐷
(𝑥̄) =

𝑓 (𝑥̄ + ℎ) − 𝑓 (𝑥̄ − ℎ)

2ℎ
, (14)

where ℎ is the interval length, and𝑓 is assumed to be analytic;
then the full Taylor series expansion of (13) is

𝑓 (𝑥) = 𝑓 (𝑥̄) + 𝑓
󸀠
(𝑥̄) (𝑥 − 𝑥̄)

+ [
𝑓
(3)
(𝑥̄)

3!
ℎ
2
+
𝑓
(5)
(𝑥̄)

5!
ℎ
4
+ ⋅ ⋅ ⋅ ] (𝑥 − 𝑥̄) .

(15)

The first two terms on the right hand side of (15) are
independent of the interval length ℎ and are recognized

as the first two terms of the Taylor series expansion of 𝑓.
The “remainder” term given by the difference between (15)
and the first-order Taylor approximation is controlled by ℎ
and will in general deviate from the higher order terms of
the Taylor series expansion. In some sense, certain interval
lengths may make the remainder term close to the higher
order terms of the full Taylor series.The procedure of FDEKF
algorithm is given below.

First we introduce the following four square Cholesky
factorizations:

𝑄 = 𝑆
𝑤
𝑆
𝑇

𝑤
, 𝑅 = 𝑆V𝑆

𝑇

V ,

𝑃̄ = ̄𝑆
𝑥
̄𝑆
𝑇

𝑥
, 𝑃̂ = 𝑆

𝑥
𝑆
𝑇

𝑥
.

(16)

The factorization of the noise covariance matrices 𝑄 and
𝑅 can be made in advance. ̄𝑆

𝑥
and 𝑆

𝑥
are updated directly

during application of the filter.
Then we calculate the partial derivative of the nonlinear

function by the first-order polynomial approximation

𝐹
𝑥
(𝑘) = (𝑓 (𝑥

𝑘
+ Δ𝑥
𝑘
, 𝑢
𝑘
) − 𝑓 (𝑥

𝑘
− Δ𝑥
𝑘
, 𝑢
𝑘
)) /2Δ𝑥

𝑘
. (17)

Define Δ𝑥
𝑘
= ℎ𝑆
𝑥
(set ℎ2 = 3)

𝐹
𝑥
(𝑘) 𝑆
𝑥
= 𝑆
𝑥𝑥

=
1

2ℎ
{𝑓
𝑖
(𝑥
𝑘
+ ℎ𝑆
𝑥,𝑗
, 𝑢
𝑘
) − 𝑓
𝑖
(𝑥
𝑘
− Δℎ𝑆

𝑥,𝑗
, 𝑢
𝑘
)} .

(18)

Let the 𝑗th column of ̄𝑆
𝑥
be denoted 𝑆

𝑥,𝑗
; (19) can be

derived just as (18)

𝐺
𝑥
(𝑘) ̄𝑆
𝑥
= 𝑆
𝑦 ̄𝑥

=
1

2ℎ
{𝑔
𝑖
(𝑥̄
𝑘
+ ℎ ̄𝑆
𝑥,𝑗
, 𝑢
𝑘
) − 𝑔
𝑖
(𝑥
𝑘
− Δℎ ̄𝑆

𝑥,𝑗
, 𝑢
𝑘
)} .

(19)

(1) Estimates of the prior variance

𝑃̄
𝑘
= 𝐹
𝑥
(𝑥) 𝑃̂
𝑘
𝐹
𝑇

𝑥
(𝑘) + 𝑄

𝑘

= 𝐹
𝑥
(𝑘) 𝑆
𝑥
𝑆
𝑇

𝑥
𝐹
𝑇

𝑥
(𝑘) + 𝑆

𝑤
𝑆
𝑇

𝑤

= 𝑆
𝑥𝑥
𝑆
𝑇

𝑥𝑥
+ 𝑆
𝑤
𝑆
𝑇

𝑤
.

(20)

(2) Estimates of the posterior gain matrix and posterior
variance

𝐾
𝑘
= 𝑃̄
𝑘
𝐺
𝑇

𝑥
(𝑘) [𝐺

𝑥
(𝑘) 𝑃̄
𝑘
𝐺
𝑇

𝑥
(𝑘) + 𝑅

𝑘
]
−1

= ̄𝑆
𝑥
̄𝑆
𝑇

𝑥
(𝑆
𝑦 ̄𝑥
̄𝑆
−1

𝑥
)
𝑇

[𝑆
𝑦 ̄𝑥
𝑆
𝑇

𝑦 ̄𝑥
+ 𝑆V𝑆
𝑇

V ]
−1

= ̄𝑆
𝑥
𝑆
𝑇

𝑦 ̄𝑥
[𝑆
𝑦 ̄𝑥
𝑆
𝑇

𝑦 ̄𝑥
+ 𝑆V𝑆
𝑇

V ]
−1

,
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(21)

We use (20)-(21) to replace (9), (10), and (11), which
comprises the full FDEKF.

4. Results and Discussions

To verify the effectiveness and performance of the FDEKF, we
applied the identification and SOC estimation algorithms to
the experimental data obtained on the LP2770102AC lithium-
ion battery. This is a lithium iron phosphate battery that can
be used in portable high power devices, grid stabilization
energy storage, and electric vehicles and hybrid electric
vehicles. Its nominal capacity is 12.5 Ah and nominal voltage
is 3.3 V. For the tests, we used a DigatronMCT 30-05-40 cell
cycler with a measurement accuracy of ±5mV for voltage
and ±50mA for current. The battery temperature was kept
at room temperature (20 ± 2∘C) throughout the experiment.

In this section, we first estimated the values of ECM
parameters using an iterative numerical optimization algo-
rithm implemented by Simulink parameter estimation and
then compared the FDEKF-based and EKF-based SOC esti-
mation.

4.1. Pulse Test. The battery was fully charged so that SOC
= 100%, and then the constant-current discharge pulse test
was performed (18min discharging and 60min resting).
The discharge lasted 790min, and the sample time was 1 s.
Figure 3 shows the terminal current and voltage of the battery.

4.2. Initial Estimation. The parameters 𝐸
𝑚
, 𝑅
0
, 𝑅
𝑒
, 𝐶
𝑒
, 𝑅
𝑑
,

and 𝐶
𝑑
needed to be identified. The initial values of model

Table 1: Parameter constraints.

Parameter Initial value Minimum Maximum
𝐸
𝑚

3.3 V 2V 3.6V
𝑅
0

0.01Ω 0Ω 1Ω
𝑅
𝑒

0.005Ω 0Ω 1Ω
𝐶
𝑒

0.005 F 0 F 1 F
𝑅
𝑑

10000Ω 1Ω 100000Ω
𝐶
𝑑

10000 F 1 F 100000 F

parameters should be assigned before running the optimiza-
tion algorithm. The upper and lower bounds of the model
parameters were selected through trial and error. In our
initial attempt, six parameters were estimated, and their
maximumandminimumvalueswere given a broad range. An
initial guess for each parameter was chosen based on prior
experimentation with the model. Table 1 shows the param-
eters estimated and their constraints.

4.3. Model Evaluation. The current and voltage data were
used as the input to the identification algorithm described in
Section 2. The second-order RC model in Figure 2 was run
until the optimization process was terminated.Themeasured
and simulated terminal voltages are shown in Figure 4(a),
and the errors between them are shown in Figure 4(b). It is
evident that the model can essentially predict the dynamic
voltage behavior of the lithium-ion battery fromSOC = 0.1 to
SOC = 1, with an error of 50mV. However, the performance
of the model is deteriorated when the battery runs out,
with an error of 150mV. The trajectories of the optimization
variables after 9 iterations are shown in Figure 4(c). In order
to guarantee the global optimal parameters, we choose sum
of squares for error (SSE) as the cost function, and the curve
is shown in Figure 4(d)

SSE = ∑(𝑥
𝑖
− 𝑥)
2

. (22)

We used the dynamic stress test (DST) data to validate
the accuracy of the model. Single DST working condition
includes 14 steps and it is repeated five times; the process is
as follows: (1) 20A charge for 420 seconds, (2) rest for 30
seconds, (3) 10 A charge for 120 seconds, (4) 10 A discharge
for 120 seconds, (5) 4A charge for 300 seconds, (6) 20A
discharge for 120 seconds, (7) 10 A charge for 120 seconds, (8)
4A discharge for 180 seconds, (9) 40A charge for 23 seconds,
(10) 10 A discharge for 120 seconds, (11) 4A charge for 300
seconds, (12) 40A discharge for 60 seconds, (12) 20A charge
for 120 seconds, (13) 4A discharge for 120 seconds, and (14)
rest for 30 seconds. Figure 5 shows that themodel can quickly
and accurately track the real-time voltage of the battery, with
an error of less than 0.1 V.

4.4. Verification of SOC Estimation Algorithm. We then
applied the experimental data obtained in Section 4.1 to
implement the standard EKF and the FDEKF. The exper-
imental SOC values were computed by the battery testing
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Figure 4: The parameters estimation results with 1/3C discharge.
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Figure 5: The results of model validation with DST data.

system and acted as a reference for the SOC estimates. The
SOC estimation results are shown in Figure 6.

Figure 6(a) shows that the two estimators can trace the
reference SOC, but with different accuracy. It also shows that
the maximum absolute estimation error is 7% for EKF and
2% for FDEKF, with an improvement of 71%.

To evaluate the comprehensive performance of the two
filters in the quantitative analysis, we define the root mean

square error (RMSE) and single mean computation time 𝑡cost
as

RMSE = √ 1
𝑇

𝑁

∑

𝑘=1

(𝑥
𝑘
− 𝑥
𝑘
)
2

,

𝑡cost =
1

𝑁

𝑁

∑

𝑘=1

𝑡
𝑘

cost,

(23)
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Figure 6: Comparison of SOC estimation and error curve of constant-current discharge pulse.
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Figure 7: Comparison of SOC estimation and error curve of changing-current discharge pulse.

Table 2: Comparison of SOC estimation.

Algorithm Single mean computing time RMSE
EKF 3.8994𝑒 − 05 S 0.0174
FDEKF 3.9371𝑒 − 04 S 0.0018

where 𝑇 is the time step, 𝑥
𝑘
is the estimated SOC at step 𝑘, 𝑥

𝑘

is the true SOC at step 𝑘, 𝑡𝑘cost is the computation time at step
𝑘, and𝑁 is the sampling number.The results in Table 2 clearly
indicate that FDEKF is superior to EKF in both estimation
accuracy and algorithm complexity.

In order to confirm the robustness of FDEKF, we per-
formed another two tests with changing current and DST
data using the parameters in Table 2, which incorrectly iden-
tified the ECM and compared the performance of EKF and
FDEKF in perturbations of the system parameters. The SOC
estimation results are shown in Figures 7 and 8, respectively. It
shows that the EKF-based estimator has a poor performance,
with a maximum absolute error of 14%, while the FDEKF-
based estimator can correctly trace the reference SOC, with
a maximum absolute error of 4%. Thus, there is a substantial
improvement (70%). The comparison results show that the
FDEKF-based method provides better performance in the
SOC estimation under modeling error.
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Figure 8: Comparison of SOC estimation and error curve of DST data with EKF and FDEKF.
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5. Experiments and Online Test

5.1. Test Bench. The test bench is shown in Figure 9,
which consists of a DigatronMCT 30-05-40 cell cycler, a
voltage acquisition unit LTC6803-4, a high speed MCU
AT90CAN128, a Hall current sensor ACS750SCA-050 and

a core data processor TMS320F2812. The Digatron MCT 30-
05-40 can charge/discharge five battery packs according to
the designed program, with a maximum voltage of 30V and
maximum charge/discharge current of 40A, and its voltage
measurement accuracy is ±5mV and current measurement
accuracy is ±50mA. LTC6803-4 can measure up to 12 series
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Table 3: Comparison of the simulated and experimental SOC results.

Comparison point True SOC Simulation error of SOC Experimental error of SOC
EKF FDEKF EKF FDEKF

First Loop end point 0.172 0.8% 0.4% 1.7% 0.9%
Second Loop end point 0.352 0.9% 0.3% 2.6% 1.1%
Third Loop end point 0.532 1.0% 0.4% 4.0% 1.3%
Forth Loop end point 0.712 1.4% 0.5% 3.7% 1.3%
Fifth Loop end point 0.893 1.5% 0.7% 4.9% 1.5%
Average error — 1.12% 0.46% 3.38% 1.22%
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Figure 10: The extended structure diagram.

connected battery cells at the same time. AT90CAN128 is a
low-power CMOS 8-bit microcontroller based on the AVR
enhanced RISC structure. ACS750SCA-050 can convert the
charge/discharge current into 0–2.5 V voltage signal and its
error is less than 1%. TMS320F2812 can receive the voltage
data of each cell from the AT90CAN128 with CAN commu-
nication and thenuses the FDEKFalgorithm to calculate SOC
in real time, which is displayed on the computer screen. This
test bench can be extended, as shown in Figure 10.

We tested the single battery under DST working condi-
tion on this test bench using the EKF and FDEKF algorithms.
Table 3 shows that both simulation and experimental errors
increase over time.This is probably because the ECM param-
eters are estimated offline, and all of them are single constant
and no adjustments are made for the changes of battery SOC.

6. Conclusions

In this study, we proposed a robust and powerful real-
time SOC estimator for the lithium-ion batteries, and the
parameters of the second-order ECM were estimated using
the nonlinear least squares algorithm.This new linearization
technique for SOCestimation is known as the finite difference

extended Kalman filter. Compared to the EKF method, the
FDEKF method is able to track the real-time SOC more
quickly and accurately with the accurate model. When the
model parameters change, it also has stronger robustness
against modeling uncertainties and maintains good accuracy
in the estimation process.
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