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Two new iterations with Cesàro’s means for nonexpansive mappings are proposed and the strong convergence is obtained as 𝑛 →

∞. Our main results extend and improve the corresponding results of Xu (2004), Song and Chen (2007), and Yao et al. (2009).

1. Introduction

Let 𝐶 be a nonempty closed convex subset of a real Banach
space 𝐸 and let𝑇 be nonexpansivemapping from𝐶 into itself
(recall that a mapping 𝑇 : 𝐶 → 𝐶 is nonexpansive if ‖𝑇𝑥 −

𝑇𝑦‖ ≤ ‖𝑥 − 𝑦‖, ∀𝑥, 𝑦 ∈ 𝐶). We denote fixed points of 𝑇 as
𝐹(𝑇); that is, 𝐹(𝑇) = {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Recall that a mapping 𝑓 : 𝐶 → 𝐶 is contractive if there
exists a constant𝛽 ∈ (0, 1) such that ‖𝑓(𝑥)−𝑓(𝑦)‖ ≤ 𝛽‖𝑥−𝑦‖,
∀𝑥, 𝑦 ∈ 𝐶.

In 1975, Baillon [1] proved the first nonlinear ergodic
theorem.

Theorem 1. Suppose that𝐶 is a nonempty closed convex subset
ofHilbert space𝐸 and𝑇 : 𝐶 → 𝐶mapping such that𝐹(𝑇) ̸= 𝜙;
then ∀𝑥 ∈ 𝐶, and the Cesàro means

𝑇
𝑛
𝑥 =

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥 (1)

weakly converges to a fixed point of 𝑇.

In 1979, Bruck [2] showed the nonlinear ergodic theorem
for nonexpansivemapping in uniformly convex Banach space
with Fréchet differentiable norms.

In 2004, Xu [3] introduced the following viscosity itera-
tive scheme {𝑥

𝑛
} given by

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
) 𝑇𝑥
𝑛
, (2)

where parameter {𝛼
𝑛
} ⊂ [0, 1], satisfying

(X1) lim
𝑛→∞

𝛼
𝑛
= 0;

(X2) ∑∞
𝑛=0

𝛼
𝑛
= ∞;

(X3) either ∑
∞

𝑛=0
|𝛼
𝑛+1

− 𝛼
𝑛
| < ∞, or lim

𝑛→∞
(𝛼
𝑛+1

/𝛼
𝑛
) =

1.

He proved that the explicit iterative scheme {𝑥
𝑛
} converges

strongly to a fixed point 𝑝 of 𝑇 in uniformly smooth Banach
space.

In 2007, Song andChen [4] defined the following viscosity
iteration {𝑥

𝑛
} of Cesàro means for nonexpansive mapping 𝑇:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + (1 − 𝛼

𝑛
)

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑛
, (3)

and they proved that the sequence {𝑥
𝑛
} converges strongly to

some point in 𝐹(𝑇) in a uniformly convex Banach space with
weakly sequentially continuous duality mapping.

In 2009, Yao et al. [5] introduced the following process
{𝑥
𝑛
}:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛
𝑇𝑥
𝑛
, 𝑛 ≥ 0. (4)

They proved that the sequence {𝑥
𝑛
} converges strongly to a

fixed point of 𝑇 under the following control conditions of
parameters:

(YLZ1) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, for all 𝑛 ≥ 0;

(YLZ2) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=0
𝛼
𝑛
= ∞;

(YLZ3) lim
𝑛→∞

𝛾
𝑛
= 0.
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Motivated by the above results, we propose the following
new iterations with Cesàro’s means for nonexpansive map-
pings:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑛
, 𝑛 ≥ 0, (5)

and viscosity iteration:

𝑥
𝑛+1

= 𝛼
𝑛
𝑓 (𝑥
𝑛
) + 𝛽
𝑛
𝑥
𝑛
+ 𝛾
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑛
, 𝑛 ≥ 0. (6)

Some examples are given to show the generation of our
new iterations with Cesàro’s means as follows.

Example 2. If 𝑛 = 1, iteration (5) with Cesàro’s means for
nonexpansive mappings is 𝑥

2
= 𝛼
1
𝑢 + 𝛽
1
𝑥
1
+ 𝛾
1
⋅ (1/2)(𝑥

1
+

𝑇𝑥
1
), which is reduced as the same iteration of Yao et al. [5].

If 𝑛 ≥ 2, iteration (5) can be written as follows:

𝑥
𝑛+1

= 𝛼
𝑛
𝑢 + 𝛽
𝑛
𝑥
𝑛

+ 𝛾
𝑛
⋅

1

𝑛 + 1

(𝑥
𝑛
+ 𝑇𝑥
𝑛
+ 𝑇
2

𝑥
𝑛
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

𝑥
𝑛
) ,

(7)

which is a generation of Yao et al. [5].

Example 3. Let 𝐸 = 𝑅 with the usual metric, nonexpansive
mapping defined by 𝑇𝑥 = sin𝑥, the fixed contractive map-
ping 𝑓(𝑥) = (1/2)𝑥, and the parameters are defined as 𝛼

𝑛
=

1/2𝑛, 𝛾
𝑛
= 1/4𝑛, and𝛽

𝑛
= (4𝑛−3)/4𝑛.The new iterationswith

Cesàro’s means which is related to iterative step 𝑛 can be
written as follows:

𝑥
𝑛+1

=

1

2𝑛

𝑢 +

4𝑛 − 3

4𝑛

𝑥
𝑛

+

1

4𝑛 (𝑛 + 1)

(𝑥
𝑛
+ 𝑇𝑥
𝑛
+ 𝑇
2

𝑥
𝑛
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

𝑥
𝑛
) ,

𝑥
𝑛+1

=

1

2𝑛

⋅

1

2

𝑥
𝑛
+

4𝑛 − 3

4𝑛

𝑥
𝑛

+

1

4𝑛 (𝑛 + 1)

(𝑥
𝑛
+ 𝑇𝑥
𝑛
+ 𝑇
2

𝑥
𝑛
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

𝑥
𝑛
) .

(8)

2. Preliminaries

Throughout the paper, let𝐸 be a real Banach space with norm
‖ ⋅ ‖. The normalized duality mapping 𝐽 : 𝐸 → 2

𝐸
∗

is defined
by

𝐽 (𝑥) = {𝑓 ∈ 𝐸
∗

, ⟨𝑥, 𝑓⟩ = ‖𝑥‖
󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
, ‖𝑥‖ =

󵄩
󵄩
󵄩
󵄩
𝑓
󵄩
󵄩
󵄩
󵄩
} ,

∀𝑥 ∈ 𝐸,

(9)

where 𝐸
∗ denotes the dual space of 𝐸 and ⟨⋅, ⋅⟩ denotes the

generalized duality pairing. We will denote the single-valued
normalized duality mapping by 𝑗.

Let 𝑆 := {𝑥 ∈ 𝐸 : ‖𝑥‖ = 1} be the unit sphere of a Banach
space.The space is said to have a Gâteaux differentiable norm
(or 𝐸 is said to be smooth), if the limit

lim
𝑡→0

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑡𝑦

󵄩
󵄩
󵄩
󵄩
− ‖𝑥‖

𝑡

(10)

exists for every 𝑥, 𝑦 ∈ 𝑆, and 𝐸 is said to have a uniformly
Gâteaux differentiable norm if for each 𝑦 ∈ 𝑆 the limit (10)
is attained uniformly for 𝑥 ∈ 𝑆. Further, 𝐸 is said to be
uniformly smooth if the limit (10) exists uniformly for
(𝑥, 𝑦) ∈ 𝑆 × 𝑆.

The following two results can be found in [6].
If 𝐸 is smooth the duality mapping 𝐽 is single-valued and

strong-weak∗ continuous.
If 𝐸 is Banach space with uniformly Gâteaux differen-

tiable norm, then duality mapping 𝐽 : 𝐸 → 𝐸
∗ is single-

valued and norm to weak star uniformly continuous on
bounded sets of 𝐸.

In order to prove our main results, the following lemmas
will be used.

Lemma 4 (see [7]). Let 𝐶 be a nonempty closed convex subset
of a uniformly smooth Banach space 𝑋. Let 𝑇 : 𝐶 → 𝐶 be a
nonexpansivemappingwith𝐹(𝑇) ̸= 0. For each fixed𝑢 ∈ 𝐶 and
every 𝑡 ∈ (0, 1), the unique fixed point 𝑧

𝑡
∈ 𝐶 of the contraction

𝐶 ∋ 𝑥 ⊢ 𝑡𝑢+(1−𝑡)𝑇𝑥 as 𝑡 → 0 converges strongly to𝑥∗ ∈ 𝐹(𝑇)

which is the nearest to 𝑢.

Lemma5 (see [1]). Let𝑋 be a uniformly smoothBanach space,
𝐶 a closed convex subset of 𝑋, 𝑇 : 𝐶 → 𝐶 a nonexpansive
mapping with 𝐹(𝑇) ̸= 𝜙, and 𝑓 : 𝐶 → 𝐶 a fixed contraction.
Then 𝑥

𝑡
defined by 𝑥

𝑡
= 𝑡𝑓(𝑥

𝑡
) + (1 − 𝑡)𝑇𝑥

𝑡
converges strongly

to a unique fixed point in 𝐹(𝑇) as 𝑡 → 0.

Lemma 6 (see [3]). Let 𝐸 be a real Banach space and let 𝐽 be
the normalized duality mapping. Then for any given 𝑥, 𝑦 ∈ 𝐸,
one has

󵄩
󵄩
󵄩
󵄩
𝑥 + 𝑦

󵄩
󵄩
󵄩
󵄩

2

≤ ‖𝑥‖
2

+ 2 ⟨𝑦, 𝑗 (𝑥 + 𝑦)⟩ ,

∀𝑗 (𝑥 + 𝑦) ∈ 𝐽 (𝑥 + 𝑦) .

(11)

Lemma 7 (see [8]). Assume {𝑎
𝑛
} is a sequence of nonnegative

real numbers such that

𝑎
𝑛+1

≤ (1 − 𝛾
𝑛
) 𝑎
𝑛
+ 𝛾
𝑛
𝛿
𝑛
, 𝑛 ≥ 0, (12)

where {𝛾
𝑛
} is a sequence in (0,1) and {𝛿

𝑛
} is a sequence such that

(1) ∑∞
𝑛=0

𝛾
𝑛
= ∞;

(2) lim sup
𝑛→∞

𝛿
𝑛
≤ 0.

Then lim
𝑛→∞

𝑎
𝑛
= 0.

3. Main Results

Let 𝐶 be a nonempty closed convex subset of a uniformly
smooth Banach space. Let 𝑇 : 𝐶 → 𝐶 be a nonexpansive
mapping such that 𝐹(𝑇) ̸= 𝜙. Let {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} be three

real sequences in (0,1) satisfying

(i) 𝛼
𝑛
+ 𝛽
𝑛
+ 𝛾
𝑛
= 1, for all 𝑛 ≥ 0;

(ii) lim
𝑛→∞

𝛼
𝑛
= 0 and ∑

∞

𝑛=0
𝛼
𝑛
= ∞;

(iii) lim
𝑛→∞

𝛾
𝑛
= 0.
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In the following, we will present the first main result. For
each 𝑛 ≥ 0 and 𝑡 ∈ (0, 1), let 𝑥

𝑡,𝑛
be the unique fixed point of

the contractive mapping 𝑇
𝑡,𝑛

given by

𝑇
𝑡,𝑛
𝑥 =

(1 − 𝛼
𝑛
) 𝑡

𝛾
𝑛
+ 𝑡𝛽
𝑛

𝑢 +

(1 − 𝑡) 𝛾
𝑛

𝛾
𝑛
+ 𝑡𝛽
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥. (13)

That is,

𝑥
𝑡,𝑛

=

(1 − 𝛼
𝑛
) 𝑡

𝛾
𝑛
+ 𝑡𝛽
𝑛

𝑢 +

(1 − 𝑡) 𝛾
𝑛

𝛾
𝑛
+ 𝑡𝛽
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑡,𝑛
. (14)

From Lemma 4, for fixed 𝑛, we have

lim
𝑡→0

𝑥
𝑡,𝑛

= 𝑝 ∈ 𝐹 (𝑇) , (15)

which is the unique fixed point.

Theorem 8. Let 𝐶 be a nonempty closed convex subset of a
uniformly smooth Banach space 𝑋. Let 𝑇 : 𝐶 → 𝐶 be a non-
expansive mapping such that 𝐹(𝑇) ̸= 𝜙. Let {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
}

be three real sequences in (0,1) satisfying conditions (i)–(iii).
Then, for given 𝑥

0
∈ 𝐶 arbitrarily, let the sequence {𝑥

𝑛
} be gen-

erated iteratively by (5). Then the sequence {𝑥
𝑛
} defined by (5)

converges strongly to a fixed point of 𝑇.

Proof. Taking a fixed point 𝑝 ∈ 𝐹(𝑇), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩
= 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

𝑛 + 1

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑇
𝑖

𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

= 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑢 − 𝑝

󵄩
󵄩
󵄩
󵄩
+ (1 − 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

≤ max {󵄩󵄩󵄩
󵄩
𝑢 − 𝑝

󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
} .

(16)

By induction, we get that {𝑥
𝑛
} is bounded. We observe that

(14) can be rewritten as follows:

𝑥
𝑡,𝑛

= 𝑡𝑢 + (1 − 𝑡) [

𝛽
𝑛

1 − 𝛼
𝑛

𝑥
𝑡,𝑛

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑡,𝑛
] ,

lim
𝑡→0

𝑥
𝑡,𝑛

= 𝑝 ∈ 𝐹 (𝑇) , ∀𝑛 ≥ 0.

(17)

By (14), we have

𝑥
𝑡,𝑛

− 𝑥
𝑛
= 𝑡 (𝑢 − 𝑥

𝑛
)

+ (1 − 𝑡) [

𝛽
𝑛

1 − 𝛼
𝑛

(𝑥
𝑡,𝑛

− 𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑡,𝑛

− 𝑥
𝑛
)] .

(18)

Applying Lemma 6 to (18), we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

≤ (1 − 𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛽
𝑛

1 − 𝛼
𝑛

(𝑥
𝑡,𝑛

− 𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑡,𝑛

− 𝑥
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑢 − 𝑥
𝑛
, 𝑗 (𝑥
𝑡,𝑛

− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

[

𝛽
𝑛

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑡,𝑛

− 𝑇
𝑖

𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
]

2

+ 2𝑡
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑡,𝑛

− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

[
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
]

2

+ 2𝑡
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑡,𝑛

− 𝑥
𝑛
)⟩

= (1 + 𝑡
2

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝑡)
2

(

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
)

2

+ 2(1 − 𝑡)
2

𝛾
𝑛

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
(

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
)

+ 2𝑡 ⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑡,𝑛

− 𝑥
𝑛
)⟩

≤ (1 + 𝑡
2

)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+

𝛾
𝑛

1 − 𝛼
𝑛

𝑄

+ 2𝑡 ⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑡,𝑛

− 𝑥
𝑛
)⟩ ,

(19)

where 𝑄 is some constant such that

sup{

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

+2
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
, 𝑛 ≥ 0} ≤ 𝑄.

(20)

Hence, we get

⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑛
− 𝑥
𝑡,𝑛
)⟩ ≤

𝑡

2

𝑄
1
+

1

2𝑡

(

𝛾
𝑛

1 − 𝛼
𝑛

𝑄) , (21)
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where 𝑄
1
is a constant such that

sup {
󵄩
󵄩
󵄩
󵄩
𝑥
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
, 𝑛 ≥ 0, 0 < 𝑡 < 1} ≤ 𝑄

1
. (22)

It follows that
lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑢 − 𝑥
𝑡,𝑛
, 𝑗 (𝑥
𝑛
− 𝑥
𝑡,𝑛
)⟩ ≤ 0. (23)

By the fact that the order of lim sup
𝑡→0

and lim sup
𝑛→∞

is
changeable, we have

lim sup
𝑛→∞

⟨𝑢 − 𝑝, 𝑗 (𝑥
𝑛
− 𝑝)⟩ ≤ 0. (24)

Finally, we prove 𝑥
𝑛
→ 𝑝. Indeed, applying Lemma 6 to (5),

we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑝
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
(𝑢 − 𝑝) + 𝛽

𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛
(

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥
𝑛
− 𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛽
𝑛
(𝑥
𝑛
− 𝑝) + 𝛾

𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑇
𝑖

𝑝)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑝, 𝑗 (𝑥

𝑛+1
− 𝑝)⟩

≤ (𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩
)
2

+ 2𝛼
𝑛
⟨𝑢 − 𝑝, 𝑗 (𝑥

𝑛+1
− 𝑝)⟩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑝

󵄩
󵄩
󵄩
󵄩

2

+ 2𝛼
𝑛
⟨𝑢 − 𝑝, 𝑗 (𝑥

𝑛+1
− 𝑝)⟩ .

(25)

Hence, by Lemma 7, we have that 𝑥
𝑛
→ 𝑝 as 𝑛 → ∞.

The proof is complete.

Nowwewill give the secondmain result. In order to prove
the strong convergence of viscosity iterative (6), we assume
that 𝑧

𝑡,𝑛
is the unique fixed point of the following contractive

mapping 𝑇
𝑡,𝑛

given by

𝑇
𝑡,𝑛
𝑥 =

(1 − 𝛼
𝑛
) 𝑡

𝛾
𝑛
+ 𝑡𝛽
𝑛

𝑓 (𝑥) +

(1 − 𝑡) 𝛾
𝑛

𝛾
𝑛
+ 𝑡𝛽
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑥. (26)

That is,

𝑧
𝑡,𝑛

=

(1 − 𝛼
𝑛
) 𝑡

𝛾
𝑛
+ 𝑡𝛽
𝑛

𝑓 (𝑧
𝑡,𝑛
) +

(1 − 𝑡) 𝛾
𝑛

𝛾
𝑛
+ 𝑡𝛽
𝑛

1

𝑛 + 1

𝑛

∑

𝑖=0

𝑇
𝑖

𝑧
𝑡,𝑛
. (27)

From Lemma 5, for fixed 𝑛, we have
lim
𝑡→0

𝑧
𝑡,𝑛

= 𝑝 ∈ 𝐹 (𝑇) , (28)

which is the unique fixed point.

Theorem 9. Let 𝐶 be a nonempty closed convex subset of a
uniformly smooth Banach space 𝑋. Let 𝑇 : 𝐶 → 𝐶 be a non-
expansive mapping such that 𝐹(𝑇) ̸= 𝜙. Let {𝛼

𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
}

be three real sequences in (0,1) satisfying the following control
conditions (i–iii). Then, for given 𝑥

0
∈ 𝐶 arbitrarily, the

sequence {𝑥
𝑛
} defined by (6) converges strongly to a fixed point

of 𝑇.

Proof. Taking a fixed point 𝑞 ∈ 𝐹(𝑇), we have

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑞
󵄩
󵄩
󵄩
󵄩

≤ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑛
) − 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑇
𝑖

𝑞)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝛼
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)

󵄩
󵄩
󵄩
󵄩
+
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑞) − 𝑞

󵄩
󵄩
󵄩
󵄩
)

+ 𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

≤ 𝛼
𝑛
𝛽
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑞) − 𝑞

󵄩
󵄩
󵄩
󵄩

+ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

= 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑞) − 𝑞

󵄩
󵄩
󵄩
󵄩
+ (1 − (1 − 𝛽) 𝛼

𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

≤ max{ 1

1 − 𝛽

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑞) − 𝑞

󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
} .

(29)

By induction,

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
≤ max{ 1

1 − 𝛽

󵄩
󵄩
󵄩
󵄩
𝑓 (𝑞) − 𝑞

󵄩
󵄩
󵄩
󵄩
,
󵄩
󵄩
󵄩
󵄩
𝑥
0
− 𝑞

󵄩
󵄩
󵄩
󵄩
} ,

𝑛 ≥ 0

(30)

and {𝑥
𝑛
} is bounded so are {𝑇𝑖𝑥

𝑛
} and {𝑓(𝑥

𝑛
)}.

We observe that (27) can be rewritten as

𝑧
𝑡,𝑛

= 𝑡𝑓 (𝑧
𝑡,𝑛
)

+ (1 − 𝑡) [

𝛽
𝑛

1 − 𝛼
𝑛

𝑧
𝑡,𝑛

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

𝑇
𝑖

𝑧
𝑡,𝑛
] ,

(31)

and lim
𝑡→0

𝑧
𝑡,𝑛

= 𝑞 ∈ 𝐹(𝑇), for all 𝑛 ≥ 0.
From (31), we have

𝑧
𝑡,𝑛

− 𝑥
𝑛
= 𝑡 (𝑓 (𝑧

𝑡,𝑛
− 𝑥
𝑛
))

+ (1 − 𝑡) [

𝛽
𝑛

1 − 𝛼
𝑛

(𝑧
𝑡,𝑛

− 𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑧
𝑡,𝑛

− 𝑥
𝑛
)] .

(32)

Applying Lemma 6 to (32), we get

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛽
𝑛

1 − 𝛼
𝑛

(𝑧
𝑡,𝑛

− 𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑧
𝑡,𝑛

− 𝑥
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑥
𝑛
, 𝑗 (𝑧
𝑡,𝑛

− 𝑥
𝑛
)⟩
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≤ (1 − 𝑡)
2

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛽
𝑛

1 − 𝛼
𝑛

(𝑧
𝑡,𝑛

− 𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑧
𝑡,𝑛

− 𝑇
𝑖

𝑥
𝑛
)

+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛
)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑧
𝑡,𝑛

− 𝑥
𝑛
)⟩

≤ (1 − 𝑡)
2

[
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
+

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
]

2

+ 2𝑡
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ 2𝑡 ⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑧
𝑡,𝑛

− 𝑥
𝑛
)⟩

= (1 + 𝑡
2

)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+ (1 − 𝑡)
2

(

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩
)

2

+ 2(1 − 𝑡)
2

𝛾
𝑛

1 − 𝛼
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

+ 2𝑡 ⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑧
𝑡,𝑛

− 𝑥
𝑛
)⟩

≤ (1 + 𝑡
2

)
󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

+

𝛾
𝑛

1 − 𝛼
𝑛

𝑀

+ 2𝑡 ⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑧
𝑡,𝑛

− 𝑥
𝑛
)⟩ ,

(33)

where𝑀 is some constant such that

sup{

1

1 + 𝑛

𝑛

∑

𝑖=0

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

2

+2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑇
𝑖

𝑥
𝑛
− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩
) , 𝑛 ≥ 0} ≤ 𝑀.

(34)

Hence, we have

⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑥
𝑛
− 𝑧
𝑡,𝑛
)⟩ ≤

𝑡

2

𝑀
1
+

1

2𝑡

(

𝛾
𝑛

1 − 𝛼
𝑛

𝑀) ,

(35)

where𝑀
1
is also a constant such that

𝑀
1
≥ sup {

󵄩
󵄩
󵄩
󵄩
𝑧
𝑡,𝑛

− 𝑥
𝑛

󵄩
󵄩
󵄩
󵄩

2

, 𝑛 ≥ 0, 0 < 𝑡 < 1} . (36)

It follows that

lim sup
𝑡→0

lim sup
𝑛→∞

⟨𝑓 (𝑧
𝑡,𝑛
) − 𝑧
𝑡,𝑛
, 𝑗 (𝑥
𝑛
− 𝑧
𝑡,𝑛
)⟩ ≤ 0. (37)

Since the order of lim sup
𝑡→0

and lim sup
𝑛→∞

is exchange-
able, hence

lim sup
𝑛→∞

⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥
𝑛
− 𝑞)⟩ ≤ 0. (38)

Finally, we prove that𝑥
𝑛
→ 𝑞. Indeed, applying Lemma6

to (6), we obtain
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑞
󵄩
󵄩
󵄩
󵄩

2

=

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛼
𝑛
(𝑓 (𝑥
𝑛
) − 𝑞) + 𝛽

𝑛
(𝑥
𝑛
− 𝑞)

+𝛾
𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑇
𝑖

𝑞)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝛽
𝑛
(𝑥
𝑛
− 𝑞) + 𝛾

𝑛

1

1 + 𝑛

𝑛

∑

𝑖=0

(𝑇
𝑖

𝑥
𝑛
− 𝑇
𝑖

𝑞)

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑞, 𝑗 (𝑥

𝑛+1
− 𝑞)⟩

≤ [𝛽
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
+ 𝛾
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩
]
2

+ 2𝛼
𝑛
⟨𝑓 (𝑥
𝑛
) − 𝑓 (𝑞) , 𝑗 (𝑥

𝑛+1
− 𝑞)⟩

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥

𝑛+1
− 𝑞)⟩

≤ (1 − 𝛼
𝑛
)
2󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛
(
󵄩
󵄩
󵄩
󵄩
𝑓 (𝑥
𝑛
) − 𝑓 (𝑞)

󵄩
󵄩
󵄩
󵄩

2

+
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑞
󵄩
󵄩
󵄩
󵄩

2

)

+ 2𝛼
𝑛
⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥

𝑛+1
− 𝑞)⟩ .

(39)

Therefore, we have
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑞
󵄩
󵄩
󵄩
󵄩

2

≤

1 − 2𝛼
𝑛
+ 𝛽
2

𝛼
𝑛
+ 𝛼
2

𝑛

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+

2𝛼
𝑛

1 − 𝛼
𝑛

⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥
𝑛+1

− 𝑞)⟩

≤ (1 −

1 − 𝛽
2

1 − 𝛼
𝑛

𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+

𝛼
2

𝑛

1 − 𝛼
𝑛

󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+

2𝛼
𝑛

1 − 𝛼
𝑛

⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥
𝑛+1

− 𝑞)⟩

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛

̃
𝛽
𝑛
.

(40)

Put

𝛼
𝑛
=

1 − 𝛽
2

1 − 𝛼
𝑛

𝛼
𝑛
,

̃
𝛽
𝑛
=

𝑀
1

1 − 𝛽
2
𝛼
𝑛
+

2

1 − 𝛽
2
⟨𝑓 (𝑞) − 𝑞, 𝑗 (𝑥

𝑛+1
− 𝑞)⟩ .

(41)

It follows that
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛+1

− 𝑞
󵄩
󵄩
󵄩
󵄩

2

≤ (1 − 𝛼
𝑛
)
󵄩
󵄩
󵄩
󵄩
𝑥
𝑛
− 𝑞

󵄩
󵄩
󵄩
󵄩

2

+ 𝛼
𝑛

̃
𝛽
𝑛
. (42)

It is easily seen from (ii) and (38) that

𝛼
𝑛
󳨀→ 0,

∞

∑

𝑛=0

𝛼
𝑛
= ∞, lim sup

𝑛→∞

̃
𝛽
𝑛
≤ 0. (43)
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Hence, applying Lemma 7 to (42), we have that 𝑥
𝑛

→ 𝑞 as
𝑛 → ∞.

The proof is complete.

Remark 10. Our main result extends the main result of Yao
et al. to Cesàro means and viscosity iteration method. Our
results are new and the proofs are simple and different from
many others.
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