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Let 𝐹 : R×R → R be a real-valued polynomial function of the form 𝐹(𝑥, 𝑦) = 𝑎
𝑠
(𝑥)𝑦
𝑠

+𝑎
𝑠−1

(𝑥)𝑦
𝑠−1

+ ⋅ ⋅ ⋅ +𝑎
0
(𝑥), where the degree

𝑠 of 𝑦 in 𝐹(𝑥, 𝑦) is greater than or equal to 1. For arbitrary polynomial function 𝑓(𝑥) ∈ R[𝑥], 𝑥 ∈ R, we will find a polynomial
solution 𝑦(𝑥) ∈ R[𝑥] to satisfy the following equation: (∗):𝐹(𝑥, 𝑦(𝑥)) = 𝑎𝑓(𝑥), where 𝑎 ∈ R is a constant depending on the solution
𝑦(𝑥), namely, a quasi-coincidence (point) solution of (∗), and 𝑎 is called a quasi-coincidence value. In this paper, we prove that (i)
the leading coefficient 𝑎

𝑠
(𝑥) must be a factor of 𝑓(𝑥), and (ii) each solution of (∗) is of the form 𝑦(𝑥) = −𝑎

𝑠−1
(𝑥)/𝑠𝑎

𝑠
(𝑥) + 𝜆𝑝(𝑥),

where 𝜆 is arbitrary and 𝑝(𝑥) = 𝑐(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠 is also a factor of 𝑓(𝑥), for some constant 𝑐 ∈ R, provided the equation (∗) has

infinitely many quasi-coincidence (point) solutions.

1. Introduction and Preliminaries

Let 𝐹 : Q(𝛼) × Q(𝛼) → Q(𝛼) (where 𝛼 is an algebraic
number) be a polynomial function. Lenstra [1] investigated
that 𝐹(𝑥, 𝑦(𝑥)) = 0. He solved a polynomial function 𝑦 =

𝑦(𝑥) ∈ Q(𝛼)[𝑥] and derived to find a polynomial 𝑦 = 𝑦(𝑥)

satisfying an 𝑥 ∈ Q(𝛼)[𝑥] as a fixed point of the polynomial
equation. That is,

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑥 (1)

has a polynomial solution 𝑦(𝑥) ∈ Q(𝛼)[𝑥].
Further, Tung [2, 3] extended (1) to solve 𝑦(𝑥) ∈ K[𝑥] (K

is a field) for the following equation:

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑥
𝑚

, (2)

where 𝑎 ∈ K is a constant depending on the polynomial
solution 𝑦(𝑥) and 𝑚 ∈ N a given positive integer.

Recently, Lai and Chen [4, 5] extended (2) to solve 𝑦(𝑥) ∈

R[𝑥] to satisfy the polynomial equation as the form:

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑝
𝑚

(𝑥) , 𝑥 ∈ R, (3)

where 𝑎 ∈ R, 𝑝(⋅) is an irreducible polynomial in 𝑥 ∈ R and
the polynomial function 𝐹(𝑥, 𝑦) : R × R → R is written by

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖 with 𝑠 ≥ 1, (4)

where 𝑠 = deg
𝑦
𝐹 denotes the degree of 𝑦 in 𝐹(𝑥, 𝑦).

Definition 1 (see [4]). A polynomial function 𝑦 = 𝑦(𝑥)

satisfying (3) is called a quasi-fixed solution corresponding
to some real number 𝑎. This number 𝑎 is called a quasi-fixed
value corresponding to the polynomial solutions 𝑦 = 𝑦(𝑥).

In mathematics, a coincidence point (or simply coinci-
dence) of two mappings is a point in their domain having
the same image point under both mappings. Coincidence
theory (the study of coincidence points) is, in most settings,
a generalization of fixed point theory.

In this paper, we define a more general coincidence
(point) problem in which the 𝑓(𝑥) ∈ R[𝑥] is replaced by the
irreducible polynomial power 𝑝

𝑚

(𝑥) ∈ R[𝑥] throughout this
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paper, where𝑓(𝑥) is an arbitrary polynomial.Then,we restate
(3) as the following equation:

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) . (5)

It is a new development coincidence point-like problem. We
call the polynomial solution 𝑦 = 𝑦(𝑥) for (5) as a quasi-
coincidence (point) solution. Precisely, we give the following
definition like Definition 1.

Definition 2. A polynomial function 𝑦 = 𝑦(𝑥) satisfying (5)
is called a quasi-coincidence (point) solution corresponding
to some real number 𝑎. This number 𝑎 is called a quasi-
coincidence value corresponding to the polynomial solutions
𝑦 = 𝑦(𝑥).

The number of all solutions in (5) may be infinitely many,
or finitely many, or not solvable.

Since there may have many solutions corresponding to
the number 𝑎, for convenience,we use the followingnotations
to represent different situations:

(1) Qcs
𝐹
, the set of all quasi-coincidence solutions satis-

fying (5),
(2) Qcv

𝐹
, the set of all quasi-coincidence values satisfying

(5),
(3) Qcs

𝐹
(𝑎), the set of all quasi-coincidence solutions

𝑦(𝑥) corresponding to a fixed quasi-coincidence value
𝑎.

Evidently,

Qcs
𝐹

= ⋃

𝑎∈Qcv𝐹

Qcs
𝐹
(𝑎) , (6)

Qcs
𝐹
(𝑎)⋂Qcs

𝐹
(𝑏) = 0 (7)

for any 𝑎 ̸= 𝑏 in Qcv
𝐹
. Moreover, for each 𝑎 ∈ R, the

cardinal number of Qcs
𝐹
(𝑎), denoted by |Qcs

𝐹
(𝑎)|, satisfies

the following condition:
󵄨󵄨󵄨󵄨Qcs
𝐹
(𝑎)

󵄨󵄨󵄨󵄨 ≤ deg
𝑦
𝐹 (𝑥, 𝑦) . (8)

In Section 2, we derive some properties of quasi-
coincidence solutions of 𝐹(𝑥, 𝑦). If (5) has infinitely many
quasi-coincidence solutions, the concerned properties are
described in Section Section 3.

Throughout the paper, we denote the polynomial func-
tion by

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

=

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖

.

(9)

2. Auxiliary Lemmas

For convenience, we explain some interesting properties of
quasi-coincidence point solutions as the following lemmas.
Throughout this paper, we consider (5) for polynomial
function (9) and arbitrary polynomial 𝑓(𝑥) in R[𝑥].

Lemma 3. Let 𝑦
1
(𝑥) ∈ Qcs

𝐹
(𝑎), 𝑦

2
(𝑥) ∈ Qcs

𝐹
(𝑏), 𝑎 ̸= 𝑏 in

Qcv
𝐹
. Then,

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝑑𝑝 (𝑥) 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑑 ∈ R, (10)

and this 𝑝(𝑥) is divisible 𝑓(𝑥); that is, 𝑝(𝑥) | 𝑓(𝑥).

Proof. Since 𝑦
1
(𝑥) ̸= 𝑦

2
(𝑥) in Qcs

𝐹
correspond to 𝑎 ̸= 𝑏 in

Qcv
𝐹
, respectively, thus

𝐹 (𝑥, 𝑦
1
(𝑥)) = 𝑎𝑓 (𝑥) ,

𝐹 (𝑥, 𝑦
2
(𝑥)) = 𝑏𝑓 (𝑥) .

(11)

Subtracting the above two equations and using binomial
formula, it yields

(𝑎 − 𝑏) 𝑓 (𝑥) = 𝐹 (𝑥, 𝑦
1
(𝑥)) − 𝐹 (𝑥, 𝑦

2
(𝑥))

= 𝑎
𝑠
(𝑥) [𝑦

𝑠

1
(𝑥) − 𝑦

𝑠

2
(𝑥)] + 𝑎

𝑠−1
(𝑥)

× [𝑦
𝑠−1

1
(𝑥) − 𝑦

𝑠−1

2
(𝑥)]

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥) [𝑦

1
(𝑥) − 𝑦

2
(𝑥)]

= [𝑦
1
(𝑥) − 𝑦

2
(𝑥)]

× [𝑎
𝑠
(𝑥) 𝐺
𝑠
(𝑦
1
(𝑥) , 𝑦

2
(𝑥))

+ 𝑎
𝑠−1

(𝑥) 𝐺
𝑠−1

(𝑦
1
(𝑥) , 𝑦

2
(𝑥))

+ ⋅ ⋅ ⋅ + 𝑎
1
(𝑥)]

= [𝑦
1
(𝑥) − 𝑦

2
(𝑥)] 𝑄 (𝑥, 𝑦

1
(𝑥) , 𝑦

2
(𝑥)) ,

(12)

where 𝐺
𝑗
(𝑦
1
(𝑥), 𝑦
2
(𝑥)) = 𝑦

𝑗−1

1
(𝑥) + 𝑦

𝑗−2

1
(𝑥)𝑦
2
(𝑥) + ⋅ ⋅ ⋅ +

𝑦
𝑗−1

2
(𝑥), for 𝑗 = 𝑠, 𝑠 − 1, . . . , 2, 1. Evidently, the factor 𝑦

1
(𝑥) −

𝑦
2
(𝑥) is divisible to the term (𝑎 − 𝑏)𝑓(𝑥).
Since 𝑎 ̸= 𝑏,

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝑑𝑝 (𝑥) (13)

for a real number 𝑑 ∈ R and some factor 𝑝(𝑥) of 𝑓(𝑥).

In Lemma 3, the difference of any two distinct quasi-
coincidence solutions corresponding to distinct values is a
factor of 𝑓(𝑥). Thus, we define a class of this factor as follows.

Notation. (i) Let 𝑝(𝑥) be a factor of 𝑓(𝑥), and we denote
Φ(𝑝(𝑥)) = {𝛼𝑝(𝑥) : 𝛼 ∈ R}.

(ii) Let 𝑦(𝑥) be an arbitrary polynomial in R[𝑥], and we
denote 𝑦(𝑥) + Φ(𝑝(𝑥)) = {𝑦(𝑥) + 𝛼𝑝(𝑥) : 𝛼 ∈ R}.

It is obvious that for any 𝑦(𝑥), 𝑝(𝑥) ∈ R[𝑥], then the
cardinal number

󵄨󵄨󵄨󵄨𝑦 (𝑥) + Φ (𝑝 (𝑥))
󵄨󵄨󵄨󵄨 = ∞. (14)

For convenience, we explain the relations of Qcs
𝐹
and

Φ(𝑝(𝑥)) in the following lemma.
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Lemma 4. Let 𝑦(𝑥) ∈ Qcs
𝐹
(𝑎) for some 𝑎 ∈ R, then

Qcs
𝐹

= Qcs
𝐹
(𝑎)

⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ Qcs
𝐹
}) .

(15)

Proof. For any 𝑦
1
(𝑥) ∈ Qcs

𝐹
\ Qcs
𝐹
(𝑎), then 𝑦

1
(𝑥) ∈ Qcs(𝑏)

for some 𝑏 ∈ Qcv
𝐹
. By Lemma 3, we have

𝑦
1
(𝑥) − 𝑦 (𝑥) ∈ Φ (𝑝 (𝑥)) (16)

for some factor 𝑝(𝑥) of 𝑓(𝑥). Then,

𝑦
1
(𝑥) ∈ ⋃

𝑝(𝑥)|𝑓(𝑥)

{𝑦 (𝑥) + Φ (𝑝 (𝑥))} . (17)

That is,

Qcs
𝐹

⊆ Qcs
𝐹
(𝑎)⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{𝑦 (𝑥) + Φ (𝑝 (𝑥))}) . (18)

Moreover, by (6), Qcs
𝐹
(𝑎) ⊆ Qcs

𝐹
, then it follows that

Qcs
𝐹

= Qcs
𝐹
(𝑎)

⋃( ⋃

𝑝(𝑥)|𝑓(𝑥)

{(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ Qcs
𝐹
}) .

(19)

We will use the definitions of “the pigeonhole principle;”
it could concert to Grimaldi [6], and the relation can be
explained as the following lemma.

Lemma 5. Suppose that the cardinal number |Qcs
𝐹
| = ∞. For

any 𝑦(𝑥) ∈ Qcs
𝐹
, there exists a factor 𝑝(𝑥) of 𝑓(𝑥) such that

the cardinal number
󵄨󵄨󵄨󵄨(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞. (20)

Proof. Let 𝑦(𝑥) ∈ Qcs
𝐹
, then 𝑦(𝑥) ∈ Qcs

𝐹
(𝑎) for some 𝑎 ∈ R.

Since |Qcs
𝐹
| = ∞ and |Qcs

𝐹
(𝑎)| ≤ 𝑠, by Lemma 4, we obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

⋃

𝑝(𝑥)|𝑓(𝑥)

({𝑦 (𝑥) + Φ (𝑝 (𝑥))} ∩ Qcs
𝐹
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∞, (21)

it yields

∑

𝑝(𝑥)|𝑓(𝑥)

󵄨󵄨󵄨󵄨(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ Qcs
𝐹

󵄨󵄨󵄨󵄨 = ∞. (22)

Moreover, the number of all factor 𝑝(𝑥) of 𝑓(𝑥) is at most
2
deg𝑓(𝑥), by pigeonhole’s principle, it leads to

󵄨󵄨󵄨󵄨(𝑦 (𝑥) + Φ (𝑝 (𝑥))) ∩ Qcs
𝐹

󵄨󵄨󵄨󵄨 = ∞ (23)

for some factor 𝑝(𝑥) of 𝑓(𝑥).

In order to know if the intersection of two sets still has
infinite solutions, we state the following result to give an
explanation.

Lemma 6. Suppose that the cardinal number |Qcs
𝐹
| = ∞, for

any 𝑦
1
(𝑥) ̸= 𝑦

2
(𝑥) ∈ Qcs

𝐹
, there exist some factors 𝑝

1
(𝑥) and

𝑝
2
(𝑥) of 𝑓(𝑥) such that

󵄨󵄨󵄨󵄨(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩ (𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞.

(24)
Proof. Let 𝑦

1
(𝑥) ∈ Qcs

𝐹
and since |Qcs

𝐹
| = ∞, by Lemma 5,

there exists a factor 𝑝
1
(𝑥) of 𝑓(𝑥) such that

󵄨󵄨󵄨󵄨(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞. (25)
Moreover, 𝑦

2
(𝑥) ∈ Qcs

𝐹
, by Lemma 4,

Qcs
𝐹

⊆ Qcs
𝐹
(𝑏)⋃( ⋃

𝑝2(𝑥)|𝑓(𝑥)

{𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥))}) (26)

for some constant 𝑏 ∈ R and some factor 𝑝
2
(𝑥) of𝑓(𝑥).Thus,

({𝑦
1
(𝑥) + Φ (𝑝

1
(𝑥))} ∩ Qcs

𝐹
)

⊆ Qcs
𝐹

⊆ Qcs
𝐹
(𝑏)⋃( ⋃

𝑝2(𝑥)|𝑓(𝑥)

{𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥))}) .

(27)
Since |Qcs

𝐹
(𝑏)| ≤ 𝑠 and the number of all factor to 𝑓(𝑥) is at

most 2deg𝑓(𝑥), by pigeonhole’s principle and (25), we have
󵄨󵄨󵄨󵄨(𝑦2 (𝑥) + Φ (𝑝

2
(𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞,

󵄨󵄨󵄨󵄨(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥)))

∩ (𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞

(28)

for some factor 𝑝
2
(𝑥) of 𝑓(𝑥).

Up to now, we have not shown that the factor 𝑝(𝑥) is
uniquely existed. Eventually, if the number of all solutions is
infinitely many, then the factor 𝑝(𝑥) of 𝑓(𝑥) is unique up to
the choice of the solution 𝑦(𝑥).

Lemma7. Assume that the cardinal number |Qcs
𝐹
| = ∞, then

for any 𝑦
1
(𝑥), 𝑦

2
(𝑥) ∈ Qcs

𝐹
, one has

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = 𝜆𝑝 (𝑥) (29)

for some constant 𝜆 ∈ R and some factor 𝑝(𝑥) of 𝑓(𝑥) (this
𝑝(𝑥) is independent to the choice of 𝑦

1
(𝑥) and 𝑦

2
(𝑥)).

Proof. Let 𝑦
1
(𝑥) ̸= 𝑦

2
(𝑥) ∈ Qcs

𝐹
, by Lemma 6, we have

󵄨󵄨󵄨󵄨(𝑦1 (𝑥) + Φ (𝑝
1
(𝑥)))

∩ (𝑦
2
(𝑥) + Φ (𝑝

2
(𝑥))) ∩ Qcs

𝐹

󵄨󵄨󵄨󵄨 = ∞

(30)

for some factors 𝑝
1
(𝑥), 𝑝

2
(𝑥) of 𝑓(𝑥).

Let 𝑔
1
(𝑥) ̸= 𝑔

2
(𝑥) ∈ (𝑦

1
(𝑥) + Φ(𝑝

1
(𝑥))) ∩ (𝑦

2
(𝑥) +

Φ(𝑝
2
(𝑥))) ∩ Qcs

𝐹
− {𝑦
1
(𝑥), 𝑦
2
(𝑥)}, then

𝑔
1
(𝑥) ∈ 𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥)) ,

𝑔
2
(𝑥) ∈ 𝑦

1
(𝑥) + Φ (𝑝

1
(𝑥)) ,

𝑔
1
(𝑥) ∈ 𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥)) ,

𝑔
2
(𝑥) ∈ 𝑦

2
(𝑥) + Φ (𝑝

2
(𝑥)) .

(31)
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By Lemma 6, it yields

𝑔
1
(𝑥) − 𝑦

1
(𝑥) = 𝜆

1
𝑝
1
(𝑥) ,

𝑔
2
(𝑥) − 𝑦

1
(𝑥) = 𝜆

2
𝑝
1
(𝑥) ,

𝑔
1
(𝑥) − 𝑦

2
(𝑥) = 𝜆

3
𝑝
2
(𝑥) ,

𝑔
2
(𝑥) − 𝑦

2
(𝑥) = 𝜆

4
𝑝
2
(𝑥)

(32)

for some constants 𝜆
1
, 𝜆
2
, 𝜆
3
, and 𝜆

4
∈ R, and consequently

𝑔
2
(𝑥) − 𝑔

1
(𝑥) = (𝑔

2
(𝑥) − 𝑦

1
(𝑥)) − (𝑔

1
(𝑥) − 𝑦

1
(𝑥))

= (𝜆
2
− 𝜆
1
) 𝑝
1
(𝑥) ,

𝑔
2
(𝑥) − 𝑔

1
(𝑥) = (𝑔

2
(𝑥) − 𝑦

2
(𝑥))

− (𝑔
1
(𝑥) − 𝑦

2
(𝑥)) = (𝜆

4
− 𝜆
3
) 𝑝
2
(𝑥) .

(33)

This implies that

(𝜆
2
− 𝜆
1
) 𝑝
1
(𝑥) = (𝜆

4
− 𝜆
3
) 𝑝
2
(𝑥) (34)

and 𝑝
1
(𝑥) = 𝑝

2
(𝑥). Therefore,

𝑦
1
(𝑥) − 𝑦

2
(𝑥) = (𝑔

1
(𝑥) − 𝑦

2
(𝑥)) − (𝑔

1
(𝑥) − 𝑦

1
(𝑥))

= (𝜆
3
− 𝜆
1
) 𝑝
1
(𝑥) .

(35)

Consequently, the factor 𝑝(𝑥) is uniquely existed.

By the above preparations, at first we consider the poly-
nomial function 𝐹(𝑥, 𝑦) with deg

𝑦
𝐹 = 1 as the form

𝐹 (𝑥, 𝑦) = 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥) . (36)

Then, we consider the theorem of problem as

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) . (37)

In the following theorem, we integrate the above type as
follows.

Theorem 8. Let 𝐹(𝑥, 𝑦) be a polynomial function with
deg
𝑦
𝐹 = 1 as the form 𝐹(𝑥, 𝑦) = 𝑎

1
(𝑥)𝑦 + 𝑎

0
(𝑥) = 𝑎𝑓(𝑥)

for some 𝑎 ∈ R (where polynomial function 𝑓(𝑥) is given). If
the cardinal number |Qcv

𝐹
| ≥ 2(= deg

𝑦
𝐹 + 1), then

(i) 𝑎
1
(𝑥) is some factor of 𝑓(𝑥),

(ii) any solution of (5) is of the form:

𝑦 (𝑥) = −
𝑎
0
(𝑥)

𝑎
1
(𝑥)

+ 𝜆𝑝 (𝑥) (38)

for some 𝜆 ∈ R and some factor 𝑝(𝑥) of 𝑓(𝑥),
(iii) the cardinal number |Qcs

𝐹
| = ∞.

Proof. Since |Qcv
𝐹
| ≥ 2, we see that there are two distinct

quasi-fixed values 𝑎, 𝑏 ∈ Qcv
𝐹
corresponding to two distinct

solutions 𝑦
1
(𝑥), 𝑦
2
(𝑥) in Qcs

𝐹
such that

𝐹 (𝑥, 𝑦
1
(𝑥)) = 𝑎𝑓 (𝑥) ,

𝐹 (𝑥, 𝑦
2
(𝑥)) = 𝑏𝑓 (𝑥) .

(39)

(i) It follows that

𝐹 (𝑥, 𝑦
1
(𝑥)) = 𝑎

1
(𝑥) 𝑦
1
(𝑥) + 𝑎

0
(𝑥) = 𝑎𝑓 (𝑥) , (40)

𝐹 (𝑥, 𝑦
2
(𝑥)) = 𝑎

1
(𝑥) 𝑦
2
(𝑥) + 𝑎

0
(𝑥) = 𝑏𝑓 (𝑥) . (41)

By (40)-(41), we get

𝑎
1
(𝑥) (𝑦

1
(𝑥) − 𝑦

2
(𝑥)) = (𝑎 − 𝑏) 𝑓 (𝑥) . (42)

It follows that 𝑎
1
(𝑥) must be a factor of 𝑓(𝑥) and

𝑦
1
(𝑥) − 𝑦

2
(𝑥) =

(𝑎 − 𝑏) 𝑓 (𝑥)

𝑎
1
(𝑥)

∈ R [𝑥] . (43)

(ii) By (40), we have

𝑎
0
(𝑥) = 𝑎𝑓 (𝑥) − 𝑎

1
(𝑥) 𝑦
1
(𝑥) (44)

= 𝑎
1
(𝑥) (𝑎

𝑓 (𝑥)

𝑎
1
(𝑥)

− 𝑦
1
(𝑥)) . (45)

Thus, (i) and (45) imply 𝑎
1
(𝑥) | 𝑎

0
(𝑥), and by (44), 𝑦

1
(𝑥) can

be written as

𝑦
1
(𝑥) =

𝑎𝑓 (𝑥) − 𝑎
0
(𝑥)

𝑎
1
(𝑥)

. (46)

Moreover, we derive

𝐹 (𝑥, 𝑦) = 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

= 𝑎
1
(𝑥) (𝑦 − 𝑦

1
(𝑥)) + (𝑎

1
(𝑥) 𝑦
1
(𝑥) + 𝑎

0
(𝑥))

by (40) = 𝑎
1
(𝑥) (𝑦 − 𝑦

1
(𝑥)) + 𝑎𝑓 (𝑥) .

(47)

For any 𝑦(𝑥) ∈ Qcs
𝐹
, we have

𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎𝑓 (𝑥) (48)

for some 𝑎 ∈ R. By (47) and (48), it follows that

𝑎
1
(𝑥) (𝑦 (𝑥) − 𝑦

1
(𝑥)) + 𝑎𝑓 (𝑥) = 𝑎𝑓 (𝑥) . (49)

Hence,

𝑦 (𝑥) − 𝑦
1
(𝑥) =

(𝑎 − 𝑎) 𝑓 (𝑥)

𝑎
1
(𝑥)

. (50)
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Then,

𝑦 (𝑥) = 𝑦
1
(𝑥) +

(𝑎 − 𝑎) 𝑓 (𝑥)

𝑎
1
(𝑥)

by (46) =
𝑎𝑓 (𝑥) − 𝑎

0
(𝑥)

𝑎
1
(𝑥)

+
(𝑎 − 𝑎) 𝑓 (𝑥)

𝑎
1
(𝑥)

=
−𝑎
0
(𝑥)

𝑎
1
(𝑥)

+
𝑎𝑓 (𝑥)

𝑎
1
(𝑥)

.

(51)

Therefore,

𝑦 (𝑥) =
−𝑎
0
(𝑥)

𝑎
1
(𝑥)

+ 𝜆𝑝 (𝑥) for some factor 𝑝 (𝑥) of 𝑓 (𝑥) .

(52)

(Note that this 𝑝(𝑥) = 𝑓(𝑥)/𝑎
1
(𝑥) is only dependent on the

choice of 𝐹(𝑥, 𝑦) and 𝑓(𝑥).)
(iii) Actually in (ii), for any 𝜆 ∈ R, 𝑦(𝑥) = −𝑎

0
(𝑥)/𝑎
1
(𝑥)+

𝜆𝑓(𝑥)/𝑎
1
(𝑥) is also a quasi-coincidence solution for 𝐹(𝑥, 𝑦).

The reason is
𝐹 (𝑥, 𝑦 (𝑥)) = 𝑎

1
(𝑥) 𝑦 (𝑥) + 𝑎

0
(𝑥)

= 𝑎
1
(𝑥) (

−𝑎
0
(𝑥)

𝑎
1
(𝑥)

+ 𝜆
𝑓 (𝑥)

𝑎
1
(𝑥)

) + 𝑎
0
(𝑥)

= 𝜆𝑓 (𝑥) .

(53)

This shows that (∗) has infinitely many solutions (i.e.,
|QcsF| = ∞).

Remark 9. Notice that in the case of deg
𝑦
𝐹 = 1 and

|Qcs
𝐹
| < ∞, the number of all quasi-coincidence values

cannot be larger than 1. Otherwise, it will contract the result
of Theorem 8; the case (iii) means that “|Qcv

𝐹
| ≥ 2, and then

|Qcs
𝐹
| = ∞”.

3. Main Theorems

In this section, we consider (5) for polynomial function
𝐹(𝑥, 𝑦) in (9); that is,

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑎
𝑖
(𝑥) 𝑦
𝑖 with 𝑠 ≥ 2. (54)

A given polynomial function 𝑓(𝑥) in R[𝑥] and 𝐹(𝑥, 𝑦) has
at least 𝑠 + 1 distinct quasi-coincidence solutions satisfying
some conditions, that is, 𝑦

1
(𝑥), 𝑦

2
(𝑥), 𝑦

3
(𝑥), . . ., 𝑦

𝑠+1
(𝑥), . . ..

According to the above assumptions, we could derive the
following theorem.

Theorem 10. Suppose that the cardinal number |Qcs
𝐹
| = ∞

and for each 𝑦(𝑥) ∈ Qcs
𝐹
can be represented as the form

𝑦 (𝑥) = 𝑦
1
(𝑥) + 𝜆𝑝 (𝑥) , 𝜆 ∈ R (55)

for some 𝑦
1
(𝑥), 𝑝(𝑥) ∈ R[𝑥]. Then, 𝑝𝑠(𝑥) | 𝑓(𝑥), and so the

polynomial 𝐹(𝑥, 𝑦) can be represented as

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖 (56)

for constants 𝑐
𝑖
∈ R.

Proof. Let 𝑦
𝑖
(𝑥) be distinct quasi-coincidence solutions of

𝐹(𝑥, 𝑦) corresponding to quasi-coincidence values 𝑎
𝑖
, 1 ≤ 𝑖 ≤

𝑠 + 1 such that

𝐹 (𝑥, 𝑦
𝑖
(𝑥)) = 𝑎

𝑖
𝑓 (𝑥) . (57)

Choose 𝑖 = 1, 𝐹(𝑥, 𝑦
1
(𝑥)) = 𝑎

1
𝑓(𝑥). When 𝑦 − 𝑦

1
(𝑥) divides

the function 𝐹(𝑥, 𝑦), we get

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥)) 𝐹

1
(𝑥, 𝑦) + 𝑎

1
𝑓 (𝑥) , (58)

where 𝐹
1
(𝑥, 𝑦) is the quotient and 𝑎

1
𝑓(𝑥) is the remainder.

From the above identity, taking 𝑦 = 𝑦
2
(𝑥), it becomes

𝐹 (𝑥, 𝑦
2
(𝑥)) = (𝑦

2
(𝑥) − 𝑦

1
(𝑥)) 𝐹

1
(𝑥, 𝑦
2
(𝑥)) + 𝑎

1
𝑓 (𝑥)

= 𝑎
2
𝑓 (𝑥) .

(59)

Then,

(𝑦
2
(𝑥) − 𝑦

1
(𝑥)) 𝐹

1
(𝑥, 𝑦
2
(𝑥)) = (𝑎

2
− 𝑎
1
) 𝑓 (𝑥) . (60)

By (55), 𝑦
2
(𝑥) − 𝑦

1
(𝑥) = 𝜆

2
𝑝(𝑥), it yields

𝐹
1
(𝑥, 𝑦
2
(𝑥)) = (

(𝑎
2
− 𝑎
1
)

𝜆
2

)
𝑓 (𝑥)

𝑝 (𝑥)

= 𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
∈ R [𝑥] for 𝑑

2
=

(𝑎
2
− 𝑎
1
)

𝜆
2

.

(61)

Hence,

𝐹
1
(𝑥, 𝑦) = (𝑦 − 𝑦

2
(𝑥)) 𝐹

2
(𝑥, 𝑦) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
. (62)

Continuing this process from 𝑖 = 2 to 𝑠 − 1, we obtain

𝐹
𝑖
(𝑥, 𝑦) = (𝑦 − 𝑦

𝑖+1
(𝑥)) 𝐹

𝑖+1
(𝑥, 𝑦) + 𝑑

𝑖+1

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(63)

for some 𝑑
𝑖+1

∈ R, 𝑖 = 1, 2, . . . , 𝑠 − 1. Finally, we could get

𝐹
𝑠−1

(𝑥, 𝑦) = (𝑦 − 𝑦
𝑠
(𝑥)) 𝐹

𝑠
(𝑥) + 𝑑

𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
. (64)

𝐹
𝑠
(𝑥) does not contain the variable 𝑦 since deg

𝑦
𝐹 = 𝑠. By the

assumption (57), 𝐹(𝑥, 𝑦
𝑠+1

(𝑥)) = 𝑎
𝑠+1

𝑓(𝑥). It follows that

𝐹
𝑠
(𝑥) = 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)
∈ R [𝑥] for some constant 𝜆 ∈ R. (65)



6 Journal of Applied Mathematics

Consequently,

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥)) 𝐹

1
(𝑥, 𝑦) + 𝑎

1
𝑓 (𝑥)

= (𝑦 − 𝑦
1
(𝑥))

× ((𝑦 − 𝑦
2
(𝑥)) 𝐹

2
(𝑥, 𝑦) + 𝑑

2

𝑓 (𝑥)

𝑝 (𝑥)
) + 𝑎
1
𝑓 (𝑥)

= . . .

= (𝑦 − 𝑦
1
(𝑥)) ( (𝑦 − 𝑦

2
(𝑥))

× ( ⋅ ⋅ ⋅ ( (𝑦 − 𝑦
𝑠
(𝑥)) 𝐹

𝑠
(𝑥)

+𝑑
𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ )

+𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
) + 𝑎
1
𝑓 (𝑥)

= (𝑦 − 𝑦
1
(𝑥)) ( (𝑦 − 𝑦

2
(𝑥))

× (⋅ ⋅ ⋅ ((𝑦 − 𝑦
𝑠
(𝑥)) 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)

+𝑑
𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ )

+𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
) + 𝑎
1
𝑓 (𝑥) .

(66)

By (55), we have 𝑦
𝑖
(𝑥) = 𝑦

1
(𝑥) + 𝜆

𝑖
𝑝(𝑥), 𝑖 = 2, 3, . . . , 𝑠 +

1. Then, 𝐹(𝑥, 𝑦) can be expanded to a power series in the
expression:

𝐹 (𝑥, 𝑦) = (𝑦 − 𝑦
1
(𝑥))

× ( (𝑦 − 𝑦
1
(𝑥) − 𝜆

2
𝑝 (𝑥))

× (⋅ ⋅ ⋅ ((𝑦 − 𝑦
1
(𝑥) − 𝜆

𝑠
𝑝 (𝑥)) 𝜆

𝑓 (𝑥)

𝑝𝑠 (𝑥)

+𝑑
𝑠

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
) ⋅ ⋅ ⋅ )

+𝑑
2

𝑓 (𝑥)

𝑝 (𝑥)
) + 𝑎
1
𝑓 (𝑥)

=

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖

(67)

for some real numbers 𝑐
𝑗
, 𝑗 = 0, 1, . . . , 𝑠. Moreover, the

leading coefficient of 𝐹(𝑥, 𝑦), 𝑐
𝑠
(𝑓(𝑥)/𝑝

𝑠

(𝑥)) is contained to
R[𝑥], and it follows 𝑝

𝑠

(𝑥) | 𝑓(𝑥).

Conversely, if 𝐹(𝑥, 𝑦) is expressed as inTheorem 10, then
the cardinal number |Qcs

𝐹
| = ∞, this is the same as the

sufficient conditions.

Theorem 11. The following two conditions are equivalent:

(i) 𝐹(𝑥, 𝑦) = ∑
𝑠

𝑖=0
𝑐
𝑖
(𝑓(𝑥)/𝑝

𝑖

(𝑥))(𝑦 − 𝑦
1
(𝑥))
𝑖 for some

𝑦
1
(𝑥) ∈ R[𝑥], 𝑝(𝑥) is a factor of 𝑓(𝑥), and 𝑐

𝑖
∈ R

for 𝑖 = 0, 1, . . . , 𝑠,
(ii) |Qcs

𝐹
| = ∞.

(In fact, if |Qcs
𝐹
| = ∞, then |Qcs

𝐹
| = the cardinal number

of R.)

Proof. (i)⇒(ii) Suppose that (i) holds. Then,

𝐹 (𝑥, 𝑦
1
(𝑥) + 𝜆𝑝 (𝑥)) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝜆𝑝 (𝑥))

𝑖

= (

𝑠

∑

𝑖=0

𝑐
𝑖
𝜆
𝑖

)𝑓 (𝑥)

= 𝑎𝑝
𝑚

(𝑥) for 𝑎 =

𝑠

∑

𝑖=0

𝑐
𝑖
𝜆
𝑖

∈ R.

(68)

This means that 𝑦
1
(𝑥) + 𝜆𝑝(𝑥) ∈ Qcs

𝐹
for each 𝜆 ∈ R. It

follows that the cardinal |Qcs
𝐹
| = ∞.

(ii)⇒(i) For any 𝑦(𝑥), 𝑦
1
(𝑥) ∈ Qcs

𝐹
, since |Qcs

𝐹
| = ∞

and by Lemma 7, we obtain

𝑦 (𝑥) − 𝑦
1
(𝑥) = 𝑑𝑝 (𝑥) (69)

for some factor 𝑝(𝑥) of 𝑓(𝑥). By Theorem 10, we have

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦

1
(𝑥))
𝑖 (70)

for some𝑦
1
(𝑥),𝑝(𝑥) ∈ R[𝑥], and 𝑐

𝑖
∈ R for 𝑖 = 0, 1, . . . , 𝑠.

If the 𝐹(𝑥, 𝑦) can be represented as the form of (71) in the
following lemma, then any quasi-coincidence solution can be
determined.

Lemma 12. Suppose that

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦 (𝑥))

𝑖

, (71)

where 𝑦(𝑥) ∈ R[𝑥], 𝑐
𝑖
∈ R, 𝑖 = 0, 1, . . . , 𝑠 and 𝑝(𝑥) is a factor

of 𝑓(𝑥). Then, ℎ(𝑥) ∈ R[𝑥] is a quasi-coincidence solution of
𝐹(𝑥, 𝑦), if and only if

ℎ (𝑥) = 𝑦 (𝑥) + 𝑑𝑝 (𝑥) for some 𝑑 ∈ R. (72)

Proof. At first, we assume that ℎ(𝑥) ∈ R[𝑥] is a quasi-
coincidence solution of 𝐹(𝑥, 𝑦), and we consider

𝐹 (𝑥, 𝑦 (𝑥)) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 (𝑥) − 𝑦 (𝑥))

𝑖

= 𝑐
0
𝑓 (𝑥) .

(73)

This means 𝑦(𝑥) ∈ Qcs
𝐹
.
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ByTheorem 11,

𝐹 (𝑥, 𝑦) =

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦 (𝑥))

𝑖

, then 󵄨󵄨󵄨󵄨Qcs
𝐹

󵄨󵄨󵄨󵄨 = ∞.

(74)

It follows from Lemma 7 that for any quasi-coincidence
solution ℎ(𝑥), we obtain

ℎ (𝑥) = 𝑦 (𝑥) + 𝑑𝑝 (𝑥) for some 𝑑 ∈ R. (75)

Conversely, suppose ℎ(𝑥) = 𝑦(𝑥)+𝑑𝑝(𝑥) for some factor𝑝(𝑥)

of 𝑓(𝑥) and some constant 𝑑 ∈ R. Substituting this ℎ(𝑥) as 𝑦

in (71), we have

𝐹 (𝑥, ℎ (𝑥)) = 𝐹 (𝑥, 𝑦 (𝑥) + 𝑑𝑝 (𝑥))

=

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑑𝑝 (𝑥))

𝑖

= (

𝑠

∑

𝑖=0

𝑐
𝑖
𝑑
𝑖

)𝑓 (𝑥) .

(76)

Therefore, ℎ(𝑥) ∈ Qcs
𝐹
.

Note that not all polynomial functions 𝐹(𝑥, 𝑦) can be
written as (71). Actually, almost all 𝐹(𝑥, 𝑦) are expressed as
the form of the next theorem. In that situation, any solution
can be written as the next form (⋆) if the cardinal number
|Qcs
𝐹
| is in nitely many in this theorem.

Theorem 13. Let 𝐹(𝑥, 𝑦) be a polynomial function with

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥) , (77)

and 𝑓(𝑥) a polynomial. If the cardinal number |Qcs
𝐹
| is

infinitely many, then for each quasi-coincidence point solution
of (5)must be of the form

−
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) (⋆)

for arbitrary 𝜆 ∈ R, where 𝑝(𝑥) = 𝑐(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠 is a factor

of 𝑓(𝑥) and 𝑐 is a constant.

Proof. Assume |Qcs
𝐹
| = ∞. By Theorem 11, we have

𝐹 (𝑥, 𝑦) = 𝑎
𝑠
(𝑥) 𝑦
𝑠

+ 𝑎
𝑠−1

(𝑥) 𝑦
𝑠−1

+ ⋅ ⋅ ⋅ + 𝑎
0
(𝑥)

=

𝑠

∑

𝑖=0

𝑐
𝑖

𝑓 (𝑥)

𝑝𝑖 (𝑥)
(𝑦 − 𝑦 (𝑥))

𝑖

(78)

for some 𝑐
𝑖
∈ R, and𝑦(𝑥) ∈ Qcs

𝐹
. Comparing the coefficients

of 𝑦𝑠 and 𝑦
𝑠−1 in both sides, we get

𝑎
𝑠
(𝑥) = 𝑐

𝑠

𝑓 (𝑥)

𝑝𝑠 (𝑥)
, (79)

𝑎
𝑠−1

(𝑥) = −𝑠𝑎
𝑠
(𝑥) 𝑦 (𝑥) + 𝑐

𝑠−1

𝑓 (𝑥)

𝑝𝑠−1 (𝑥)
. (80)

Consequently, by (79) and (80), we get

𝑝
𝑠

(𝑥) = 𝑐
𝑠

𝑓 (𝑥)

𝑎
𝑠
(𝑥)

,

𝑦 (𝑥) =
𝑐
𝑠−1

𝑠𝑐
𝑠

𝑝 (𝑥) −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

∈ R [𝑥] .

(81)

By Lemma 12 and (81), for any 𝑑 ∈ R, we have that any quasi-
coincidence solution is represented by

𝑦 (𝑥) + 𝑑𝑝 (𝑥) =
𝑐
𝑠−1

𝑠𝑐
𝑠

𝑝 (𝑥) −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝑑𝑝 (𝑥)

= −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ (𝑑 −
𝑐
𝑠−1

𝑠𝑐
𝑠

)𝑝 (𝑥)

= −
𝑎
𝑠−1

(𝑥)

𝑠𝑎
𝑠
(𝑥)

+ 𝜆𝑝 (𝑥) ,

(82)

where 𝑝(𝑥) = (𝑐
𝑠
)
1/𝑠

(𝑓(𝑥)/𝑎
𝑠
(𝑥))
1/𝑠 (note that since 𝑑 is

arbitrary, then 𝜆 is arbitrary).
This completes the proof.

Finally, we provide two examples. Example 1 explains the
case of all cardinal number |Qcs

𝐹
| = 4.

Example 1. Let

𝐹 (𝑥, 𝑦) = (𝑥
2

+ 𝑥 + 1) 𝑦
2

− 𝑥
6

− 3𝑥
5

− 6𝑥
4

− 7𝑥
3

− 10𝑥
2

− 7𝑥 − 5,

𝑓 (𝑥) = (𝑥
2

+ 𝑥 + 1)
2

.

(83)

Then,

𝐹 (𝑥, 𝑦) = (𝑥
2

+ 𝑥 + 1)

× [𝑦
2

− (𝑥
2

+ 𝑥 + 1)
2

− 4] , deg
𝑦
𝐹 = 𝑠 = 2.

(84)

This polynomial The polynomial equation 𝐹(𝑥, 𝑦) =

𝑎(𝑥
2

+ 𝑥 + 1)
2 for some 𝑎 ∈ R has exactly 4 = (𝑠 + 2) quasi-

coincidence solutions as follows:

𝐹 (𝑥, 𝑥
2

+ 𝑥 + 3) = 4(𝑥
2

+ 𝑥 + 1)
2

,

𝐹 (𝑥, −𝑥
2

− 𝑥 − 3) = 4(𝑥
2

+ 𝑥 + 1)
2

,

𝐹 (𝑥, 𝑥
2

+ 𝑥 − 1) = − 4(𝑥
2

+ 𝑥 + 1)
2

,

𝐹 (𝑥, −𝑥
2

− 𝑥 + 1) = − 4(𝑥
2

+ 𝑥 + 1)
2

.

(85)

The next example explains that the number of all quasi-
coincidence solutions of (5) is infinitely many.
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Example 2. Let 𝑥 ∈ R, 𝑓(𝑥) = 𝑥
4

(𝑥 − 1)
4, and

𝐹 (𝑥, 𝑦) = 𝑎
3
(𝑥) 𝑦
3

+ 𝑎
2
(𝑥) 𝑦
2

+ 𝑎
1
(𝑥) 𝑦 + 𝑎

0
(𝑥)

= 𝑥 (𝑥 − 1) 𝑦
3

+ 0𝑦
2

+ 𝑥
3

(𝑥 − 1)
3

𝑦 + 0.

(86)

We will solve all quasi-coincidence solutions of 𝐹(𝑥, 𝑦) =

𝑎𝑥
4

(𝑥 − 1)
4 for some 𝑎 ∈ R. This polynomial function has

at least 6(≥ 𝑠 + 3, since 𝑠 = 3) quasi-coincidence solutions as
follows:

𝐹 (𝑥
1
, 𝑥
2
, 𝑥
2

− 𝑥) = 2𝑥
4

(𝑥 − 1)
4

,

𝐹 (𝑥
1
, 𝑥
2
, 2𝑥
2

− 2𝑥) = 10𝑥
4

(𝑥 − 1)
4

,

𝐹 (𝑥
1
, 𝑥
2
, −𝑥
2

+ 𝑥) = − 2𝑥
4

(𝑥 − 1)
4

,

𝐹 (𝑥
1
, 𝑥
2
, −2𝑥
2

+ 2𝑥) = − 10𝑥
4

(𝑥 − 1)
4

,

𝐹 (𝑥
1
, 𝑥
2
,
𝑥
2

2
−

𝑥

2
) =

5

8𝑥4(𝑥 − 1)
4
,

𝐹 (𝑥
1
, 𝑥
2
, −

𝑥
2

2
+

𝑥

2
) = −

5

8𝑥4(𝑥 − 1)
4
.

(87)

In fact, we have |Qcs
𝐹
| = ∞, and by (79), we obtain

𝑝 (𝑥) = 𝑐(
𝑓 (𝑥)

𝑎
𝑠
(𝑥)

)

1/𝑠

= 𝑐(
𝑥
4

(𝑥 − 1)
4

𝑥 (𝑥 − 1)
)

1/3

= 𝑐𝑥 (𝑥 − 1) ,

(88)

for some real number 𝑐.
ByTheorem 13, any quasi-coincidence solution is written

as

−
𝑎
2
(𝑥)

𝑠𝑎
3
(𝑥)

+ 𝜆𝑝 (𝑥) =
0

3𝑥 (𝑥 − 1)
+ 𝜆𝑐𝑥 (𝑥 − 1)

= 𝜇𝑥 (𝑥 − 1) ,

(89)

where 𝜇 = 𝜆𝑐 ∈ R is arbitrary. This shows that the quasi-
coincidence (point) solutions have cardinal |Qcs

𝐹
| = ∞.

We would like to provide one open problem as follows.
Further Development. For a real-valued polynomial function
𝐹 : R × R → R. Can we find all rational quasi-coincidence
solutions 𝑦 = 𝑏(𝑥)/𝑎(𝑥) with coprime polynomials 𝑎(𝑥),
𝑏(𝑥) ∈ R[𝑥] to satisfy

𝐹 (𝑥, 𝑦) = 𝑎𝑓 (𝑥) (90)

for some polynomials 𝑓(𝑥) ∈ R[𝑥]?
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