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We research the dynamics of the chemostat model with time delay. The conclusion confirms that a Hopf bifurcation occurs due to
the existence of stability switches when the delay varies. By using the normal form theory and center manifold method, we derive
the explicit formulas determining the stability and direction of bifurcating periodic solutions. Finally, some numerical simulations
are given to illustrate the effectiveness of our results.

1. Introduction

Since late 60s, many researchers have been devoted to
studying the chemostat, which is considered as an important
laboratory set used for breedingmicroorganism and studying
biological systems. In [1] Li et al. propose some new ideals
by modifying the basic chemostat model with one species of
organism and studying the Hopf bifurcations and stability
of the modified one. In [2] Li et al. study the chemostat
model with two time delays. They only research the stability
of the equilibrium and the existence of the local Hopf
bifurcation.However, some subtlemathematical questions on
the behavior of solutions of themodel are far from completely
answered, for example, the bifurcating direction and stability
of periodic solutions. Based on this, the main purpose of this
study is to provide an insight into these unexplored aspects of
the model by using the theory of the center manifold and the
normal forms method.

Now we consider the basic model of the chemostat with
one species of organism (see [3]):

𝑥̇ (𝑡) = − (𝑑 − 𝑝 (𝑦 (𝑡 − 𝜏))) 𝑥 (𝑡) ,

̇𝑦 (𝑡) = (𝑦

0
− 𝑦 (𝑡)) 𝑑 −

1

𝛾

𝑝 (𝑦 (𝑡)) 𝑥 (𝑡) ,

(1)

where 𝑥(𝑡) is the concentration of the organism at time 𝑡,
𝑦(𝑡) is the concentration of the nutrient at time 𝑡, 𝑝(𝑦) =

𝑐𝑦/(𝑘+𝑦) (𝑐, 𝑘 are positive constants) is the growing rate of 𝑦,

𝛾 > 0 is the ratio of themass of organism formed and themass
of substrate used, 𝑦

0
> 0 is the concentration of the input

nutrient, 𝜏 > 0 is time lag of digestion, and 𝑑 > 0 is flowing
rate.

2. Stability and Local Hopf Bifurcation

To consider the meaning of the biology, in the section
we only focus on investigating the local stability of the
interior equilibrium for the system (1). We know that if the
equilibrium of system (1) is stable when 𝜏 = 0 and the
characteristic equation of (1) has no purely imaginary roots
for any 𝜏 > 0, it is also stable for any 𝜏 > 0. On the other
hand, if the equilibrium of system (1) is stable when 𝜏 = 0 and
there exist some positive values 𝜏 such that the characteristic
equation of (1) has a pair of purely imaginary roots, there
exists a domain concerning 𝜏 such that the equilibrium of
system (1) is table in the domain.

When 𝑦(𝑡) < 𝑦

0
for ∀𝑡 > 0 and 𝑐 > 𝑑, the system (1) has

a unique interior equilibrium.We denote this unique interior
equilibrium by (𝑥∗, 𝑦∗).

Then it satisfies

(𝑑 −

𝑐𝑦

∗

𝑘 + 𝑦

∗
)𝑥

∗
= 0, (𝑦

0
− 𝑦

∗
) 𝑑 −

𝑐𝑥

∗
𝑦

∗

𝛾 (𝑘 + 𝑦

∗
)

= 0.

(2)
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That is

(𝑥

∗
, 𝑦

∗
) = (

𝛾𝑐𝑦

0
− 𝑑𝑦

0
− 𝑑𝑘

𝑐 − 𝑑

,

𝑑𝑘

𝑐 − 𝑑

) . (3)

Let 𝑥
1
(𝑡) = 𝑥(𝑡)−𝑥

∗ and 𝑦
1
(𝑡) = 𝑦(𝑡)−𝑦

∗ and still denote
𝑥(𝑡), 𝑦(𝑡), respectively.

Then system (1) becomes

𝑥̇ (𝑡) = −𝑑 (𝑥 (𝑡) + 𝑥

∗
) +

𝑐 (𝑦 (𝑡 − 𝜏) + 𝑦

∗
) (𝑥 (𝑡) + 𝑥

∗
)

𝑘 + 𝑦 (𝑡 − 𝜏) + 𝑦

∗
,

̇𝑦 (𝑡) = 𝑑 (𝑦

0
− 𝑦 (𝑡) − 𝑦

∗
) −

𝑐 (𝑦 (𝑡) + 𝑦

∗
) (𝑥 (𝑡) + 𝑥

∗
)

𝛾 (𝑘 + 𝑦 (𝑡) + 𝑦

∗
)

.

(4)

The linearization of (4) around (𝑥∗, 𝑦∗) is

𝑥̇ (𝑡) = (𝑛 − 𝑑) 𝑥 (𝑡) + 𝑚𝑦 (𝑡 − 𝜏) ,

̇𝑦 (𝑡) = −

𝑛

𝛾

𝑥 (𝑡) − (

𝑚

𝛾

+ 𝑑)𝑦 (𝑡) ,

(5)

where 𝑚 = 𝑘𝑐𝑥

∗
/(𝑘 + 𝑦

∗
)

2 and 𝑛 = 𝑐𝑦

∗
/(𝑘 + 𝑦

∗
), whose

characteristic equation is

𝜆

2
+ (

𝑚

𝛾

− 𝑛 + 2𝑑)𝜆 − (𝑛 − 𝑑) (

𝑚

𝛾

+ 𝑑) +

𝑚𝑛

𝛾

𝑒

−𝜆𝜏
= 0.

(6)

By setting (𝑚/𝛾) + 𝑑 = 𝐴, 𝑛 − 𝑑 = 𝐵 and (𝑚𝑛/𝛾) = 𝐾, the
characteristic equation (6) can be rewritten as

𝜆

2
+ (𝐴 − 𝐵) 𝜆 − 𝐴𝐵 + 𝐾𝑒

−𝜆𝜏
= 0.

(7)

Lemma 1. When 𝜏 = 0 and

𝐴 − 𝐵 > 0 (∗)

are met, the equilibrium (𝑥

∗
, 𝑦

∗
) of system (1) is asymptotically

stable.

Proof. When 𝜏 = 0, (7) becomes

𝜆

2
+ (𝐴 − 𝐵) 𝜆 − 𝐴𝐵 + 𝐾 = 0, (8)

whose characteristic value is

𝜆

1,2
=

− (𝐴 − 𝐵) ±

√

(𝐴 − 𝐵)

2
+ 4 (𝐴𝐵 − 𝐾)

2

.

(9)

Obviously, when (∗) holds, the real parts of 𝜆
1,2

are
negative.

This completes the proof.

In the following, we investigate the distribution of the
eigenvalues of the characteristic equation (7).

Lemma 2. Assume that

𝐾 > 𝐴𝐵 (∗∗)

is satisfied. Then (7) has a pair of purely imaginary roots ±𝑖𝜔
0

when 𝜏 = 𝜏

𝑗
, where

𝜔

0
= (

−(𝐴

2
+ 𝐵

2
) +

√

(𝐴

2
+ 𝐵

2
)

2
− 4 (𝐴

2
𝐵

2
− 𝐾

2
)

1/2

)

1/2

,

𝜏

𝑗
=

1

𝜔

0

[arccos
𝜔

2

0
+ 𝐴𝐵

𝐾

+ 2𝑗𝜋] , 𝑗 = 0, 1, 2, . . . .

(10)

Proof. Let 𝑖𝜔 (𝜔 > 0) be a root of (7). Then

−𝜔

2
+ 𝑖 (𝐴 − 𝐵) 𝜔 − 𝐴𝐵 + 𝐾 (cos𝜔𝜏 − 𝑖 sin𝜔𝜏) = 0. (11)

The separation of the real and imaginary parts yields

−𝜔

2
− 𝐴𝐵 + 𝐾 cos𝜔𝜏,

(𝐴 − 𝐵) 𝜔 − 𝐾 sin𝜔𝜏.
(12)

Hence

𝜔

2
=

− (𝐴

2
+ 𝐵

2
) ±

√

(𝐴

2
+ 𝐵

2
)

2
− 4 (𝐴

2
𝐵

2
− 𝐾

2
)

2

.

(13)

Obviously, (∗∗) implies that

𝜔

0
= (

−(𝐴

2
+ 𝐵

2
) +

√

(𝐴

2
+ 𝐵

2
)

2
− 4 (𝐴

2
𝐵

2
− 𝐾

2
)

2

)

1/2

,

(14)

and, hence,

𝜏

0
=

1

𝜔

0

arccos
𝜔

2

0
+ 𝐴𝐵

𝐾

.
(15)

Define 𝜏
𝑗
= 𝜏

0
+ (2𝑗𝜋/𝜔

0
), 𝑗 = 0, 1, 2, . . .. Then (𝜏

𝑗
, 𝜔

0
)

solves (12).
This means that 𝑖𝜔

0
is a root of (7) when 𝜏 = 𝜏

𝑗
, 𝑗 =

0, 1, 2 . . ..
This completes the proof.

Lemma 2 shows that there exist some positive values 𝜏
𝑗

such that the characteristic equation (7) has a pair of purely
imaginary roots.

Lemma 3. Let 𝜆(𝜏) = 𝑎(𝜏) + 𝑖𝑏(𝜏) be the root of (7) with
𝑎(𝜏

𝑗
) = 0 and 𝑏(𝜏

𝑗
) = 𝜔

0
. When (∗∗) holds, 𝑎󸀠(𝜏𝑗) > 0.

Proof. By differentiating both sides of (7) with respect to 𝜏,
we obtain

2𝜆

𝑑𝜆

𝑑𝜏

+ (𝐴 − 𝐵)

𝑑𝜆

𝑑𝜏

− 𝐾𝑒

−𝜏𝜆
(𝜆 + 𝜏

𝑑𝜆

𝑑𝜏

) = 0. (16)

Then

𝑑𝜆

𝑑𝜏

=

𝐾𝜆𝑒

−𝜏𝜆

2𝜆 + (𝐴 − 𝐵) − 𝐾𝜏𝑒

−𝜏𝜆
.

(17)
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Substituting 𝜏 = 𝜏

𝑗
and 𝜆 = 𝑖𝜔

0
into (17), we obtain

𝑑𝜆

𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏𝑗

=

𝐾𝑖𝜔

0
𝑒

−𝜏𝑗𝜔0𝑖

2𝑖𝜔

0
+ (𝐴 − 𝐵) − 𝐾𝜏

𝑗
𝑒

−𝜏𝑗𝜔0𝑖
. (18)

According to (12),

𝑑𝜆

𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏𝑗

=

𝑖𝜔

0
(𝜔

2

0
− 𝑖 (𝐴 − 𝐵) 𝜔

0
− 𝐴𝐵)

2𝑖𝜔

0
+ (𝐴 − 𝐵) − 𝜏𝑗

(𝜔

2

0
− 𝑖 (𝐴 − 𝐵) 𝜔0

− 𝐴𝐵)

.

(19)

Hence

𝑎

󸀠
(𝜏

𝑗
) =Re 𝑑𝜆

𝑑𝜏

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨𝜏=𝜏𝑗

=

𝜔

2

0
(2𝜔

2

0
+ 𝐴

2
+ 𝐵

2
)

[𝐴 + 𝐵 − 𝜏

𝑗
𝜔

2

0
+ 𝜏

𝑗
𝐴𝐵]

2

+ [2𝜔

0
+ (𝐴 + 𝐵) 𝜏

𝑗
𝜔

0
]

2

> 0.

(20)

The conclusion is completed.

Lemma 3 explains that the real parts 𝑎󸀠(𝜏) are monot-
onously increased in a small neighbourhood concerning 𝜏

𝑗
.

In otherwords, the root of (7) crosses the imaginary axis from
the left to the right as 𝜏 continuously varies from a number
less than 𝜏

𝑗
to one greater than 𝜏

𝑗
.

Lemma 4. When (∗) and (∗∗) hold, then there exist 𝜏
0
< 𝜏

1
<

𝜏

2
< ⋅ ⋅ ⋅ such that all the roots of (7) have negative real parts

when 𝜏 ∈ [0, 𝜏
0
) and (7) has at least one root with positive real

parts when 𝜏 ∈ (𝜏
𝑗
, 𝜏

𝑗+1
), 𝑗 = 1, 2, 3, . . ., where 𝜏

𝑗
is defined as

in (10).

In fact, according to Lemmas 1, 2, and 3, it is easy to obtain
the results.

Applying Lemmas 2, 3, and 4 and the Hopf bifurcation
theorem (see [4]), we have the following results.

Theorem 5. If (∗) and (∗∗) are satisfied, then the equilibrium
(𝑥

∗
, 𝑦

∗
) is asymptotically stable for 𝜏 ∈ [0, 𝜏

0
) and unstable for

𝜏 > 𝜏

0
. System (4) undergoes a Hopf bifurcation at (𝑥∗, 𝑦∗)

when 𝜏 = 𝜏

𝑗
, 𝑗 = 0, 1, 2 . . ., where 𝜏

𝑗
is defined as in (10).

3. Direction and Stability of the Bifurcating
Periodic Solutions

Throughout the following section, 𝐶([−1, 0]; 𝑅2
+
) is a phase

space, and 𝐴 stands for an operator, which is different from
𝐴 in Section 2.

In Section 3, we will research the stability and direction
of the bifurcating periodic solutions of system (1). For
convenience, let 𝑡 = 𝑠𝜏 and still denote 𝑡. Then the system
(5) can be rewritten as

𝑥̇ (𝑡) = 𝜏 (𝑛 − 𝑑) 𝑥 (𝑡) + 𝜏𝑚𝑦 (𝑡 − 1) ,

̇𝑦 (𝑡) = −

𝜏𝑛

𝛾

𝑥 (𝑡) − 𝜏 (

𝑚

𝛾

+ 𝑑)𝑦 (𝑡) .

(21)

By using the Taylor series and letting 𝜏 = 𝜏

0
+ 𝜇, we have

𝑥̇ (𝑡) = (𝜏

0
+ 𝜇) [ (𝑛 − 𝑑) 𝑥 (𝑡) + 𝑚𝑦 (𝑡 − 1)

+

𝑘𝑐

(𝑘 + 𝑦

∗
)

2
𝑥 (𝑡) 𝑦 (𝑡 − 1)

+𝑂(

√

𝑥(𝑡)

2
+ 𝑦(𝑡 − 1)

2
)] ,

̇𝑦 (𝑡) = (𝜏

0
+ 𝜇) [ −

𝑛

𝛾

𝑥 (𝑡) − (

𝑚

𝛾

+ 𝑑)𝑦 (𝑡)

+

𝑘𝑐

𝛾(𝑘 + 𝑦

∗
)

2
𝑥 (𝑡) 𝑦 (𝑡)

+𝑂

√

𝑥(𝑡)

2
+ 𝑦(𝑡)

2
] .

(22)

Clearly, 𝜇 = 0 is the Hopf bifurcation value of system (21).
Let 𝐶
1
= 𝐶([−1, 0], 𝑅

2

+
). For ∀𝜙 = (𝜙

1
, 𝜙

2
)

𝑇
∈ 𝐶

1
, let

𝐿

𝜇
(𝜙) = (𝜏

0
+ 𝜇)𝐴𝜙 (0) + (𝜏0

+ 𝜇) 𝐵𝜙 (−1) , (23)

𝑓 (𝜇, 𝜙)

= (𝜏

0
+ 𝜇)

×(

𝑘𝑐

(𝑘 + 𝑦

∗
)

2
𝜙

2
(−1) 𝜙

1
(0) + 𝑂(√𝜙

2

2
(−1) + 𝜙

2

1
(0))

𝑘𝑐

𝛾(𝑘 + 𝑦

∗
)

2
𝜙

1
(0) 𝜙

2
(0) + 𝑂(√𝜙

2

1
(0) + 𝜙

2

2
(0))

),

(24)

where 𝐴 = (

𝑛−𝑑 0

−(𝑛/𝛾) −((𝑚/𝛾)+𝑑)
), 𝐵 = (

0 𝑚

0 0
).

By Riesz’s representation theorem, there exists a matrix
whose components are bounded variation functions 𝜂(𝜃, 𝜇)
in 𝜃 ∈ [−1, 0), such that

𝐿

𝜇 (
𝜃) = ∫

0

−1

𝑑 (𝜂 (𝜃, 𝜇) 𝜙 (𝜃))
(25)

for 𝜙 ∈ 𝐶.
For 𝜙 ∈ 𝐶([−1, 0], 𝑅

2
), we define the operators 𝐴 and 𝑅

as

𝐴 (𝜇) 𝜙 (𝜃) =

{

{

{

{

{

{

{

{

{

𝑑𝜙 (𝜃)

𝑑𝜃

, 𝜃 ∈ [−1, 0) ,

∫

0

−1

𝑑 (𝜂 (𝑡, 𝜇) 𝜙 (𝑡)) , 𝜃 = 0,

𝑅 (𝜇) 𝜙 (𝜃) = {

0, 𝜃 ∈ [−1, 0) ,

𝑓 (𝜇, 𝜃) , 𝜃 = 0.

(26)

Then the system (21) is equivalent to the following
abstract differential equation [5]:

𝑢̇

𝑡
= 𝐴 (𝜇) 𝑢

𝑡
+ 𝑅 (𝜇) 𝑢

𝑡
, (27)

where 𝑢 = (𝑢

1
, 𝑢

2
)

𝑇, 𝑢
𝑡
(𝜃) = 𝑢(𝑡 + 𝜃) for 𝜃 ∈ [−1, 0).
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As in [6], the bifurcating periodic solutions 𝑥(𝑡, 𝜇) of
system (21) are indexed by a small parameter 𝜀. A solution
𝑥(𝑡, 𝜇(𝜀)) has amplitude 𝑂(𝜀), period 𝑇(𝜀), and nonzero
Floquet exponent 𝛽(𝜀) with 𝛽(0) = 0. Under the present
assumptions, 𝜇, 𝑇, and 𝛽 have expansions

𝜇 = 𝜇

2
𝜀

2
+ 𝜇

4
𝜀

4
+ ⋅ ⋅ ⋅ ,

𝑇 =

2𝜋

𝜔

(1 + 𝑇

2
𝜀

2
+ 𝑇

4
𝜀

4
+ ⋅ ⋅ ⋅ ) ,

𝛽 = 𝛽

2
𝜀

2
+ 𝛽

4
𝜀

4
+ ⋅ ⋅ ⋅ .

(28)

The sign of 𝜇
2
determines the direction of bifurcation: if

𝜇

2
> 0 (< 0), then the Hopf bifurcation is forward (back-

ward). 𝛽
2
determines the stability of the bifurcating periodic

solutions: asymptotically orbitally stable (unstable) if 𝛽
2
<

0 (> 0). And 𝑇

2
determines the period of the bifurcating

periodic solutions: the period increases (decreases) if 𝑇
2
>

0 (< 0).
Next, we only compute the coefficients 𝜇

2
, 𝑇
2
, 𝛽
2
in these

expansions.
We define the adjoint operator 𝐴∗ of 𝐴 as

𝐴

∗
𝜓 (𝑠) =

{

{

{

{

{

{

{

{

{

−

𝑑𝜓 (𝑠)

𝑑𝑠

, 𝑠 ∈ (0, 1] ,

∫

0

−1

𝑑 (𝜂

𝑇
(𝑡, 0) 𝜓 (−𝑡)) , 𝑠 = 0.

(29)

For 𝜙 ∈ 𝐶[−1, 0] and 𝜓 ∈ 𝐶[0, 1], define a bilinear form

⟨𝜓, 𝜙⟩ = 𝜓

𝑇
(0) 𝜙 (0) − ∫

0

−1

∫

𝜃

0

𝜓

𝑇
(𝜉 − 𝜃) 𝑑𝜂 (𝜃) 𝜙 (𝜉) 𝑑𝜉,

(30)

where 𝜂(𝜃) = 𝜂(𝜃, 0).
To determine the normal form of operator 𝐴, we need

to calculate the eigenvectors 𝑞(𝜃) and 𝑞

∗

1
(𝑠) of 𝐴 and 𝐴

∗

corresponding to 𝑖𝜏
0
𝜔

0
and −𝑖𝜏

0
𝜔

0
, respectively.

Proposition 6. Assume that 𝑞(𝜃) and 𝑞

∗
(𝑠) are the eigen-

vectors of 𝐴 and 𝐴

∗ corresponding to 𝑖𝜏

0
𝜔

0
and −𝑖𝜏

0
𝜔

0
,

respectively, satisfying ⟨𝑞∗, 𝑞⟩ = 1 and ⟨𝑞∗, 𝑞⟩ = 0.
Then

𝑞 (𝜃) = (𝛼, 𝛽)

𝑇
𝑒

𝑖𝜏0𝜔0𝜃
= (𝑖𝜔

0
+

𝑚

𝛾

+ 𝑑, −

𝑛

𝛾

)

𝑇

𝑒

𝑖𝜏0𝜔0𝜃
,

𝑞

∗
(𝑠) = 𝐷(𝛼

∗
, 𝛽

∗
)

𝑇
𝑒

𝑖𝜏0𝜔0𝑠
= 𝐷(−

𝑛

𝛾

, 𝑖𝜔

0
− 𝑛 + 𝑑)

𝑇

𝑒

𝑖𝜏0𝜔0𝑠
,

(31)

where𝐷 = 1/((𝑚/𝛾) + 2𝑑 − 𝑛 − 𝑚𝜏

0
𝑒

−𝑖𝜏0𝜔0
).

Proof. Without loss of generality, we just consider the eigen-
vector 𝑞(𝜃).

Firstly, when 𝜃 ∈ [−1, 0), by the definition of 𝐴 and
𝑞(𝜃), we obtain the form 𝑞(𝜃) = (𝛼, 𝛽)

𝑇
𝑒

𝑖𝜔0𝜏0 (here, 𝛼, 𝛽 are
unknown parameters).

In what follows, notice that 𝑞(0) = (𝛼, 𝛽)

𝑇, and 𝐴𝑞(0) =
∫

0

−1
𝑑(𝜂(𝑡, 𝜇)𝜙(𝑡)) = 𝑖𝜔

0
𝜏

0
𝑞(0). We have

𝛼 = 𝑖𝜔

0
+

𝑚

𝛾

+ 𝑑, 𝛽 = −

𝑛

𝛾

. (32)

Finally, by ⟨𝑞∗, 𝑞⟩ = 1, we obtain the parameter𝐷.
The proof is completed.

Now we construct the coordinates of the center manifold
𝐶

0
at 𝜇 = 0.
Let

𝑧 (𝑡) = ⟨𝑞

∗
, 𝑢

𝑡
⟩ , 𝑊 (𝑡, 𝜃) = 𝑢

𝑡 (
𝜃) − 2Re {𝑧 (𝑡) 𝑞 (𝜃)} .

(33)

On the center manifold 𝐶
0
, we have

𝑊(𝑡, 𝜃) = 𝑊(𝑧 (𝑡) , 𝑧(𝑡), 𝜃) , (34)

where

𝑊(𝑧, 𝑧, 𝜃) = 𝑊

20
(𝜃)

𝑧

2

2

+𝑊

11
(𝜃) 𝑧𝑧 +𝑊

02

𝑧

2

2

+𝑊

30

𝑧

3

6

⋅ ⋅ ⋅ .

(35)

𝑧 and 𝑧 are local coordinates for the center manifold 𝐶
0

in the direction of 𝑞 and 𝑞∗, respectively. Since 𝜇 = 0, we have

𝑧

󸀠
(𝑡) = 𝑖𝜏

0
𝜔

0
𝑧 (𝑡) + ⟨𝑞

∗
(𝜃) , 𝑓 (𝑊 + 2Re {𝑧 (𝑡) 𝑞 (𝜃)})⟩

= 𝑖𝜏

0
𝜔

0
𝑧 (𝑡) + 𝑞

∗
(0)𝑓 (𝑊 (𝑧, 𝑧, 0) + 2Re {𝑧 (𝑡) 𝑞 (0)})

≜ 𝑖𝜏

0
𝜔

0
𝑧 (𝑡) + 𝑞

∗
(0)𝑓

0
(𝑧, 𝑧) ,

(36)

where

𝑓

0 (
𝑧, 𝑧) = 𝑓

𝑧
2

𝑧

2

2

+ 𝑓

𝑧
2

𝑧

2

2

+ 𝑓

𝑧𝑧
𝑧𝑧 + ⋅ ⋅ ⋅ .

(37)

We rewrite this as

𝑧

󸀠
(𝑡) = 𝑖𝜏

0
𝜔

0
𝑧 + 𝑔 (𝑧, 𝑧) , (38)

with

𝑔 (𝑧, 𝑧) = 𝑞

∗
(0) 𝑓

0
(𝑧, 𝑧)

= 𝑔

20

𝑧

2

2

+ 𝑔

11
𝑧𝑧 + 𝑔

02

𝑧

2

2

+ 𝑔

21

𝑧

2
𝑧

2

+ ⋅ ⋅ ⋅ .

(39)

By (27) and (36), we obtain

̇

𝑊 = 𝑢̇

𝑡
− 𝑧̇𝑞 −

̇

𝑧𝑞

=

{

{

{

𝐴𝑊 − 2Re {𝑞∗ (𝜃) 𝑓
0
𝑞 (𝜃)} , 𝜃 ∈ [−1, 0)

𝐴𝑊 − 2Re {𝑞∗ (0) 𝑓
0
𝑞 (0)} + 𝑓

0
, 𝜃 = 0

≜ 𝐴𝑊 +𝐻 (𝑧, 𝑧, 𝜃) ,

(40)
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where

𝐻(𝑧, 𝑧, 𝜃) = 𝐻

20

𝑧

2

2

+ 𝐻

11
𝑧𝑧 + 𝐻

02

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(41)

By comparing the coefficients of the previous series, we obtain

(𝐴 − 2𝑖𝜏

0
𝜔

0
𝐼)𝑊

20
(𝜃) = −𝐻

20
(𝜃) ,

𝐴𝑊

11
(𝜃) = −𝐻

11
(𝜃) , . . . .

(42)

Noticing 𝑢
𝑡
= (𝑢

1𝑡
, 𝑢

2𝑡
) = 𝑧𝑞(𝜃) + 𝑧𝑞(𝜃) + 𝑊(𝑡, 𝜃), it

follows that

𝑦 (𝑡 − 1) = 𝛽𝑒

−𝑖𝜏0𝜔0
𝑧 + 𝛽𝑒

𝑖𝜏0𝜔0
𝑧 +𝑊

(2)

20
(−1)

𝑧

2

2

+𝑊

(2)

11
(−1) 𝑧𝑧 + ⋅ ⋅ ⋅ ,

𝑢

1𝑡 (
0) = 𝛼𝑧 + 𝛼 𝑧 +𝑊

(1)

20
(0)

𝑧

2

2

+𝑊

(1)

11
(0) 𝑧𝑧

+𝑊

(1)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ ,

𝑢

2𝑡 (
0) = 𝛽𝑧 + 𝛽𝑧 +𝑊

(2)

20
(0)

𝑧

2

2

+𝑊

(2)

11
(0) 𝑧𝑧

+𝑊

(2)

02
(0)

𝑧

2

2

+ ⋅ ⋅ ⋅ .

(43)

Thus, from (39), we have

𝑔

20
= 2𝐷

𝑘𝑐𝜏

0

(𝑘 + 𝑦

∗
)

2
(𝛼𝛼

∗
𝛽𝑒

−𝑖𝜏0𝜔0
+

1

𝛾

𝛼𝛼

∗
𝛽) ,

𝑔

11
= 𝐷

𝑘𝑐𝜏

0

(𝑘 + 𝑦

∗
)

2
(𝛼𝛼

∗
𝛽𝑒

−𝑖𝜏0𝜔0
+ 𝛼𝛼

∗
𝛽𝑒

𝑖𝜏0𝜔0

+

1

𝛾

𝛼𝛽

∗
𝛽 +

1

𝛾

𝛼𝛽𝛽

∗
) ,

𝑔

02
= 2𝐷

𝑘𝑐𝜏

0

(𝑘 + 𝑦

∗
)

2
(𝛼𝛼

∗
𝛽𝑒

𝑖𝜏0𝜔0
+

1

𝛾

𝛼𝛽𝛽

∗
) ,

𝑔

21
= 2𝐷

𝑘𝑐𝜏

0

(𝑘 + 𝑦

∗
)

2
(𝛼

∗
𝛽𝑒

−𝑖𝜏0𝜔0
𝑊

(1)

11
(0) + 𝛼𝛼

∗
𝑊

(2)

11
(−1)

+ 𝛼

∗
𝛽𝑒

𝑖𝜏0𝜔0
𝑊

(1)

20
(0) +

1

2

𝛼𝛼

∗
𝑊

(2)

20
(−1)

+

1

𝛾

𝛼𝛽

∗
𝑊

(2)

11
(0)) +

1

2𝛾

𝛽𝛽

∗
𝑊

(1)

20
(0)

+

1

𝛾

𝛽𝛽

∗
𝑊

(1)

11
(0) +

1

2𝛾

𝛼𝛽

∗
𝑊

(2)

20
(0) .

(44)

Since there are𝑊
20
,𝑊
11
in 𝑔
21
, we still need to compute

them.
For 𝜃 ∈ [−1, 0),

𝐻(𝑧, 𝑧, 𝜃) = − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃) − 𝑞

∗
(0) 𝑓

0
𝑞 (𝜃)

= − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) − 𝑔 (𝑧, 𝑧) 𝑞 (𝜃) ,

(45)

and by comparing coefficients with (41),we obtain

𝐻

20
(𝜃) = −𝑔

20
𝑞 (𝜃) − 𝑔

02
𝑞 (𝜃) ,

𝐻

11
(𝜃) = −𝑔

11
𝑞 (𝜃) − 𝑔

11
𝑞 (𝜃) .

(46)

By substituting these relations into (42), we can derive the
following equation:

𝑊

󸀠

20
(𝜃) = 2𝑖𝜏

0
𝜔

0
𝑊

20
(𝜃) + 𝑔

20
𝑞 (𝜃) + 𝑔

02
𝑞 (𝜃) . (47)

By solving for𝑊
20
(𝜃),𝑊

11
(𝜃), we obtain

𝑊

20
(𝜃) =

𝑖𝑔

20

𝜏

0
𝜔

0

𝑞 (0) 𝑒

𝑖𝜏0𝜔0𝜃

+

𝑖𝑔

02

3𝜏

0
𝜔

0

𝑞 (0) 𝑒

−𝑖𝜏0𝜔0𝜃
+ 𝐸

1
𝑒

2𝑖𝜏0𝜔0𝜃
,

𝑊

11
(𝜃) = −

𝑖𝑔

11

𝜏

0
𝜔

0

𝑞 (0) 𝑒

𝑖𝜏0𝜔0𝜃
+

𝑖𝑔

11

𝜏

0
𝜔

0

𝑞 (0) 𝑒

−𝑖𝜏0𝜔0𝜃
+ 𝐸

2
,

(48)

where 𝐸
1
= (𝐸

(1)

1
, 𝐸

(2)

1
), 𝐸
2
= (𝐸

(1)

2
, 𝐸

(2)

2
).

From the definition of 𝐴 and (46), we obtain

(2𝑖𝜏

0
𝜔

0
𝐼 − ∫

0

−1

𝑒

2𝑖𝜏0𝜔0𝜃
𝑑𝜂 (𝜃))𝐸

1

=

2𝑘𝑐𝜏

0

(𝑘 + 𝑦

∗
)

2
(𝛼𝛽𝑒

−𝑖𝜔0𝜏0
,

1

𝛾

𝛼𝛽)

𝑇

.

(49)

Thus

𝐸

(1)

1
=

2𝑘𝑐𝛼𝛽

(𝑘 + 𝑦

∗
)

2
(𝑒

−𝑖𝜔0𝜏0
(2𝑖𝜔

0
+

𝑚

𝛾

+ 𝑑) +

𝑚

𝛾

𝑒

−2𝑖𝜔0𝜏0
)

× ((2𝑖𝜔

0
− 𝑛 + 𝑑) (2𝑖𝜔

0
+

𝑚

𝛾

+ 𝑑)

+

𝑚𝑛

𝛾

𝑒

−2𝑖𝜔0𝜏0
)

−1

,

𝐸

(2)

1
=

2𝑘𝑐𝛼𝛽

(𝑘 + 𝑦

∗
)

2
(2𝑖𝜔

0
− 𝑛 + 𝑑 −

𝑛

𝛾

𝑒

−𝑖𝜔0𝜏0
)

× ((2𝑖𝜔

0
− 𝑛 + 𝑑) (2𝑖𝜔

0
+

𝑚

𝛾

+ 𝑑)

+

𝑚𝑛

𝛾

𝑒

−2𝑖𝜔0𝜏0
)

−1

.

(50)
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Similarly, we have

𝐸

(1)

2
=

4𝑘𝑐

(𝑘 + 𝑦

∗
)

2
(Re {𝛼𝛽𝑒−𝑖𝜔0𝜏0} (𝑚

𝛾

+ 𝑑)

+Re {𝛼𝛽} 𝑚
𝛾

𝑒

−2𝑖𝜔0𝜏0
)

× ((𝑑 − 𝑛) (

𝑚

𝛾

+ 𝑑) +

𝑚𝑛

𝛾

𝑒

−2𝑖𝜔0𝜏0
)

−1

,

𝐸

(2)

2
=

4𝑘𝑐

(𝑘 + 𝑦

∗
)

2
(

1

𝛾

(𝑛 − 𝑑)Re {𝛼𝛽}

+

𝑛

𝛾

Re {𝛼𝛽𝑒−𝑖𝜔0𝜏0})

× ((𝑑 − 𝑛) (

𝑚

𝛾

+ 𝑑) +

𝑚𝑛

𝛾

𝑒

−2𝑖𝜔0𝜏0
)

−1

.

(51)

Thus, we can compute the parameters𝑊(0) and𝑊(−1).
In conclusion, we have computed all the coefficients in

(39): 𝑔
20
, 𝑔
11
, 𝑔
02
, and 𝑔

21
.

Next, we can compute the following quantities:

𝐶

1
(0) =

𝑖

2𝜏

0
𝜔

0

(𝑔

20
𝑔

11
− 2

󵄨

󵄨

󵄨

󵄨

𝑔

11

󵄨

󵄨

󵄨

󵄨

−

1

3

󵄨

󵄨

󵄨

󵄨

𝑔

02

󵄨

󵄨

󵄨

󵄨

2
) +

𝑔

21

2

,

𝜇

2
= −

Re {𝐶
1 (
0)}

Re {𝜆󸀠 (𝜏
0
)}

,

𝛽

2
= 2Re {𝐶

1
(0)} ,

𝑇

2
= −

Im {𝐶

1
(0)} + 𝜇

2
(Im {𝜆

󸀠
(𝜏

0
)})

𝜔

0

.

(52)

From the discussion in Section 2, we know that
Re{𝜆󸀠(𝜏

0
)} > 0. We therefore have the following result.

Theorem 7. If Re{𝐶
1
(0)} < 0 (> 0), the direction of the Hopf

bifurcation of the system (1) at the equilibrium (𝑥

∗
, 𝑦

∗
) when

𝜏 = 𝜏

0
is forward (backward) and the bifurcating periodic

solutions are orbitally asymptotically stable (unstable).

4. Numerical Simulation

In this section, we give a particular example to illustrate the
effectiveness of our results.We take the coefficients 𝑦

0
= 0.65,

𝑐 = 0.7, 𝑑 = 0.56, 𝛾 = 2, 𝑘 = 0.1 in (1). By simple
computing, we have the equilibrium (𝑥

∗
, 𝑦

∗
) = (0.4, 5.4),

𝜔

0
≐ 0.2540, 𝜏

0
≐ 2.018. Further, we obtain the numerical

results directly by means of the software Matlab:

𝑔

20
≐ −0.1839 + 0.0979𝑖, 𝑔

11
≐ 0.0629 + 0.0164𝑖

𝑔

02
≐ 0.0397 − 0.1067𝑖, 𝑔

21
≐ −0.0271 + 0.0643𝑖.

Re {𝜆󸀠 (𝜏
0
)} ≐ 1.1591 × 10

−5
> 0.

Re {𝐶
1
(0)} ≐ −0.0276 < 0.

(53)

0 0.2 0.4 0.6 0.8 1 1.2
2

2.5

3

3.5
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4.5

5

5.5

6

−0.2

Figure 1: When 𝜏 = 2.1, the equilibrium (0.4, 5.4) is unstable and
periodic solution occurs around them.
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Figure 2: When 𝜏 = 2, the equilibrium (0.4, 5.4) becomes locally
stable.

From the previous arithmetic, the equilibrium (0.4, 5.4) is
asymptotically stable when 𝜏 = 2 < 𝜏

0
= 2.018 (see Figure 2).

When 𝜏 = 2.1 > 𝜏

0
= 2.018 andRe{𝐶

1
(0)} ≐ −0.0276 < 0, the

stable periodic solutions occur from the equilibrium (0.4, 5.4)

(see Figure 1).
Thus, the numerical simulation clarifies the effectiveness

of our results.

5. Conclusions

In this paper, we have discussed the chemostat model with
one species of organism. Firstly, we get the stable domain of
equilibrium, and by regarding the delays 𝜏 as the bifurcation
parameters and applying the theorem of Hopf bifurcation,
we draw the sufficient conditions of the Hopf bifurcation.
Further, by using the center manifold and the normal form
method, we research the Hopf bifurcating direction and the
stability of themodel when 𝜏 = 𝜏

0
. Our analysis indicates that

the dynamics of the model of the chemostat with one species
of organismcanbemuchmore complicated thanwemayhave
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expected. It is interesting to describe the global dynamics of
the model by means of the local properties of the interior
equilibrium.

References

[1] X. Li, J. Pan, and Q. Huang, “Hopf bifurcation analysis of
some modified chemostat models,” Northeastern Mathematical
Journal, vol. 14, no. 4, pp. 392–400, 1998.

[2] X.-y. Li, M.-h. Qian, J.-p. Yang, and Q.-C. Huang, “Hopf bifur-
cations of a chemostat systemwith bi-parameters,”Northeastern
Mathematical Journal, vol. 20, no. 2, pp. 167–174, 2004.

[3] H. I. Freedman, J. W.-H. So, and P. Waltman, “Coexistence in
a model of competition in the chemostat incorporating discrete
delays,” SIAM Journal on AppliedMathematics, vol. 49, no. 3, pp.
859–870, 1989.

[4] J. Hale, Theory of Functional Differential Equations, Springer,
1977.

[5] J. K. Hale and S. M. V. Lunel, Introduction to Functional
Differential Equations, Springer, 1995.

[6] G. Mircea, M. Neamtu, and D. Opris, Dynamical Systems
from Economy, Mechanic and Biology Described by Differential
Equations with Time Delay, Mirton, 2003.

[7] J. Wei and C. Yu, “Hopf bifurcation analysis in a model of
oscillatory gene expression with delay,” Proceedings of the Royal
Society of Edinburgh A, vol. 139, no. 4, pp. 879–895, 2009.

[8] N. A. M. Monk, “Oscillatory expression of Hes1, p53, and NF-
𝜅B driven by transcriptional time delays,” Current Biology, vol.
13, no. 16, pp. 1409–1413, 2003.

[9] Y. Song and J. Wei, “Bifurcation analysis for Chen’s system with
delayed feedback and its application to control of chaos,”Chaos,
Solitons & Fractals, vol. 22, no. 1, pp. 75–91, 2004.

[10] Y. Song, J. Wei, andM. Han, “Local and global Hopf bifurcation
in a delayed hematopoiesis model,” International Journal of
Bifurcation and Chaos in Applied Sciences and Engineering, vol.
14, no. 11, pp. 3909–3919, 2004.

[11] S. Ruan and J. Wei, “On the zeros of transcendental functions
with applications to stability of delay differential equations
with two delays,”Dynamics of Continuous, Discrete & Impulsive
Systems A, vol. 10, no. 6, pp. 863–874, 2003.

[12] J. Wei, “Bifurcation analysis in a scalar delay differential equa-
tion,” Nonlinearity, vol. 20, no. 11, pp. 2483–2498, 2007.


