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We examine possible approximate solutions of both integer and noninteger systems of nonlinear differential equations describing
tuberculosis disease population dynamics. The approximate solutions are obtained via the relatively new analytical technique, the
homotopy decomposition method (HDM). The technique is described and illustrated with numerical example. The numerical
simulations show that the approximate solutions are continuous functions of the noninteger-order derivative. The technique used
for solving these problems is friendly, very easy, and less time consuming.

1. Introduction

Tuberculosis, MTB, or TB (short for tubercle bacillus) is a
common and in many cases lethal, infectious disease caused
by various strains of Mycobacterium, usually Mycobacterium
Tuberculosis [1]. Tuberculosis typically attacks the lungs, but
can also affect other parts of the body. It is spread through
the air when people who have an active TB infection cough,
sneeze, or otherwise transmit their saliva through the air
[2]. Most infections are asymptomatic and latent, but about
one in ten latent infections eventually progresses to active
disease which, if left untreated, kills more than 50% of those
so infected. Interested reader can find more about this model
in [3–7].

Based on the standard SIRS model, the model population
was compartmentalised into the susceptible (𝑆) and the
infected (𝐼) which is further broken down into latently
infected (𝐼

𝐿
) and actively infected (𝐼

𝐴
) while the recovered

subpopulation is ploughed back into the susceptible group
due to the possibility of reinfection after successful treatment
of the earlier infection. The model monitors the temporary
dynamics in the population of susceptible people (𝑡), TB
latently infected people 𝐼

𝐿
(𝑡), and TB actively infected people

𝐼
𝐴
(𝑡) as captured in the model system of ordinary differential

equations that follows.

𝑑𝑆 (𝑡)

𝑑𝑡
= V𝑓𝑁 − 𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛿𝑆 (𝑡) + 𝑇

𝐴
𝐼
𝐴(𝑡) + 𝑇

𝐿
𝐼
𝐿(𝑡) ,

𝑑𝐼
𝐿 (𝑡)

𝑑𝑡
= (1 − 𝑃) 𝛼𝐼𝐴𝑆 (𝑡) − 𝛽

𝐴
𝐼
𝐿 (𝑡) − 𝑇

𝐿
𝐼
𝐿 (𝑡) − 𝛿𝐼

𝐿(𝑡) ,

𝑑𝐼
𝐴 (𝑡)

𝑑𝑡
= 𝑃𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛽

𝐴
𝐼
𝐿 (𝑡) − 𝑇

𝐴
𝐼
𝐴 (𝑡) − 𝛿𝐼

𝐴 (𝑡) − 𝜀𝐼
𝐴 (𝑡)

(1)

subject to the initial conditions

𝑆 (0) = 𝑁, 𝐼
𝐿 (0) ≥ 0, 𝐼

𝐴 (0) ≥ 0, (2)

where𝑁 is the total number of new people in the location of
interest; 𝑆 is the number of susceptible people in the location;
𝐼
𝐿
is the number of TB latently infected people; 𝐼

𝐴
is the

number of TB actively infected people; V is the probability
that a susceptible person is not vaccinated; 𝑓 is the efficient
rate of vaccines; 𝑇

𝐿
is the success rate of latent 𝑇

𝐵
therapy; 𝑇

𝐴

is the active TB treatment cure rate; 𝛼 is the TB instantaneous
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incidence rate per susceptible; 𝛿 is humans natural death rate;
𝑃 is the proportion of infection instantaneously degenerating
into active TB; 𝜀 is the TB-induced death rate; and 𝛽

𝐴
is the

breakdown rate from latent to active TB. The equilibrium
analysis of themodel was studied in [8]. Equation (1) together
with (2) does not have an exact solution and is usually solved
numerically.

The purpose of this paper is to derive approximate analyt-
ical solutions for the standard form as well as the fractional
version of (1) together with (2) using the relatively new
analytical technique, the homotopy decomposition method
(HDM).

Thepaper is structured as follows. In Section 2,we present
the basic ideal of the homotopy decomposition method for
solving partial differential equations. We present the applica-
tion of the HDM for system Tuberculosis disease population
dynamics model in Section 3. In Section 4, we present the
application of the HDM for system of fractional Tuberculosis
disease population dynamicsmodel.The conclusions are then
given finally in Section 5.

2. Fundamental Information about Homotopy
Decomposition Method

To demonstrate the elementary notion of this technique,
we consider a universal nonlinear nonhomogeneous partial
differential equation with initial conditions of the following
form [9–13].

𝜕
𝑚𝑈 (𝑥, 𝑡)

𝜕𝑡𝑚
= 𝐿 (𝑈 (𝑥, 𝑡)) + 𝑁 (𝑈 (𝑥, 𝑡)) + 𝑓 (𝑥, 𝑡) ,

𝑚 = 1, 2, 3 . . . ,

(3)

focused on the primary condition

𝜕𝑖𝑈 (𝑥, 0)

𝜕𝑡𝑖
= 𝑦
𝑖 (𝑥) ,

𝜕𝑚−1𝑈 (𝑥, 0)

𝜕𝑡𝑚−1
= 0,

𝑖 = 0, 1, 2, . . . , 𝑚 − 2,

(4)

where𝑚 is the order of the derivative, where𝑓 is an identified
function,𝑁 is the common nonlinear differential operator, 𝐿
denotes a linear differential operator, and 𝑚 is the order of
the derivative. The procedures first stage here is to apply the
inverse operator 𝜕𝑚/𝜕𝑡𝑚 on both sides of (3) to obtain

𝑈 (𝑥, 𝑡) =

𝑚−1

∑
𝑘=0

𝑡
𝑘

𝑘!

𝑑
𝑘
𝑢 (𝑥, 0)

𝑑𝑡𝑘

+ ∫
𝑡

0

∫
𝑡
1

0

⋅ ⋅ ⋅ ∫
𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡.

(5)

The multi-integral in (3) can be transformed to

∫
𝑡

0

∫
𝑡
1

0

⋅ ⋅ ⋅ ∫
𝑡
𝑚−1

0

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏 ⋅ ⋅ ⋅ 𝑑𝑡

=
1

(𝑚 − 1)!
∫
𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏

(6)

so that (3) can be reformulated as

𝑈 (𝑥, 𝑡) =

𝑚−1

∑
𝑘=0

𝑡
𝑘

𝑘!
𝑦
𝑖 (𝑥)

+
1

(𝑚 − 1)!
∫
𝑡

0

(𝑡 − 𝜏)
𝑚−1

𝐿 (𝑈 (𝑥, 𝜏))

+ 𝑁 (𝑈 (𝑥, 𝜏)) + 𝑓 (𝑥, 𝜏) 𝑑𝜏.

(7)
Using the homotopy scheme, the solution of the aforemen-
tioned integral equation is given in series form as

𝑈(𝑥, 𝑡, 𝑝) =

∞

∑
𝑛=0

𝑝
𝑛
𝑈
𝑛 (𝑥, 𝑡) ,

𝑈 (𝑥, 𝑡) = lim
𝑝→1

𝑈 (𝑥, 𝑡, 𝑝) ,

(8)

and the nonlinear term can be decomposed as

𝑁𝑈(𝑟, 𝑡) =

∞

∑
𝑛=1

𝑝
𝑛
H
𝑛 (𝑈) , (9)

where 𝑝 ∈ (0, 1] is an implanting parameter. H
𝑛
(𝑈) is the

polynomials that can be engendered by

H
𝑛
(𝑈
0
, . . . , 𝑈

𝑛
) =

1

𝑛!

𝜕𝑛

𝜕𝑝𝑛
[

[

𝑁(

𝑛

∑
𝑗=0

𝑝
𝑗
𝑈
𝑗 (𝑥, 𝑡))

]

]

,

𝑛 = 0, 1, 2 . . . .

(10)

The homotopy decomposition method is obtained by the
combination of decomposition method with Abel integral
and is given by
∞

∑
𝑛=0

𝑝
𝑛
𝑈
𝑛 (𝑥, 𝑡)

= 𝑇 (𝑥, 𝑡) + 𝑝
1

(𝑚 − 1)!

× ∫
𝑡

0

(𝑡 − 𝜏)
𝑚−1

[𝑓 (𝑥, 𝜏) + 𝐿(

∞

∑
𝑛=0

𝑝
𝑛
𝑈
𝑛 (𝑥, 𝜏))

+

∞

∑
𝑛=0

𝑝
𝑛
H
𝑛 (𝑈)] 𝑑𝜏

(11)

with

𝑇 (𝑥, 𝑡) =

𝑚−1

∑
𝑘=0

𝑡𝑘

𝑘!
𝑦
𝑖 (𝑥) . (12)
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Relating the terms of same powers of 𝑝, this gives solutions
of various orders. The initial guess of the approximation is
𝑇(𝑥, 𝑡) that is actually the Taylor series of the exact solution
of order𝑚. Note that this initial guess insures the uniqueness
of the series decompositions [9].

3. Application of the HDM to the Model with
Integer-Order Derivative

In this section, we employ this method for deriving the set
of the mathematical equations describing the tuberculosis
disease population dynamics model.

Resulting from the steps involved in the HDM method,
we reach at the following integral equations that are very
simple to solve:

𝑝
0
: 𝑆
0 (𝑡) = 𝑆 (0) ,

𝑝
0
: 𝐼
𝐿0 (𝑡) = 𝐼

𝐿 (0) ,

𝑝
0
: 𝐼
𝐴0 (𝑡) = 𝐼

𝐴 (0) ,

𝑝
1
: 𝑆
1 (𝑡)

= ∫
𝑡

0

(V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0 (𝜏) + 𝛿𝑆

0 (𝜏)

+𝑇
𝐴
𝐼
𝐴0 (𝜏) + 𝑇

𝐿
𝐼
𝐿0 (𝜏)) 𝑑𝜏, 𝑆

1 (0) = 0,

𝑝
1
: 𝐼
𝐿1 (𝑡)

= ∫
𝑡

0

((1 − 𝑃) 𝛼𝐼𝐴0𝑆0 (𝜏) − 𝛽
𝐴
𝐼
𝐿0 (𝜏)

−𝑇
𝐿
𝐼
𝐿
0 (𝜏) − 𝛿𝐼

𝐿0 (𝜏)) 𝑑𝜏, 𝐼
𝐿1 (0) = 0,

𝑝
1
: 𝐼
𝐴1 (𝑡)

= ∫
𝑡

0

(𝑃𝛼𝐼
𝐴0
𝑆
0 (𝜏) + 𝛽

𝐴
𝐼
𝐿0 (𝜏)

−𝑇
𝐴
𝐼
𝐴0 (𝜏) − 𝛿𝐼

𝐴0 (𝜏) − 𝜀𝐼
𝐴0 (𝜏)) 𝑑𝜏, 𝐼

𝐴1 (0) = 0,

...

𝑝
𝑛
: 𝑆
𝑛 (𝑡)

= ∫
𝑡

0

(V𝑓𝑁 − 𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) + 𝛿𝑆

𝑛−1 (𝜏)

+𝑇
𝐴
𝐼
𝐴(𝑛−1) (𝜏) + 𝑇

𝐿
𝐼
𝐿(𝑛−1) (𝜏))𝑑𝜏,

𝑆
𝑛−1 (0) = 0,

𝑝
𝑛
: 𝐼
𝐿𝑛 (𝑡)

= ∫
𝑡

0

((1 − 𝑃) 𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) − 𝛽

𝐴
𝐼
𝐿(𝑛−1) (𝜏)

−𝑇
𝐿
𝐼
𝐿(𝑛−1) (𝜏) − 𝛿𝐼

𝐿(𝑛−1) (𝜏))𝑑𝜏,

𝐼
𝐿𝑛 (0) = 0

𝑝
𝑛
: 𝐼
𝐴𝑛 (𝑡)

= ∫
𝑡

0

(𝑃𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) + 𝛽

𝐴
𝐼
𝐿(𝑛−1) (𝜏) − 𝑇

𝐴
𝐼
𝐴(𝑛−1) (𝜏)

−𝛿𝐼
𝐴(𝑛−1) (𝜏) − 𝜀𝐼

𝐴(𝑛−1) (𝜏))𝑑𝜏, 𝐼
𝐴𝑛 (0) = 0.

(13)

Integrating the previous, we obtain the following compo-
nents:

𝑆
0 (𝑡) = 𝑆 (0) ; 𝐼

𝐿0 (𝑡) = 𝐼
𝐿 (0) ;

𝐼
𝐴0 (𝑡) = 𝐼

𝐴 (0) ,

𝑆
1 (𝑡) = (V𝑓𝑁 − 𝛼𝐼

𝐴0
𝑆
0
+ 𝛿𝑆
0
+ 𝑇
𝐴
𝐼
𝐴0

+ 𝑇
𝐿
𝐼
𝐿0
) 𝑡,

𝐼
𝐿1 (𝑡) = ((1 − 𝑃) 𝛼𝐼𝐴0𝑆0 − 𝛽

𝐴
𝐼
𝐿0
− 𝑇
𝐿
𝐼
𝐿
0 − 𝛿𝐼

𝐿0
) 𝑡,

𝐼
𝐴1 (𝑡) = (𝑃𝛼𝐼

𝐴0
𝑆
0
+ 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐴
𝐼
𝐴0

− 𝛿𝐼
𝐴0

− 𝜀𝐼
𝐴0
) 𝑡.

(14)

For simplicity, let us put

𝑎 = (V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0
+ 𝛿𝑆
0
+ 𝑇
𝐴
𝐼
𝐴0

+ 𝑇
𝐿
𝐼
𝐿0
) ,

𝑏 = ((1 − 𝑃) 𝛼𝐼𝐴0𝑆0 − 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐿
𝐼
𝐿
0 − 𝛿𝐼

𝐿0
) ,

𝑐 = (𝑃𝛼𝐼
𝐴0
𝑆
0
+ 𝛽
𝐴
𝐼
𝐿0
− 𝑇
𝐴
𝐼
𝐴0

− 𝛿𝐼
𝐴0

− 𝜀𝐼
𝐴0
) ,

𝑆
2 (𝑡) =

1

2
𝑡
2
(𝑏𝑇
𝐴
+ 𝑐𝑇
𝐿
− 𝑎𝐼
𝐴0
𝛼 − 𝑏𝑆

0
𝛼 + 𝑎𝛿)

=
𝑡2

2
𝑎
1
,

𝐼
𝐿2 (𝑡) =

1

2
𝑡
2
(−𝑐𝑇
𝐿
+ 𝑎𝐼
𝐴0
𝛼 − 𝑎𝐼

𝐴0
𝑃𝛼

+𝑏𝑆
0
𝛼 − 𝑐𝛽

𝐴
− 𝑐𝛿) =

𝑡2

2
𝑏
1
,

𝐼
𝐴2 (𝑡) =

1

2
𝑡
2
(𝑎𝐼
𝐴0
𝑃𝛼 + 𝑏𝑃𝛼𝑆

0
− 𝑏𝑇
𝐴

+𝑐𝛽
𝐴
− 𝑏𝛿 − 𝑏𝜀) = 𝑐

1

𝑡2

2
.

(15)

In general, we obtain the following recursive formulas:

𝑆
𝑛 (𝑡) =

𝑡
𝑛

𝑛!
𝑎
𝑛
,

𝐼
𝐿𝑛 (𝑡) =

𝑡𝑛

𝑛!
𝑏
𝑛
,

𝐼
𝐴𝑛 (𝑡) = 𝑐

𝑛

𝑡𝑛

𝑛!
,

(16)
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where 𝑎
𝑛
, 𝑏
𝑛
, and 𝑐

𝑛
depend on the fixed set of empirical

parameters. It therefore follows that the approximate solution
of the system (1) is given as

𝑆
𝑁 (𝑡) =

𝑁

∑
𝑛=0

𝑡𝑛

𝑛!
𝑎
𝑛
,

𝐼
𝐿𝑁 (𝑡) =

𝑁

∑
𝑛=0

𝑡𝑛

𝑛!
𝑏
𝑛
,

𝐼
𝐴𝑁 (𝑡) =

𝑁

∑
𝑛=0

𝑡𝑛

𝑛!
𝑐
𝑛
.

(17)

If for instance one supposes that the total number of new
people in the location of interest is 𝑁 = 100; the initial
number of susceptible people in the location is 𝑆(0) = 96;
the initial number of TB latently infected people is 𝐼

𝐿
(0) = 3;

the initial number of TB actively infected people is 𝐼
𝐴
(0) = 1;

the probability that a susceptible person is not vaccinated is
V = 0.5; the efficient rate of vaccines is 𝑓 = 0.5; the success
rate of latent TB therapy is 𝑇

𝐿
= 0.8; the active TB treatment

cure rate is 𝑇
𝐴
= 0.74; the TB instantaneous incidence rate

per susceptible is 𝛼 = 0.41; humans natural death rate is
𝛿 = 1/(366× 70); the proportion of infection instantaneously
degenerating into active TB is 𝑃 = 0.0197; the TB-induced
death rate is 𝜀 = 0.0735; and the breakdown rate from latent
to active TB is 𝛽

𝐴
= 0.01, then the following approximate

solution is obtained as a result of the first 8 terms of the series
decomposition:

𝑆 (𝑡) = 96 − 11.2162𝑡 + 62.1069𝑡
2
− 29.5924𝑡

3
− 149.2𝑡

4

+ 48.3455𝑡
5
− 20.6378𝑡

6
+ 15.5857𝑡

7
+ ⋅ ⋅ ⋅

𝐼
𝐿 (𝑡) = 3 + 36.8527𝑡 − 62.9161𝑡

2
− 797.302𝑡

3
+ 151.174𝑡

4

− 48.8926𝑡
5
+ 20.7629𝑡

6
− 15.6036𝑡

7
+ ⋅ ⋅ ⋅

𝐼
𝐴 (𝑡) = 1 − 0.706394𝑡 + 0.252053𝑡

2
− 0.252832𝑡

3

− 1.96203𝑡
4
+ 0.573666𝑡

5
− 0.131459𝑡

6

+ 0.0190148𝑡
7
+ ⋅ ⋅ ⋅ .

(18)

If in addition we assume that no new person migrates or
is born in this area, we obtain the following figures. The
approximate solutions of the main problem are depicted in
Figures 1, 2, and 3, respectively.

Figure 1 shows that, if there is migration or newborn in
the location of interest, the number of susceptible people will
vanish as time goes, because of the natural death rate and due
toTB.Note that any person that is latently infected is removed
from the set of susceptible. Figure 2 indicates that the number
of people that are latently infected will increase up to a
certain time and then vanish as time goes. The number of
susceptible people, will become latently infected since some
are not vaccinated against the TB and finally will vanish due
to. Figure 3 indicates that the number of TB actively infected

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0
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Figure 1: Approximate solution for the number of susceptible
people in the location.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0
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Latent people

Figure 2: Approximate solution for the number of TB latently
infected people.

people will also vanish because of the natural death rate and
the death due to TB.

4. Application of the HDM to the Model with
Noninteger-Order Derivative

Fractional calculus has been used to model physical and
engineering processes, which are found to be best described
by fractional differential equations. It is worth noting that the
standard mathematical models of integer-order derivatives,
including nonlinear models, do not work adequately in
many cases. In the recent years, fractional calculus has
played a very important role in various fields such as
mechanics, electricity, chemistry, biology, economics, notably
control theory, and signal and image processing.Major topics
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Figure 3: Approximate solution for the number of TB actively
infected people.

include anomalous diffusion; vibration and control; continu-
ous time random walk; Levy statistics, fractional Brownian
motion; fractional neutron point kinetic model; power law;
Riesz potential; fractional derivative and fractals; computa-
tional fractional derivative equations; nonlocal phenomena;
history-dependent process; porous media; fractional filters;
biomedical engineering; fractional phase-locked loops, and
groundwater problem (see [14–21]).

4.1. Properties and Definitions

Definition 1. A real function 𝑓(𝑥), 𝑥 > 0, is said to be in the
space𝐶

𝜇
, 𝜇 ∈ R, if there exists a real number 𝑝 > 𝜇, such that

𝑓(𝑥) = 𝑥𝑝ℎ(𝑥), where ℎ(𝑥) ∈ 𝐶[0,∞), and it is said to be in
space 𝐶𝑚

𝜇
if 𝑓(𝑚) ∈ 𝐶

𝜇
,𝑚 ∈ N.

Definition 2. TheRiemann-Liouville fractional integral oper-
ator of order 𝛼 ≥ 0, of a function 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, is defined

as

𝐽
𝛼
𝑓 (𝑥) =

1

Γ (𝛼)
∫
𝑥

0

(𝑥 − 𝑡)
𝛼−1

𝑓 (𝑡) 𝑑𝑡, 𝛼 > 0, 𝑥 > 0

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(19)

Properties of the operator can be found in [14–16]. We
mention only the following: for 𝑓 ∈ 𝐶

𝜇
, 𝜇 ≥ −1, 𝛼, 𝛽 ≥ 0,

and 𝛾 > −1,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛼+𝛽
𝑓 (𝑥) ,

𝐽
𝛼
𝐽
𝛽
𝑓 (𝑥) = 𝐽

𝛽
𝐽
𝛼
𝑓 (𝑥) 𝐽

𝛼
𝑥
𝛾
=

Γ (𝛾 + 1)

Γ (𝛼 + 𝛾 + 1)
𝑥
𝛼+𝛾

.
(20)

Lemma 3. If 𝑚 − 1 < 𝛼 ≤ 𝑚, 𝑚 ∈ N, and 𝑓 ∈ 𝐶𝑚
𝜇
, 𝜇 ≥ −1,

then
𝐷
𝛼
𝐽
𝛼
𝑓 (𝑥) = 𝑓 (𝑥) ,

𝐽
𝛼
𝐷
𝛼

0
𝑓 (𝑥) = 𝑓 (𝑥) −

𝑚−1

∑
𝑘=0

𝑓
(𝑘)

(0
+
)
𝑥𝑘

𝑘!
, 𝑥 > 0.

(21)

Definition 4 (partial derivatives of fractional order). Assume
now that 𝑓(x) is a function of 𝑛 variables 𝑥

𝑖
𝑖 = 1, . . . , 𝑛 also

of class 𝐶 on 𝐷 ∈ R
𝑛
. We define partial derivative of order 𝛼

for 𝑓 respect to 𝑥
𝑖
the function

𝑎𝜕
𝛼

x𝑓 =
1

Γ (𝑚 − 𝛼)
∫
𝑥
𝑖

𝑎

(𝑥
𝑖
− 𝑡)
𝑚−𝛼−1

𝜕
𝑚

𝑥
𝑖

𝑓(𝑥
𝑗
)
󵄨󵄨󵄨󵄨󵄨𝑥
𝑗
=𝑡
𝑑𝑡. (22)

where 𝜕𝑚
𝑥
𝑖

is the usual partial derivative of integer-order𝑚.

4.2. Approximate Solution of Fractional Version. The system
of equations under investigation here is given as

𝑑𝜇𝑆 (𝑡)

𝑑𝑡𝜇
= V𝑓𝑁 − 𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛿𝑆 (𝑡)

+ 𝑇
𝐴
𝐼
𝐴 (𝑡) + 𝑇

𝐿
𝐼
𝐿 (𝑡) , 0 < 𝜇 ≤ 1,

𝑑
𝜂𝐼
𝐿 (𝑡)

𝑑𝑡𝜂
= (1 − 𝑃) 𝛼𝐼𝐴𝑆 (𝑡) − 𝛽

𝐴
𝐼
𝐿 (𝑡)

− 𝑇
𝐿
𝐼
𝐿 (𝑡) − 𝛿𝐼

𝐿 (𝑡) , 0 < 𝜂 ≤ 1,

𝑑
𝜐𝐼
𝐴 (𝑡)

𝑑𝑡𝜐
= 𝑃𝛼𝐼

𝐴
𝑆 (𝑡) + 𝛽

𝐴
𝐼
𝐿 (𝑡) − 𝑇

𝐴
𝐼
𝐴 (𝑡)

− 𝛿𝐼
𝐴 (𝑡) − 𝜀𝐼

𝐴 (𝑡) , 0 < 𝜐 ≤ 1.

(23)

Following the discussion presented earlier, we arrive at the
following equations:

𝑝
0
: 𝑆
0 (𝑡) = 𝑆 (0) ,

𝑝
0
: 𝐼
𝐿0 (𝑡) = 𝐼

𝐿 (0) ,

𝑝
0
: 𝐼
𝐴0 (𝑡) = 𝐼

𝐴 (0) ,

𝑝
1
: 𝑆
1 (𝑡)

=
1

Γ (𝜇)
∫
𝑡

0

(𝑡 − 𝜏)
𝜇−1

× (V𝑓𝑁 − 𝛼𝐼
𝐴0
𝑆
0 (𝜏) + 𝛿𝑆

0 (𝜏)

+𝑇
𝐴
𝐼
𝐴0 (𝜏) + 𝑇

𝐿
𝐼
𝐿0 (𝜏)) 𝑑𝜏,

𝑆
1 (0) = 0,

𝑝
1
: 𝐼
𝐿1 (𝑡)

=
1

Γ (𝜂)
∫
𝑡

0

(𝑡 − 𝜏)
𝜂−1

× ((1 − 𝑃) 𝛼𝐼𝐴0𝑆0 (𝜏) − 𝛽
𝐴
𝐼
𝐿0 (𝜏)

−𝑇
𝐿
𝐼
𝐿
0 (𝜏) − 𝛿𝐼

𝐿0 (𝜏)) 𝑑𝜏,

𝐼
𝐿1 (0) = 0,

𝑝
1
: 𝐼
𝐴1 (𝑡)

=
1

Γ (𝜐)
∫
𝑡

0

(𝑡 − 𝜏)
𝜐−1

× (𝑃𝛼𝐼
𝐴0
𝑆
0 (𝜏) + 𝛽

𝐴
𝐼
𝐿0 (𝜏)

−𝑇
𝐴
𝐼
𝐴0 (𝜏) − 𝛿𝐼

𝐴0 (𝜏) − 𝜀𝐼
𝐴0 (𝜏)) 𝑑𝜏,

𝐼
𝐴1 (0) = 0,
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𝑝
𝑛
: 𝑆
𝑛 (𝑡)

=
1

Γ (𝜇)
∫
𝑡

0

(𝑡 − 𝜏)
𝜇−1

× (V𝑓𝑁 − 𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) + 𝛿𝑆

𝑛−1 (𝜏)

+𝑇
𝐴
𝐼
𝐴(𝑛−1) (𝜏) + 𝑇

𝐿
𝐼
𝐿(𝑛−1) (𝜏))𝑑𝜏,

𝑆
𝑛−1 (0) = 0,

𝑝
𝑛
: 𝐼
𝐿𝑛 (𝑡)

=
1

Γ (𝜂)
∫
𝑡

0

(𝑡 − 𝜏)
𝜂−1

× ((1 − 𝑃) 𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) − 𝛽

𝐴
𝐼
𝐿(𝑛−1) (𝜏)

−𝑇
𝐿
𝐼
𝐿(𝑛−1) (𝜏) − 𝛿𝐼

𝐿(𝑛−1) (𝜏))𝑑𝜏,

𝐼
𝐿𝑛 (0) = 0,

𝑝
𝑛
: 𝐼
𝐴𝑛 (𝑡)

=
1

Γ (𝜐)
∫
𝑡

0

(𝑡 − 𝜏)
𝜐−1

× (𝑃𝛼

𝑛−1

∑
𝑗=0

𝐼
𝐴𝑗
𝑆
𝑛−𝑗−1 (𝜏) + 𝛽

𝐴
𝐼
𝐿(𝑛−1) (𝜏)

− 𝑇
𝐴
𝐼
𝐴(𝑛−1) (𝜏) − 𝛿𝐼

𝐴(𝑛−1) (𝜏)

−𝜀𝐼
𝐴(𝑛−1) (𝜏))𝑑𝜏,

𝐼
𝐴𝑛 (0) = 0.

(24)

Integrating the previous, we obtain the following compo-
nents:

𝑆
0 (𝑡) = 𝑆 (0) ; 𝐼

𝐿0 (𝑡) = 𝐼
𝐿 (0) ;

𝐼
𝐴0 (𝑡) = 𝐼

𝐴 (0) ,

𝑆
1 (𝑡) = −

11.2162𝑡
𝜇

Γ (1 + 𝜇)
;

𝐼
𝐿1 (𝑡) =

36.8527𝑡𝜂

Γ (1 + 𝜂)
,

𝐼
𝐴1 (𝑡) = −

0.706394𝑡𝜐

Γ (1 + 𝜐)
,

𝑆
2 (𝑡) = 𝑡

𝜇
(

29.4822𝑡𝜂

Γ (1 + 𝜂 + 𝜇)
+
4.59822𝑡

𝜇

Γ (1 + 2𝜇)

+
27.2809𝑡𝜐

Γ (1 + 𝜐 + 𝜇)
) ,

𝐼
𝐿2 (𝑡) = − 𝑡

𝜂
(
29.8522𝑡

𝜂

Γ (1 + 2𝜂)
+

4.58965𝑡
𝜇

Γ (1 + 𝜂 + 𝜇)

+
27.7492𝑡

𝜐

Γ (1 + 𝜐 + 𝜇)
) ,

𝐼
𝐴2 (𝑡) = 𝑡

𝜐
(

0.368527𝑡𝜂

Γ (1 + 𝜂 + 𝜐)
−
0.00901337𝑡

𝜇

Γ (1 + 𝜐 + 𝜇)

+
0.520184𝑡𝜐

Γ (1 + 2𝜐)
) ,

𝑆
3 (𝑡) = 𝑡

𝜇
(−

3.24846𝑡𝜇+𝜐Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 2𝜇 + 𝜐)

−
0.298522𝑡2𝜂

Γ (1 + 2𝜂 + 𝜐)
−

15.7583𝑡𝜂+𝜇

Γ (1 + 𝜂 + 2𝜇)

−
1.88509𝑡2𝜇

Γ (1 + 3𝜇)
−

36.4319𝑡
𝜂+𝜐

Γ (1 + 𝜇 + 𝜐 + 𝜂)

−
10.836𝑡𝜇+𝜐

Γ (1 + 2𝜇 + 𝜐)
−

20.0895𝑡
2𝜐

Γ (1 + 𝜇 + 2𝜐)
) ,

𝐼
𝐿3 (𝑡) = 𝑡

𝜂
(−

1148.5𝑡2𝜂

Γ (1 + 3𝜂)
−

164.513𝑡
𝜂+𝜇

Γ (1 + 2𝜂 + 𝜇)
+

1.88158𝑡
2𝜇

Γ (1 + 𝜂 + 2𝜇)

−
1067.59𝑡𝜂

Γ (1 + 2𝜂 + 𝜐)
+

11.1633𝑡
𝜇+𝜐

Γ (1 + 𝜂 + 𝜇 + 𝜐)

+
3.2421𝑡𝜇+𝜐Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 𝜂 + 𝜇 + 𝜐)
) ,

𝐼
𝐴3 (𝑡) = 𝑡

𝜐
(

0.00636699𝑡𝜇+𝜐Γ (1 + 𝜇 + 𝜐)

Γ (1 + 𝜇) Γ (1 + 𝜐) Γ (1 + 2𝜐 + 𝜇)

−
0.298522𝑡

2𝜂

Γ (1 + 2𝜂 + 𝜐)
−
0.0222046𝑡

𝜂+𝜇

Γ (1 + 𝜂 + 2𝜇)

+
0.00369513𝑡2𝜇

Γ (1 + 3𝜇)
−

0.548873𝑡
𝜂+𝜐

Γ (1 + 𝜇 + 2𝜐)

+
0.0285603𝑡𝜇+𝜐

Γ (1 + 𝜇 + 2𝜐)
−
0.38306𝑡

2𝜐

Γ (1 + 3𝜐)
) .

(25)

The remaining terms can be obtained in the samemanner.
But here only few terms of the series solutions are considered,
and the asymptotic solution is given as

𝑆 (𝑡) = 𝑆
0 (𝑡) + 𝑆

1 (𝑡) + 𝑆
2 (𝑡) + 𝑆

3 (𝑡) + ⋅ ⋅ ⋅ ,

𝐼
𝐿 (𝑡) = 𝐼

𝐿0 (𝑡) + 𝐼
𝐿1 (𝑥, 𝑡) + 𝐼

𝐿2 (𝑥, 𝑡) + 𝐼
𝐿3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ ,

𝐼
𝐴 (𝑡) = 𝐼

𝐴0 (𝑡) + 𝐼
𝐴1 (𝑥, 𝑡) + 𝐼

𝐴2 (𝑥, 𝑡) + 𝐼
𝐴3 (𝑥, 𝑡) + ⋅ ⋅ ⋅ .

(26)

The following figures show the simulated solutions for differ-
ent values of the fractional order derivatives.The approximate
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Figure 4: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 5: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 6: Approximate for 𝜇 = 0.45, 𝜂 = 0.7, and 𝜐 = 0.85.
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Figure 7: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.
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Figure 8: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.

solutions of the main problem are depicted in Figures 4, 5, 6,
7, 8, and 9, respectively.

The numerical simulations show that the approximate
solutions are continuous functions of the noninteger-order
derivative. It is worth noting that the standard mathemati-
cal models of integer-order derivatives, including nonlinear
models, do not work adequately in many cases. It is therefore
advisable to use the fractional model for describing this
problem.

5. Conclusion

The tuberculosis model was examined for the case of integer-
and noninteger-order derivatives. Both systems of nonlinear
equations were solved with an iterative analytical model
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Figure 9: Approximate for 𝜇 = 0.045, 𝜂 = 0.5, and 𝜐 = 0.085.

called the homotopy decomposition model method. The
basic characters of the relatively new technique are presented
in detail. The approximate solutions of the noninteger case
are increasing continuous functions of the fractional order
derivative. The technique used for solving these problems is
friendly, very easy, and less time consuming. The numerical
solutions in both cases display the biological behaviour of the
real world situation.
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