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The classification of exact solutions, including solitons and elliptic solutions, to the generalized K (m, n) equation by the complete
discrimination system for polynomial method has been obtained. From here, we find some interesting results for nonlinear partial

differential equations with generalized evolution.

1. Introduction

In science and engineering applications, it is often very
difficult to obtain analytical solutions of partial differential
equations. Recently, many exact solutions of partial differ-
ential equations have been examined by the use of trial
equation method. Also there are a lot of important methods
that have been defined such as Hirota method, tanh-coth
method, sine-cosine method, the trial equation method, and
the extended trial equation method [1-15] to find exact
solutions to nonlinear partial differential equations. There
are a lot of nonlinear evolution equations that are solved by
the use of various mathematical methods. Soliton solutions,
singular solitons, and other solutions have been found by
using these approaches. These obtained solutions have been
encountered in various areas of applied mathematics and are
very important.

In Section 2, we introduce an extended trial equation
method for nonlinear evolution equations with higher order
nonlinearity. In Section 3, as applications, we procure some
exact solutions to nonlinear partial differential equations
such as the generalized form of K(m, n) equation [16-18]:

(ql)t + aqqu + b(qn)xxx = 0’ (1)

where a,b € R are constants since [,m, and n € Z*. Here,
the first term is the generalized evolution term, while the
second term represents the nonlinear term and the third term
is the dispersion term. This equation is the generalized form

of the KdV equation, where, in particular, the case | = m =
n = 1 leads to the KdV equation. The Korteweg de Vries
equation is one of the most important equations in applied
mathematics and physics. There have been several kinds of
solutions, such as compactons, that are studied in the context
of K(m,n) equation, for various situations. We now offer a
more general trial equation method for discussion as follows.

2. The Extended Trial Equation Method

Step 1. For a given nonlinear partial differential equation
P(u,uyuy,tyy,...) =0, (2)

take the general wave transformation

N
u (X, %0 .. X 1) =u(n), n=2»2 ij—ct , (3)
i1

where A#0 and c#0. Substituting (3) into (2) yields a
nonlinear ordinary differential equation:

N(u, u',u”,...) =0. (4)

Step 2. Take the finite series and trial equation as follows:

u= ZTiFi, (5)



where
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Y () I+

+&T+¢,
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Using (5) and (6), we can write
2 o)L ’
-5 (Z).

y O MW@ -oMWY (T [, ,~_1>
= Ay 7)
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where ®(I') and W(I') are polynomials. Substituting these
relations into (4) yields an equation of polynomial Q(T) of
I:

QM) =0 +---+0, T+, =0. (8)

According to the balance principle, we can find a relation of
0, €, and 8. We can calculate some values of 0, €, and 6.

Step 3. Letting the coeflicients of Q(I') all be zero will yield
an algebraic equations system:

Qizo, i=0,...,5. (9)

Solving this system, we will determine the values of
EO""’EG;{O""’Ce; andTO,...,Ta.

Step 4. Reduce (6) to the elementary integral form

ar (. |vm 10
T N@(Ddr. (10)

Using a complete discrimination system for polynomial to
classify the roots of ®(I), we solve (10) and obtain the exact
solutions to (4). Furthermore, we can write the exact traveling
wave solutions to (2), respectively.

i(ﬂ_ﬂo):J

3. Application to the Generalized Form of
K(m,n) Equation

In order to look for travelling wave solutions of (1), we make
the transformation g(x,t) = u(y), # = x — ct, where c is the
wave speed. Therefore it can be converted to the ODE

(' (n)) + ( ")+ b ()" =0, (D)

where prime denotes the derivative with respect to #. Then,
integrating this equation with respect to # one time and
setting the integration constant to zero, we obtain

W™ () +b(u" ()" = 0. (12)

1 a
“ (rl)+m+l
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Let [ = n, applying balance and using the following transfor-
mation:

u= Vl/(m—nJrl). (13)

Equation (12) turns into the following equation:

—c(m+1)(m+1—n)21/2+a(m+1—11)21/3
+bnim+1)Q2n-m-— l)(v')2 (14)

+bnm+D(m+1-n)w' =0.
Substituting (7) into (14) and using balance principle yield
0=€ec+d5+2. (15)

After this solution procedure, we obtain the results as follows.

Casel. Ifwetakee = 0,6 = 1,and 6 = 3, then

N2 (71)2 (£3F3 + &I+ ET + 'So)
(V) = Z ’

" ﬁ@gﬁ+ﬁg+a)
’
2¢,

(16)

>

where & #0 and (, # 0. Respectively, solving the algebraic
equation system (9) yields

Ef(3+3m—5n)(1+m+n)

S0=- 168,(1 + m — 2n)>
f1=€1: 52=£2>
£ __8£§(I+m—2n)(l+m—n)
o E(1+m+n)> ’
B 40 +m=-2n)é)1, 17
fo =T =" (1+m+n)&,
¢ = bn&, (1 +m)

a(l+m-n)t,

3 an (5 +5m —7n) 1,
S (1+mQ+m-n)(1+m+n)

Substituting these results into (6) and (10), we have
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A dr
t(=m)=> : = > - =
— E(Q+m+n) - & +m+n) & (3+3m—5n)(1+m+n)
8&, (1+m—2n) (1 +m—n) 8 (1+m—-2n)(1+m—-n) 128821 +m—2n)> (1 +m—n)
(18)
where u(x,t) = [TO +10 +1 (0 — )
2
Ao bnfl(1+m)(12+m+n) ‘ (19) N~
2aé,1,(1 +m—n)" (1 + m —2n) x sech —a ¥~ (an (5 +5m —7n) 1,)
Integrating (18), we obtain the solutions to (1) as follows: x ((L+m)(1+m-—n)
A x (1+m+n))"
t(n—1) =~ )
VI = 1/(m-n+1)
s )]
+(n-1y) = ———— arctan . >,
Vo, — o o, — o (o t)
A N N ey
+(n—no) = —In : — | @ :[T + 100 + 7 (0 — )
Vo=, |\T—a,+ o —a, e R W
A
+(n-1n,) = —————F(¢,1), > a, > as, 2 V&L T X
(n-mno) N (@.0), o >0 >a x cosech <T (x —(an(5+5m—7n) 1)
(20)
X ((1+m)(1+m-n)
where 1
X (l+m+n))
¢ dy -«
F(p,1) = J —_ ¢ = arcsin\j EBy 1/(m=n+1)
o oramy cem))]
u(x,t)
lz — *) — &3
0~ = |1+ 100+ (1 (y —
o 70 i+ (1 o)
Also «;, &, and a5 are the roots of the polynomial equation x ( sn? (i—\/%A_‘Xl
F3+£—2F2+£—1F+i=0- (22) ( - an (5 +5m—7n) 1,
& & Qem (A +m-n)(+m+n)
Substituting solutions (20) into (5) and (13), we have , >
Xt=1p |,
u(x,t)
—111/(m=-n+1)
051 - (X3
- N
(23)

+ <A2T1 ( (x —(an(5+5m—7n) 1)

x(1+m)(L+m-n)(1+m+n))"

1/(m-n+1)

) ) )]

If we take 7, = -1,y and 7, = 0, then solutions (23) can
reduce to rational function solution

—~ 2/(m-n+1)
u(x,t)z( A ) , (24)

X —ct




1-soliton wave solution

B
u(x,t) = Y ra— , (25)
cosh” "™V (B (x - ct))
singular soliton solution
C
u(x,t) = , (26)
sinh? ™Y (C (x - ct))
and elliptic soliton solution
B
HORD) = o (D) )
where A = Aym, B = (r(ay—o)/"™V, B =

Vo =0, /A, C = (1y(e - 0,))" "™V, C = Vo = /24,
¢ = +(\Jo, —a;/A)(x — ct), P = (a; — a3)/(a; — @), and
¢ =an(5+5m—-7n)t0,/(1 + m)(1 +m—n)(1+m+n). Here,
B and C are the amplitudes of the solitons, while B and C are
the inverse widths of the solitons and c is the velocity. Thus,
we can say that the solitons exist for 7; > 0.

Remark 1. If we choose the corresponding values for some
parameters, solution (25) is in full agreement with solution
(21) mentioned in [17].

Case 2. If we takee = 0,0 = 2, and 6 = 4, then

(1, +20,0)" (§,T* + £, 17 + ET2 + E T + &)

()= &

where &, #0 and {, # 0. Respectively, solving the algebraic
equation system (9) yields

, (28)

& =4¢ §=¢ § = 5 & = S
0 = So 1= S 27 3 3 248’
£, = %, ¢, = _bnz(;ﬂ +1)(m+ n2+21)ff
0 a(m—-n+ 1)1, (29)
Ty = 2?1T1> T =T = %2;
2ané,T,

T o m+l)(men+1)E

Substituting these resultss into (6) and (10), we get

+(n-1)

24, j((dr)
4 24_50 3 192£g ) 2
x(l" +< 3 )1" +( Ef T
57683 57688\ \
( 5?0)“< f‘%o>> )

(30)

Abstract and Applied Analysis

where A, = \/—6bnE0(1 +m)(L+m+n)/a&, 7, (1 +m—n)> Inte-
grating (30), we obtain the solutions to (1) as follows:

2A
(1=10) = —5——
1
4A, -«
i - = 5 > >
(n=1o) “1—“2\jr_“1 &) > &
2A, I'-o
t(n-n) = In|{——,
(- 1o) “l_azn‘r_%
+ (1= 11o)
44,

) \/(“1 - ) (0 — )

" VI =) (@ - ) = (T =) (@ - )
\/(F - o) (o — ) + \/(F - a3) (0 — )

a > a, >,

>

4A,
\/(“1 - ay) (0 — )

o >0 >0 > Ky,

+(n-1y) = F(g.0),

(31)

where

i [T o) (@ - a)
hie J(r—al)(az—%)’

Zf _ (2 - a3) (2, — )

(o, — 0‘3) () - “4)'

(32)

Also «;, a,, a5, and «a, are the roots of the polynomial
equation

ey ep b, b (33)

&4 &4 &4 &4

Substituting solutions (31) into (5) and (13), we have
u(x,t)

= |:T0 +10q = (21,4,)

2ané,T !
071 B
* (x " (m+1) (m+n+1)§1t ’70>
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+1, (ocl +(24,)

2ané,T,
X <x+ mr)(m+nt 1§,

ZIN2 1/(m-n+1)
><t—110> ):|

u(x,t)
= |:TO + 704

+ (16A21 (o — ocl)‘rl)

X (16A21 - [ (o) — o)

-1

2ané,T, 2
X (“ (m+1)(m+n+1)€1t_%>] )

+T, <(x1 + (16A21 ((xz—ocl))

X <16A21 - [(oc1 - )

( 2ané,T,
T ) mentDE

w)))]

- [To + 105+ ((ap — ) 77)

X <exp [—0&2;‘ %
1
2ankT, ~ >]_ )1
X<x+(m+1)(m+n+l)£lt )|~ 1

+7 (“2 + (0 —ap)
a — %
X —_—
<exp[ 24,

2
" (x and,T,

(m+1) (m+n+1)&;

won)]2))]

1/(m-n+1)

u(x,t)

1/(m-n+1)

u(x,t)
= |:To + 700 + (0 — ) 7y)
e B)
x(exp[ 24,

x (x+(2an&,t,)

x ((m+1) (m+n+ 1)51)_1

xt—no)]—l)_l

+7 <0‘1 + (0 — ;)

(ool
1
X (x + (2an&,T;)

x ((m+1) (m+n+1) &)

o] ) )]

1/(m-n+1)

u(x,t)

= |:T0 +10 — (2 (0 — o) (o) — a3) 77)

X <20¢1 —a,—ay+ (05— ay)

« cosh |: \/(0‘1 = ag) (o - at3)

24,

2
o (x ank,1,

m+1)(m+n+1)&

)

+7, [ o = (2 (0 —ay) (o —a3))

x| 20—, — oy + (a3 — ay)



\/(“1 —ag) (o — at3)

24,

x cosh

2ané,T,
(m+1)(m+n+ 1§

-1

Xt—=1n

u(x,t)

=+ + (0 — ) (o — ) 77)

x| (o — )

2 \/(“1 - a3) (0 — o)

X sn
4A,
y <x 2ané,T,
m+1)(m+n+1)&
Xt- ’70) >
(0‘2 - 0‘3) (“1 - 0‘4)
(“1 - 0‘3) (a = “4)
-1
+ oy -,

+ 7, o+ ((a — ) (@ - ) 17)

x| (o — )

2 \/(0‘1 - a3) (0 — o)

4A,

X sn

2ané,T,

2 o 1/(m-n+1)

X X+

m+1)(m+n+1)&
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Xt=1n |

(@ — a3) (@) — o)

() —a3) (e — )

12 1/(m-n+1)
+a, — o
(34)
For simplicity, if we take 1, = 0, then we can write
solutions (34) as follows:
) ; 1/(m-n+1)
2A
u(x,t) = I:;Ti((xli x—ét ,
u(x,t)
2
= [Z‘ri (041 + (16A21 (o — (xz))
i=0
1/(m-n+1)
-1 i
><(16A21— [(o, - o)) (x — )] > ] ,
) 1/(m-n+1)
’t = .
u(xt) I:;)T'<a2 exp [B, (x —ct) 1) ]
5 1/(m-n+1)
t) =
u(xt) = |:12T( expB(x—ct) 1)]
)= | 3o~ 200, 0~ )
x (204 — 0y = 03 + (o3 — )
) 1/(m-n+1)
xcosh [C, (x—ct)])l)l] ,
2
u(x,t) = [Zfi (“2 +((ag — ) (o4 — )
i=0
x ((“1 -ay) sn’ (¢.1)
; 1/(m-n+1)
-1
— } ,
(35)

where B, = (a; — ay)/2A,, C; = /(o) — ) (e, — 03)/2A,
@1 = (Vo =)o, — ) /4A ) (x = ct), I} = (o — a3) (et —
ay)/ (o —az) (e, —ey), and ¢ = —2ané, 7, /(m+1)(m+n+1)E,.
Here, A, is the amplitude of the soliton, while c is the velocity
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and B, and C, are the inverse widths of the solitons. Thus,we  yhere A, = \/—bn(l +m)(1+m+n)/2aty(1+m—n)>. Integrat-
can say that the solitons exist for 7; > 0.

ing (38), we obtain the solutions to (1) as follows:

Case 3. If we takee = 0,0 = 3, and 8 = 5, then

(Vl)z = (Tl +27,I + 3T3F2)2
) (ET+EI+E+ ETP+ET+E))  (36)

x ((0)71’

where &5 #0 and (, # 0. Respectively, solving the algebraic
equation system (9) yields

& (122 - 4111'3) (21'23 - 977,75 + 20/ (72 - 31'113)3)

%= 8175 :
& (41';" + 91,157, ~ 10877 72 +47,\| (12 - 31173)3>
&= 81t; '
& <—11123 +637,1,73 — 2\(72 - 31113)3>
%= 2713 ’
£ - &s (722 + 77173) £ = 5857,
’ 372 ’ I
¢ = 9bn(m+1)(m+n+1)&
0 2aty(m—-n+ 1)?
21 - 911,15 + 2 (22 - 31,15)°
Ty = — P >
2715
T =T T, =T
T3 =13 &5 = &s»

8an\/(72 - 31,1,)°

T2 mA ) (man+ 2

(37)
Substituting these results into (6) and (10), we get
= (17— 1p)
_ 34, J ( (dr)
(38)
X (FS + €—41"4 + 5—31“3
& &s
-1/2
+§F2+E—1F+@> )
& & &

24
+(n-np) = ~——,

(T- “1)3

3A, arctanh [\/(F —ay) /(o) — 0‘2)]

3/2

+(1n-1p) =

(@) — &)
3AT -y
(@ — ) (T - “1),

6A, arctan [\/(F —ay)/ (e - 0‘2)]

3/2

o > oy,

+(n—1) =-

(0 — )
6A,

VI —ay (o — 0‘2),

6A, arctanh [\/(I‘ —as) /(o — 0‘3)]

x —

x( 1 1 >
Voo —a -/’

a > o, >,

+(n—1ny) =

+ (11— 1)
64,

VI —ay (“1 - 0‘2) (“1 - 0‘3)
x [T - ) (=) +i (B (o)) - F (1))

where

where

(39)
®
E(p)l) = .[o \1 - Bsin*y dy,
Py = arcsin\/ L=
i >
%~
2= s )
P -as (40)
+ (1= 1)
—GiA,
= (F(p])-m(pn1)),
Vo = (g = o)
o> o> g > Ay,
g03=—arcsin\](x3_“2, lgz—az_%,
- a -
2 2~ &3 (41)
6%

n= .
x; — &3



Also a4, &,, as, &y, and a are the roots of the polynomial
equation

i G Ho &l &
r°+ £5F +€5F +€51“ +ESI“+E5

Case 4. If wetakee = 1,8 = 1,and 6 = 4, then

() -

where &, #0 and {; #0. Respectively, solving the algebraic
equation system (9) yields

=0. (42)

Tf (£4F4 + 5P+ 2+ 6T+ Eo)
Go+ T )

(43)

ote (M +2a(1 +m—n)* (20,7, + (:011))
bn(1+m)(1+m+n) 1}

>

0=

53 = f3>

2a(1 +m - n)*{; 1,
bn(l+m)(1+m+n)

& = (10(4a(1+m n)* CITO

54:_

+ 20y, (M + 2a(1 +m —n)’{ry)
+0,70 (M +8a(1 + m —n)*(y1,)))

x(bn(t+m) 1 +men ), (44)

¢, = (6a(1 +m-n) {1,
+ 20,1, (M +2a(1+m- n)ZCOTI)

oy (M 21 =)

X (bn(l +m) (1 +m+n) Clrf)_l,

(o = Co’ Cl = (1’
Ty = Tp» T =T

n (M +2a(l +m-n)* (30,75 + COTI))

(1+m)(1+m+n)(1+m-n)(,

where M = bn(1 +m)(1 + m + n)&;. Substituting these results
into (6) and (10), we get

+ (1 —1)

)
NERCIRNES NG
§
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where A; = \/bn(l +m)(1 +m+n)/2ar;(1+m - n)%. Inte-
grating (45), we obtain the solution to (1) as follows:

&
s \j{O + G0y
Qo+l
x arctanh |:\] —(00+ (11061 ]

A, (+(¢ T
-a G '

+(n—1) =-

24,
x, — &

y <_\j(o +CC11 %

x arctanh [\/ M ] (46)

Go+8 oy

+ \/Co + {0y

G+G T
X arctanh [\j—% s ] ) >

+ (11— 1) = 24,5
(T-a)(§+¢ 1)
(1(1“ “2)

+irJo; —a, (E (¢,1)—F (¢,1)) > »

+(n-no) =

where

_ . \j G (o = T)
@, = —arcsin ,

o + Gy

Go + (i
po _Sotoin (47)
‘o ¢ (“1 “2)

+(n-1p) =

24 p ()
V& — o

where

(p5=arcsin[\locz_(x1 ],
I'-o

2= Qo + Gy
> G (0‘1‘0‘2))

~2iA,

(2~ ) \/51 (Co + 1)

+(n-mno) =
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x (& (F(p,1) =7 (¢ m.1))
+01 (o F (9, 1) — eprt (9, 1)),

(48)
where
g = —arcsin \j%>
O —
1\ (49)
P= e (“2_“3) - ¢ (“2_0‘1)
6 Go + oy ’ ! Go+ i, '

Case 5. If wetakee = 1,8 = 2,and 0 = 5, then

(V,)z _ (r + 21'21")2 (Esrs +ET+ET + ET + ET + 50)
- G+¢r ’
(50)

where & #0 and (; #0. Respectively, solving the algebraic
equation system (9) yields

_ Tg (=287, +&,1))
S=—""75—"",

53

T, (2541112 +& (—4112 + 1012))

El = Tg
&, (Tf + 21'012) -2& (113 + TOTITZ)
52 = ‘[’3 >
2
_355712 + 21, (&579 + &417)
53 = 2 >
2
(51)
=2bn(1+m) (1 +m+n) (&1, — 2&57))
(0 = 2 o >
a(l+m—n)'ty
7 = 2bn(1+m) (1 +m+n)&
! a(l +m—n)’1?
54 = 647 &5 = 55’
Ty = Tp» T, =T, T, =T,
an (Tf - 41’012)
20+m(+m+n)T,
Substituting these results into (6) and (10), we get
+(1-1m) = Ay
X J ( <F + @)
G
52
><<I“5+é1“4+§—31“3 52
5 5
-1 1/2
+ E—21“2+ €—1F+i) ) dr,
& & &

9

where A, = \/—an(l +m)(1+m+n)/at?(1 +m - n)’,
Integrating (52), we obtain the solution to (1) as follows:

TR T p—— ((0+Qr>”i

3VE (Go + o)\ T—ey
+ (1= 110)
_ —Ay (G + Gioy)
2(a; - “2)3/2 G1 (Go +Gyoy)

xlnl(r—(xl)

X (¢ (T + oy — 2a)

A6+ D) o+ Ey0q) (T-ay) (o —a)
+{, (2P — 0, (T + ;)|
) A, \](¢0+clr) (T-a,)
(o —a) (T-ar)) 4 ’
+ (17 - 1)

24, \/COHHF
_(0‘1_0‘2) zl(r_‘xl)

_ 24, \jco + 0o

(o - “2)3/2 G

X arctan [\/(F —a;) (§ + ) ]
(e —a) (G + D) |

o>,

+ (=)
_ A, \jco“LCl“z
o —as \ G (a — o)
xln|(txz—F)

X (§o (T + oy — 203)

+2\/(co+51r) (Got81a) (T-a3) (ay—3)

+( (2Ta — o (T + “2)))_1|
Ay

o) — &3

Go t Gy
* \](1 (2 — ;)

xln'(CO (T + o, - 2a3)

#29/(8 + 4D) (G + G ) (T - ats) (@ - a3)



10
+ (2T — a5 (T +ay)))
X (F—ocz)_l', o > > o,
24,
+(n-1) = P
ot i
) \/(1 (“1 - )E(GD,Z),
a > a, > o,
(53)
where
¢, = arcsin \j(r - ;) (o — ;)
’ (r_“l)(“z_%),
2= (= 0y) (G + §yety)
7 (a1 =) (G +Gra)
(1= 1o)
_ 2A, (o, — aty) (54)
(o) = 0q) (o3 — aty) \/(1 (o = a3) (Go + Gyty)
L -0y
% (({0 +<“1 )_(:23 o )T[((p,i/l,l)
(Go +Cyoy) (g — )
! ay — 0y F((p,l)),
where

@, = arcsin \/(F ~ ;) (o, — ;)
’ (r_“l)(“z_%)’

(0 — ) (G + §ye0y)
(0 — ) (G + Grax3)’ (55)

(o — ) (05 — )

(2 — o) (o) — 0‘4),

I =

n, =—

>0y > o> o

4. Discussion

Thus we introduce a more general extended trial equation
method for nonlinear partial differential equations as follows.

Step 1. Extended trial equation (6) can be reduced to the
following more general form:
B i
_Ad) _ Yico Tl
B(T) Z;‘:O wjl"f’

(56)

where

OI)  EI%+ -+ ET+E,

"2 _
() =am= YI) T+ + T+

(57)
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Here, 1 (i:O,...,S),wj (j=0,...
(,(0=0,...

)#))Ec (C = 0,...,6), and
,€) are the constants to be specified.

Step 2. Taking trial equations (56) and (57), we derive the
following equations:

! ’ 2
() - o) (A" (BT -AI)B () )
¥ () B4 (D)

u" = (A"(M B[ - A B ()
< {(@" () ¥ () - @) ¥ (1) B()
~40 (D) ¥ (1) B' (D)}
+2® (I) ¥ (I) B(T) (A" () B(I) - A(T) B" ()

x (2B° ¥ (D))
(59)

. . n
and other derivation terms such as u'" .

Step 3. Substituting v, u", and other derivation terms into
(5) vields the following equation:

Q@) =0 +-+-+0,T+0,=0. (60)

According to the balance principle we can determine a
relation of 0, ¢, 8, and p.

Step 4. Letting the coefficients of Q(T') all be zero will yield
an algebraic equations system g; = 0 (i = 0,...,s). Solving
this equations system, we will determine the values 7, ... 75;
Wgs - +» W3 &g, -, §gsand Gy, .,

Step 5. Substituting the results obtained in Step 4 into (57)
and integrating (57), we can find the exact solutions of (3).

5. Conclusions and Remarks

In this study, we proposed an extended trial equation method
and used it to obtain some soliton and elliptic function
solutions to the generalized K(m,n) equation. Otherwise,
we discussed a more general trial equation method. The
proposed method can also be applied to other nonlinear
differential equations with nonlinear evolution.
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