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We study a new kind of asymptotic behaviour near 𝑡 = 0 for the nonautonomous system of two linear differential equations:
x󸀠(𝑡) = 𝐴(𝑡)x(𝑡), 𝑡 ∈ (0, 𝑡

0
], where the matrix-valued function 𝐴 = 𝐴(𝑡) has a kind of singularity at 𝑡 = 0. It is called rectifiable

(resp., nonrectifiable) attractivity of the zero solution, whichmeans that ‖ x(𝑡)‖
2
→ 0 as 𝑡 → 0 and the length of the solution curve

of x is finite (resp., infinite) for every x ̸= 0. It is characterized in terms of certain asymptotic behaviour of the eigenvalues of 𝐴(𝑡)
near 𝑡 = 0. Consequently, the main results are applied to a system of two linear differential equations with polynomial coefficients
which are singular at 𝑡 = 0.

1. Introduction

Weare concernedwith the two-dimensional nonautonomous
linear differential systems:

𝑑x
𝑑𝑡

= 𝐴 (𝑡) x for 𝑡 ∈ (0, 𝑡
0
] , x (𝑡

0
) = x
0
∈ R
2
, (1)

where 𝑡
0
> 0, and 𝐴 = 𝐴(𝑡), 𝐴 : (0, 𝑡

0
] → M

2
is a matrix-

valued function such that 𝐴 ∈ 𝐶
1
((0, 𝑡
0
];M
2
), where M

2

denotes the space of all 2×2 real matrices. A solution of linear
system (1) is a function x = x(𝑡), x : (0, 𝑡

0
] → R2 such that

x ∈ 𝐶1((0, 𝑡
0
],R2).

In appendix of the paper, we show, there exists a unique
solution x of linear system (1). By the uniqueness of solution
x of (1), it is clear that if x

0
= (0, 0), then x(𝑡) = (0, 0) for all

𝑡 ∈ (0, 𝑡
0
]. It is called the zero solution of linear system (1).

The zero solution of linear system (1) is said to be attractive
as 𝑡 → 0 if for every x

0
∈ R2 the corresponding solution x of

(1) satisfies ‖x(𝑡)‖
2
→ 0 as 𝑡 → 0, where ‖ ⋅ ‖

2
denotes the

standard Euclidean norm on R2. Since we are dealing with
the attractive zero solution of (1), from x ∈ 𝐶

1
((0, 𝑡
0
],R2)

we conclude that x ∈ 𝐶([0, 𝑡
0
],R2) ∩ 𝐶1((0, 𝑡

0
],R2). For a

continuous function x : [0, 𝑡
0
] → R2, let Γx denote a curve

in R2 corresponding to x determined by
Γx = x ([0, 𝑡

0
]) = {(𝑥, 𝑦) ∈ R

2
: 𝑥 = 𝑥 (𝑡) , 𝑦 = 𝑦 (𝑡)} , (2)

where (𝑥(𝑡), 𝑦(𝑡)) ≡ x(𝑡). It is often said that Γx is parame-
trized by x.

Let x ∈ 𝐶([0, 𝑡
0
];R2). The curve Γx ⊆ R2 is said to

be a Jordan curve if x is injective (one-to-one) on [0, 𝑡
0
].

Hence, Γx is nonself-intersecting; it has two ends and it is a
compact connected set in R2. In appendix of the paper, see
Theorem A.3; we give some simple sufficient conditions on
the matrix-valued function 𝐴 = 𝐴(𝑡) such that the solution
curve Γx of every nontrivial solution of (1) is a Jordan curve in
R2. The assumption that Γx is a Jordan curve is important for
the process of measuring the length of Γx (the rectification of
Γx) as follows. If Γx is a Jordan curve, then the length of Γx is
denoted by length (Γx) and it is defined as usual by (see [1–3])

length (Γx) = sup {
𝑚

∑

𝑘=1

󵄩󵄩󵄩󵄩
x (𝑡
𝑘
) − x (𝑡

𝑘−1
)
󵄩󵄩󵄩󵄩 2
: 𝑚 ∈ N,

0 = 𝑡
𝑚
< ⋅ ⋅ ⋅ < 𝑡

1
< 𝑡
0
} ,

(3)

where the supremum is taken over all finite dissections 0 =
𝑡
𝑚
< ⋅ ⋅ ⋅ < 𝑡

1
< 𝑡
0
of the interval [0, 𝑡

0
].
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Definition 1. The zero solution of linear system (1) is said to
be rectifiable (resp., nonrectifiable) attractive as 𝑡 → 0; if for
every x

0
∈ R2 \ {0} such that the Γx of corresponding solution

x of (1) is a Jordan curve inR2, one has ‖x(𝑡)‖
2
→ 0 as 𝑡 → 0

and length (Γx) < ∞ (resp., length (Γx) = ∞).

Let 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡), 𝑡 ∈ (0, 𝑡
0
], be two complex

conjugate eigenvalues of𝐴(𝑡). Themain purpose of the paper
is to characterize attractivity, rectifiable and nonrectifiable
attractivity, as 𝑡 → 0 of the zero solution of system (1)
in the terms of regular and singular asymptotic behaviour
of 𝐴(𝑡) near 𝑡 = 0; see Theorems 2 and 3. It is illustrated
on a simple two-dimensional linear differential systems with
the polynomial coefficients; see Theorem 4. The key point of
proofs of the main results is an asymptotic solution formula
for system (1) obtained by its asymptotic integration near
𝑡 = 0; see Section 3. The proofs of the main results are
given in Sections 4, 5, and 6. Such a kind of topics has
been considered for the first time in [4] but only in the case
of the so-called integrable systems (systems that allow all
solutions in explicit forms), where the asymptotic integration
near 𝑡 = 0 is not required. About the asymptotic integration
near 𝑡 = ∞ of differential equations and systems, we refer
reader to [5–12]. On several asymptotic properties of two-
dimensional differential systems near 𝑡 = ∞, let us see, for
instance, [13–18]. Recently interest for studying differential
equations and systems on compact (finite time) intervals is
rapidly increasing because of its application in atmosphere,
fluid, and ocean dynamics and in biological science; see, for
instance, [19–21] and references therein.

2. Main Results and Consequences

Let for each 𝑡 ∈ (0, 𝑡
0
] the matrix elements of𝐴(𝑡) be denoted

by (𝑎
𝑖,𝑗
(𝑡))
𝑖,𝑗≤2

. In the paper, we suppose the following kind of
singular asymptotic behaviour of 𝐴(𝑡) near 𝑡 = 0:

lim
𝜀→0

∫

𝑡0

𝜀

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
(𝑡
2
𝑎
𝑖,𝑗
(𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡 < ∞, 𝑖, 𝑗 ∈ {1, 2} ,

lim
𝑡→0

[𝑡
2
𝐴 (𝑡)] = 𝐴

0
,

(4)

where 𝐴
0
is a constant matrix having two complex conjugate

eigenvalues.
Some essential consequences of (4) are presented in

Section 3. Since the eigenvalues of 𝐴(𝑡) are continuous on
𝑡 ∈ (0, 𝑡

0
], by (4) we may assume that 𝐴(𝑡) has two complex

conjugate eigenvalues 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡) for 𝑡 ∈ (0, 𝑡
0
].

The first two main results of the paper are the following
theorems.

Theorem 2. Let (4) be satisfied, and let 𝜆(𝑡) = Re 𝜆(𝑡) ±
𝑖 Im 𝜆(𝑡), 𝑡 ∈ (0, 𝑡

0
], be two complex conjugate eigenvalues

of 𝐴(𝑡). Assume that Re 𝜆(𝑡) ≥ 0 near 𝑡 = 0. Then the zero
solution of linear system (1) is attractive as 𝑡 → 0 if and only
if

lim
𝑡→0

∫

𝑡0

𝑡

Re 𝜆 (𝑠) 𝑑𝑠 = ∞. (5)

Theorem 3. Let (4) be satisfied, and let 𝜆(𝑡) = Re 𝜆(𝑡) ±
𝑖 Im 𝜆(𝑡), 𝑡 ∈ (0, 𝑡

0
], be two complex conjugate eigenvalues

of 𝐴(𝑡). Assume that Re 𝜆(𝑡) ≥ 0 near 𝑡 = 0, and that (5)
holds. Then the zero solution of linear system (1) is rectifiable
attractive as 𝑡 → 0 if and only if

Im 𝜆 (𝑡) 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

∈ 𝐿
1
(0, 𝑡
0
) . (6)

Previous theorem allows us to study the rectifiable and
nonrectifiable attractivity for the following model system
with polynomial singular coefficients near 𝑡 = 0:

𝑥
󸀠

(𝑡) = 𝑒 (𝑡) 𝑡
−𝑝
𝑥 (𝑡) + 𝑓 (𝑡) 𝑡

−2
𝑦 (𝑡) ,

𝑦
󸀠

(𝑡) = −𝑔 (𝑡) 𝑡
−2
𝑥 (𝑡) + ℎ (𝑡) 𝑡

−𝑞
𝑦 (𝑡) , 𝑡 ∈ (0, 𝑡

0
] ,

(7)

where the parameters 𝑝, 𝑞 ∈ R and coefficients 𝑒, 𝑓, 𝑔, ℎ ∈

𝐶([0, 𝑡
0
]) ∩ 𝐶

1
((0, 𝑡
0
]) satisfy, respectively,

1 ≤ max {𝑝, 𝑞} < 2, (8)

𝑓 (0) 𝑔 (0) > 0, 𝑒 (𝑡) > 0, ℎ (𝑡) > 0, 𝑡 ∈ [0, 𝑡
0
] , (9)

{{{{{{{{

{{{{{{{{

{

∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨
𝑓
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < ∞, ∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨
𝑔
󸀠
(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 < ∞,

∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
(𝑡
2−𝑝
𝑒 (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡 < ∞,

∫

𝑡0

0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝑡
(𝑡
2−𝑞
ℎ (𝑡))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑡 < ∞.

(10)

According to (8), (9), and (10), we will show that the model
system (7) satisfies all assumptions of Theorem 3. Hence, we
are able to derive and prove the following conditions for the
rectifiable and nonrectifiable attractivity of the zero solution
of model system (7).

Theorem 4. Let (8), (9), and (10) be fulfilled.

(i) If max {𝑝, 𝑞} > 1, then the zero solution of (7) is
rectifiable attractive as 𝑡 → 0.

(ii) If max {𝑝, 𝑞} = 1, then the zero solution of (7) is
rectifiable attractive as 𝑡 → 0 provided that one of the
following conditions is satisfied:

𝑝 = 1, 𝑞 < 1, 𝑒 (𝑡) > 2; (11)

𝑝 < 1, 𝑞 = 1, ℎ (𝑡) > 2; (12)

𝑝 = 1, 𝑞 = 1, 𝑒 (𝑡) + ℎ (𝑡) > 2. (13)

(iii) If max {𝑝, 𝑞} = 1, then the zero solution of (7) is
nonrectifiable attractive as 𝑡 → 0 provided that one
of the following conditions is satisfied:

𝑝 = 1, 𝑞 < 1, 𝑒 (𝑡) ≤ 2; (14)

𝑝 < 1, 𝑞 = 1, ℎ (𝑡) ≤ 2; (15)

𝑝 = 1, 𝑞 = 1, 𝑒 (𝑡) + ℎ (𝑡) ≤ 2. (16)
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As a consequence of previous theorem, we realize that the
rectifiable and nonrectifiable attractivity of the zero solution
of model system (7) depends on the order of growth of
singular behaviour of coefficients near 𝑡 = 0 determined by
parameters 𝑝 and 𝑞. Let us remark that if, besides (8), (9), and
(10), it is supposed that 𝑒(𝑡) ≡ ℎ(𝑡), 𝑓(𝑡) ≡ 𝑔(𝑡), and 𝑝 = 𝑞,
then system (7) is integrable, that is, all solutions of system (7)
are explicitly determined, see appendix of the paper. In such
a particular case of (7), Theorem 4 can be explicitly verified.

Remark 5. We suggest reader to consider the rectifiable and
nonrectifiable attractivity of the zero solution of system (7)
in the case of max {𝑝, 𝑞} = 2. It is required to assume that
4𝑓(0)𝑔(0) − 𝑒

2
(0) > 0 if 𝑝 = 2 > 𝑞 as well as 4𝑓(0)𝑔(0) −

ℎ
2
(0) > 0 if 𝑞 = 2 > 𝑝 and 4𝑓(0)𝑔(0) − (𝑒(0) − ℎ(0))2 > 0 if

𝑝 = 𝑞 = 2.

Themost difficult point of this paper is to derive andprove
the nonrectifiable attractivity of the zero solution of systems
(1) and (7); see Sections 3 and 4. On the (non)rectifiability
of the solution curve of scalar second-order differential
equations, we refer reader to [22–27].

3. Some Asymptotic Properties Near 𝑡 = 0

As a consequence of the main assumption (4), we derive in
this section some important asymptotic properties of 𝐴(𝑡) as
well as of its eigenvalues and solutions of system (1), which
will be used in the next sections in the proof of the main
results. Since the eigenvalues of𝐴(𝑡) are continuous on (0, 𝑡

0
],

by (4) we may assume that 𝐴(𝑡) has two complex conjugate
eigenvalues 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡), 𝑡 ∈ (0, 𝑡

0
].

Lemma 6. Let (4) be satisfied. Then the eigenvalues of 𝐴(𝑡)
satisfy

‖𝐴 (𝑡)‖ ∼ | Im 𝜆 (𝑡)| ∼ 𝑡
−2 as 𝑡 󳨀→ 0, (17)

Im 𝜆 (𝑡) ̸= 0 near 𝑡 = 0, (18)

where 𝑓(𝑡) ∼ 𝑔(𝑡)means that 𝑓(𝑡)/𝑔(𝑡) → 1 as 𝑡 → 0.

Proof. Let 𝑎
𝑖,𝑗

= 𝑎
𝑖,𝑗
(𝑡), 𝑎

𝑖,𝑗
∈ 𝐶
1
((0, 𝑡
0
]), be matrix

elements of 𝐴(𝑡). Also, let 𝑎0
𝑖,𝑗

and 𝜆
0
= Re 𝜆

0
± 𝑖 Im 𝜆

0
be

matrix elements and eigenvalues of 𝐴
0
, respectively, where

𝐴
0
appears in (4). Rewriting (4) in terms of matrix elements

and eigenvalues, we get

lim
𝑡→0

[𝑡
2
𝑎
𝑖,𝑗
(𝑡)] = 𝑎

0

𝑖,𝑗
, Im 𝜆

0
̸= 0. (19)

Hence, we can conclude the following:

lim
𝑡→0

[𝑡
2

| Im 𝜆 (𝑡)| ]

=
1

2
lim
𝑡→0

[𝑡
2√−(𝑎

1,1
(𝑡) − 𝑎

2,2
(𝑡))
2

− 4𝑎
1,2
(𝑡) 𝑎
2,1
(𝑡)]

=
1

2
lim
𝑡→0

√−(𝑡
2
𝑎
1,1
(𝑡) − 𝑡

2
𝑎
2,2
(𝑡))
2

− 4𝑡
2
𝑎
1,2
(𝑡) 𝑡
2
𝑎
2,1
(𝑡)

=
1

2

√−(𝑎
0

1,1
− 𝑎
0

2,2
)
2

− 4𝑎
0

1,2
𝑎
0

2,1
=
󵄨󵄨󵄨󵄨
Im 𝜆
0

󵄨󵄨󵄨󵄨
̸= 0.

(20)

It proves that |Im 𝜆(𝑡)| ∼ 𝑡
−2 as 𝑡 → 0. Hence (18) and

the second claim in (17) hold. In order to complete (17), it
rests to show that ‖𝐴(𝑡)‖ ∼ 𝑡

−2 as 𝑡 → 0. In fact, from
the assumption Im 𝜆

0
̸= 0, we observe that for at least one

matrix element 𝑎0
𝑖,𝑗

we have 𝑎0
𝑖,𝑗

̸= 0 and, therefore, ‖𝐴
0
‖ ̸= 0.

Moreover, since every matrix norm is a continuous function,
from (4) we especially obtain lim

𝑡→0
[𝑡
2
‖𝐴(𝑡)‖] = ‖𝐴

0
‖ ̸= 0.

It completes the proof of (17).

As the main consequence of (4) we have the following
asymptotic formula near 𝑡 = 0 for all solutions x of linear
system (1):

x (𝑡) = 𝑒−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

[h
1
(𝑡) cos(∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠)

+h
2
(𝑡) sin(∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠)] ,

(21)

where h
1
= h
1
(𝑡), h
2
= h
2
(𝑡), h
𝑖
: (0, 𝑡
0
] → R2 and there are

c
1
, c
2
∈ R2 such that

lim
𝑡→0

h
𝑖
(𝑡) = c

𝑖
̸= 0, 𝑖 ∈ {1, 2} . (22)

It is the subject of the next lemma.

Lemma 7. Let 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡) be two eigenvalues
of 𝐴(𝑡). If 𝐴(𝑡) satisfies (4), then for every solution x of linear
system (1) with x

0
̸= {0} there exist two functions h

𝑖
(𝑡) and two

constants c
1
, c
2
∈ R2 such that (21) and (22) are fulfilled.

Proof. Let 𝐴(𝑡) be a matrix satisfying all assumptions of this
lemma. Let 𝐵(𝜏) = (𝑏

𝑖,𝑗
(𝜏)
𝑖,𝑗≤2

) be a newmatrix depending on
a new variable 𝜏 := 1/𝑡 defined by

𝐵 (𝜏) = −𝜏
−2
𝐴(𝜏
−1
) ∀ 𝜏 ≥ 𝜏

0
:=
1

𝑡
0

. (23)

Then 𝑏
𝑖,𝑗

∈ 𝐶
1
([𝜏
0
,∞)). Let 𝐴

0
be a constant matrix

determined in (4). If 𝐵
0
is a newmatrix defined by 𝐵

0
= −𝐴

0
,

then from (4), (23), and 𝑡 = 1/𝜏, we conclude

lim
𝑀→∞

∫

𝑀

𝜏0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝜏
𝑏
𝑖,𝑗
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜏 < ∞, 𝑖, 𝑗 ∈ {1, 2} ,

lim
𝜏→∞

𝐵 (𝜏) = 𝐵
0
,

(24)

where 𝐵
0
is a constant matrix having two complex conjugate

eigenvalues.
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Also, the eigenvalues 𝜇
1
(𝜏), 𝜇

2
(𝜏) of 𝐵(𝜏) and 𝜆

1
(𝑡) =

Re 𝜆(𝑡) + 𝑖 Im 𝜆(𝑡), 𝜆
2
(𝑡) = Re 𝜆(𝑡) − 𝑖 Im 𝜆(𝑡) of 𝐴(𝑡) are

obviously related by the equality

𝜇
𝑖
(𝜏) =− 𝜏

−2
𝜆
𝑖
(𝜏
−1
)

= − 𝜏
−2
[Re (𝜆 (𝜏−1)) ± 𝑖 Im (𝜆 (𝜏

−1
))] , 𝑖 = 1, 2,

(25)

and hence,

Re (𝜇
1
(𝜏) − 𝜇

2
(𝜏)) = 0 ∀ 𝜏 ≥ 𝜏

0
. (26)

Putting 𝑡 = 1/𝜏 into system (1) and denoting by

w (𝜏) := x (1
𝜏
) for 𝜏 ≥ 𝜏

0
, (27)

we obtain the equivalent system of (1)

w󸀠 (𝜏) = 𝐵 (𝜏)w (𝜏) for 𝜏 ≥ 𝜏
0
, (28)

where matrix 𝐵(𝜏) is defined in (23). For system (28), we
will use the next generalized Matell’s theorem appearing as
Theorem 11 in Coppel’s book [5, Chapter 4] andTheorem 6.5
in Kiguradze’s monograph [7] (see also [12, Theorem 7] and
[8]).

Theorem 8 (see [7]). Let 𝜇
1
= 𝜇
1
(𝜏) and 𝜇

2
= 𝜇
2
(𝜏),

𝜇
1
, 𝜇
2
: [𝜏
0
,∞) → C be two eigenvalues of an arbitrary

2×2matrix 𝐵(𝜏), 𝜏 ∈ [𝜏
0
,∞), with the matrix elements 𝑏

𝑖,𝑗
(𝜏)

which are absolutely continuous functions on every compact set
𝐼 ⊂ [𝜏

0
,∞) and

∫

∞

𝜏0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑

𝑑𝜏
𝑏
𝑖,𝑗
(𝜏)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝜏 < ∞, 𝑖, 𝑗 ∈ {1, 2} . (29)

Let 𝑐 > 0 be a constant such that

∫

𝜏∗

𝜎∗

Re (𝜇
1
(𝜏) − 𝜇

2
(𝜏)) 𝑑𝜏 ≤ 𝑐, 𝜏

0
≤ 𝜎
∗
< 𝜏
∗
, 𝑜𝑟

∫

∞

𝜏0

Re (𝜇
1
(𝜏) − 𝜇

2
(𝜏)) d𝜏 = ∞,

∫

𝜏∗

𝜎∗

Re (𝜇
1
(𝜏) − 𝜇

2
(𝜏)) 𝑑𝜏 ≥ − 𝑐, 𝜏

0
≤ 𝜎
∗
< 𝜏
∗
.

(30)

Let 𝐵(𝜏) → 𝐵
0
as 𝜏 → ∞, where 𝐵

0
is a constant matrix

having two different eigenvalues.Then linear differential system
(28) has a fundamental system of solutions w

1
(𝜏) ∈ C2 and

w
2
(𝜏) ∈ C2 such that

lim
𝜏→∞

[w
1
(𝜏) 𝑒
−∫
𝜏

𝜏0

𝜇
1
(𝜎)𝑑𝜎

] = b
1
,

lim
𝜏→∞

[w
2
(𝜏) 𝑒
−∫
𝜏

𝜏0

𝜇
2
(𝜎)𝑑𝜎

] = b
2
,

(31)

where b
1
, b
2
∈ C2 are two eigenvectors of constant matrix 𝐵

0
.

Now, with the help of (24) and (26), it is easy to check
that the matrix 𝐵(𝜏) defined in (23) and its eigenvalues 𝜇

1
(𝜏)

and 𝜇
2
(𝜏) defined in (25) satisfy all required assumptions

of Theorem 8. Hence, by Theorem 8, we observe that linear
system (1) has a fundamental system of solutions x

1
(𝑡) and

x
2
(𝑡) satisfying

lim
𝑡→0

[x
1
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆1(𝑠)𝑑𝑠

] = b
1
,

lim
𝑡→0

[x
2
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆2(𝑠)𝑑𝑠

] = b
2
.

(32)

Indeed, from (31) and using 𝜏 = 1/𝑡, 𝜏
0
= 1/𝑡
0
, (25), (27), and

𝜎 = 1/𝑠, we obtain

b
1
= lim
𝜏→∞

[w
1
(𝜏) 𝑒
−∫
𝜏

𝜏0

𝜇
1
(𝜎)𝑑𝜎

]

= lim
𝑡→0

[w
1
(
1

𝑡
) 𝑒
−∫
1/𝑡

1/𝑡0

𝜇
1
(𝜎)𝑑𝜎

]

= lim
𝑡→0

[w
1
(
1

𝑡
) 𝑒
∫
1/𝑡

1/𝑡0

𝜎
−2
𝜆1(𝜎
−1
)𝑑𝜎

]

= lim
𝑡→0

[x
1
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆1(𝑠)𝑑𝑠

] .

(33)

Analogously, the second equality in (32) can be proved. Now,
from (32) we particularly obtain

lim
𝑡→0

[x
1
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆1(𝑠)𝑑𝑠

− b
1
] = 0,

lim
𝑡→0

[x
2
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆2(𝑠)𝑑𝑠

− b
2
] = 0.

(34)

Denoting

g
1
(𝑡) = x

1
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆1(𝑠)𝑑𝑠

− b
1
,

g
2
(𝑡) = x

2
(𝑡) 𝑒
∫
𝑡0

𝑡
𝜆2(𝑠)𝑑𝑠

− b
2
,

(35)

from (34), we get lim
𝑡→0

g
𝑖
(𝑡) = 0, 𝑖 ∈ {1, 2} and near 𝑡 = 0,

x
1
(𝑡) = (b

1
+ g
1
(𝑡)) 𝑒
−∫
𝑡0

𝑡
𝜆1(𝑠)𝑑𝑠

,

x
2
(𝑡) = (b

2
+ g
2
(𝑡)) 𝑒
−∫
𝑡0

𝑡
𝜆2(𝑠)𝑑𝑠

.

(36)

Since 𝜆
1
(𝑡) = Re 𝜆(𝑡) + 𝑖 Im 𝜆(𝑡), 𝜆

2
(𝑡) = Re 𝜆(𝑡) − 𝑖 Im 𝜆(𝑡),

b
𝑖
∈ C2 and g

𝑖
: (0, 𝑡

0
] → C2, previous statements verify

the desired asymptotic formula (21).The statement (22) holds
because b

1
and b
2
are two eigenvectors and hence, b

𝑖
̸= 0.

Now, according to the asymptotic formula (21), we are
able to proveTheorem 2.

Proof of Theorem 2. Because of (4) and Lemmas 6 and 7, we
can use (17) and (18) and the asymptotic solution’s formula
(21)-(22).

At first, we suppose that (5) holds. Taking the norm on
both sides in (21) and using (22), we obtain the upper estimate

‖x (𝑡)‖
2
≤ 𝑐𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠 near 𝑡 = 0 (37)



International Journal of Differential Equations 5

with some constant 𝑐 > 0. Now putting the limit as 𝑡 → 0

on both sides in (37), and using (5), we get ‖𝑥(𝑡)‖
2
→ 0 as

𝑡 → 0. Thus, it is shown that the zero solution of system (1)
is attractive as 𝑡 → 0 provided that (5) holds.

The proof of the reverse claim is slightly complicated.
Suppose that

‖x (𝑡)‖
2
󳨀→ 0 as 𝑡 󳨀→ 0. (38)

Next, from (17), and (18), we especially obtain

lim
𝑡→0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∞. (39)

Remarking that in (21) and (22), we use the following
notations:

x (𝑡) = (𝑥 (𝑡) , 𝑦 (𝑡)) , h
𝑖
(𝑡) = (ℎ

𝑖,1
(𝑡), ℎ
𝑖,2
(𝑡)) ,

c
𝑖
= (𝑐
𝑖,1
, 𝑐
𝑖,2
) , 𝑖 ∈ {1, 2} .

(40)

By (22), at least one of 𝑐
𝑖,1
and 𝑐
𝑖,2
is nonzero. So, for instance,

𝑐
1,1

̸= 0, which together by (22) gives

lim
𝑡→0

󵄨󵄨󵄨󵄨
ℎ
1,1
(𝑡)
󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨
𝑐
1,1

󵄨󵄨󵄨󵄨
> 0. (41)

Now, from (21) and (40), we derive the following inequality:

‖x (𝑡)‖ ≥ ‖x (𝑡)‖

= 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

ℎ
1,1
(𝑡) cos(∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠)

+ℎ
1,2
(𝑡) sin(∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

.

(42)

Next, because of (18) and (39), there is a sequence 𝑡
𝑛
∈ (0, 𝑡

0
],

𝑡
𝑛
→ 0 as 𝑛 → ∞, such that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡0

𝑡𝑛

Im 𝜆 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑛𝜋, 𝑛 ∈ N. (43)

Now, putting 𝑡 = 𝑡
𝑛
into (42) and using (41), (43), and

sin(±𝑛𝜋) = 0, we get the inequality

󵄩󵄩󵄩󵄩
x (𝑡
𝑛
)
󵄩󵄩󵄩󵄩 2
≥

󵄨󵄨󵄨󵄨
𝑐
1,1

󵄨󵄨󵄨󵄨

2
𝑒
−∫
𝑡0

𝑡𝑛
Re 𝜆(𝑠)𝑑𝑠

∀ large 𝑛 ∈ N. (44)

Taking the limit on both sides in previous inequality, with the
help of (38), we conclude that

lim
𝑛→∞

𝑒
−∫
𝑡0

𝑡𝑛
Re 𝜆(𝑠)𝑑𝑠

= 0, (45)

that is,

lim
𝑛→∞

∫

𝑡0

𝑡𝑛

Re 𝜆 (𝑠) 𝑑𝑠 = ∞. (46)

Since Re 𝜆(𝑡) ≥ 0 near 𝑡 = 0, the function ∫ 𝑡0
𝑡
Re 𝜆(𝑠)𝑑𝑠

is continuous (since matrix elements of 𝐴(𝑡) are continuous
functions on (0, 𝑡

0
]) and monotone. Hence, statement (46)

proves (5). Thus, the statement (5) holds provided that the
zero solution of system (1) is attractive.

4. Rectifiable Attractivity of the Zero Solution

Unlike the nonrectifiable attractivity which will be studied in
the Section 5, the rectifiable attractivity of the zero solution is
proved without any essential difficulties. It is because we can
use here the following known result.

Lemma 9. Let Γx be a Jordan curve in R2. Then one has
𝑙𝑒𝑛𝑔𝑡ℎ(Γx) < ∞ if and only if x󸀠 ∈ 𝐿1((0, 𝑡

0
),R2).

For the proof of previous lemma, we suggest reader to
consult the appropriate scalar case shown in [28].

The following theorem derives some properties of 𝐴(𝑡)
and its eigenvalues 𝜆(𝑡) which ensure that the zero solution
of system (1) is rectifiable attractive.

Theorem 10. Let 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡) be two complex
conjugate eigenvalues of 𝐴(𝑡) for 𝑡 ∈ [0, 𝑡

0
]. Assume that (5)

holds. Let every solution x of system (1) satisfies (37). If

‖𝐴 (𝑡)‖ 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

∈ 𝐿
1
(0, 𝑡
0
) , (47)

then the zero solution of (1) is rectifiable attractive as 𝑡 → 0.

Proof. It is clear that the attractivity of the zero solution of
system (1) follows from (5), (21), and (37). Next, by taking the
matrix norm in (1) and using a priori estimate (37), we obtain,
󵄩󵄩󵄩󵄩󵄩
x󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩 2 = ‖𝐴 (𝑡) x (𝑡)‖ 2

≤ ‖𝐴 (𝑡)‖ ‖x (𝑡)‖
2
≤ 𝑐 ‖𝐴 (𝑡)‖ 𝑒

−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

.

(48)

Now, from the assumption (47) and the inequality (48), we
observe that

lim
𝜀→0

∫

𝑡0

𝜀

󵄩󵄩󵄩󵄩󵄩
x󸀠 (𝑡)󵄩󵄩󵄩󵄩󵄩 2𝑑𝑡

≤ lim
𝜀→0

𝑐∫

𝑡0

𝜀

‖𝐴 (𝑡)‖ 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

𝑑𝑡 < ∞.

(49)

Hence, Lemma 9 proves this theorem.

If𝐴(𝑡) admits the asymptotic behaviour given in (4), then
a priori estimate (37) is fulfilled because of the asymptotic
formula (21) and thus, the rectifiable attractivity of the zero
solution of system (1), in such a case, holds without supposing
(37), as follows.

Theorem 11. Let (4) be satisfied, and let 𝜆(𝑡) = Re 𝜆(𝑡) ±
𝑖 Im 𝜆(𝑡) be two complex conjugate eigenvalues of 𝐴(𝑡) for 𝑡 ∈
[0, 𝑡
0
]. Assume that (5) holds. If the condition (47) is fulfilled,

then the zero solution of linear system (1) is rectifiable attractive
as 𝑡 → 0.

Proof. It is clear that all assumptions of Theorem 11 ensure
that Lemma 7 can be applied. Hence, by Lemma 7, that is,
by asymptotic formula (21), one can easily show that a priori
estimate (37) holds for all solutions x of system (1). Thus,
all assumptions ofTheorem 10 are fulfilled. Now,Theorem 10
proves Theorem 11.
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5. Nonrectifiable Attractivity of
the Zero Solution

In this section we study the nonrectifiable attractivity for
linear system (1). Unlike the rectifiable attractivity, the non-
rectifiable attractivity is a more difficult case. It is because
the required property x󸀠 ∉ 𝐿1(0, 𝑡

0
) cannot be derived from

system (1) and therefore, we are not in an opportunity to use
Lemma 9. Hence, instead of Lemma 9, we state and prove the
next new lemma, which plays an essential role in the proof of
the main results of this section.

Lemma 12. Let 𝑢 = 𝑢(𝑡), 𝑢 ∈ 𝐶([0, 𝑡
0
]), and let there be a

sequence 𝑠
𝑛
∈ (0, 𝑡

0
], a number 𝑛

0
∈ N, and two functions

𝜑 = 𝜑(𝑡), 𝑎 = 𝑎(𝑡), 𝑡 ∈ (0, 𝑡
0
], such that

(𝐻
1
) sequence 𝑠

𝑛
is decreasing, 𝑠

𝑛
→ 0 as 𝑛 → ∞ and

𝑢(𝑠
𝑛
)𝑢(𝑠
𝑛+1
) < 0 for all 𝑛 ≥ 𝑛

0
;

(𝐻
2
) function 𝜑(𝑡), 𝜑 ∈ 𝐶1((0, 𝑡

0
]), is strictly monotone near

𝑡 = 0, that is,𝜑󸀠(𝑡) ̸= 0near 𝑡 = 0 and there is a constant
𝑐
2
> 0 such that

󵄨󵄨󵄨󵄨
𝜑 (𝑠
𝑛+1
) − 𝜑 (𝑠

𝑛
)
󵄨󵄨󵄨󵄨
≤ 𝑐
2

∀ 𝑛 ≥ 𝑛
0
; (50)

(𝐻
3
) function 𝑎(𝑡), 𝑎 ∈ 𝐶([0, 𝑡

0
]), is nondecreasing and there

is a constant 𝑐
1
> 0 such that

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
≥ 𝑐
1
𝑎 (𝑠
𝑛
) ∀𝑛 ≥ 𝑛

0
; (51)

(𝐻
4
) lim
𝜀→0

∫
𝑡0

𝜀
𝑎(𝑡)|𝜑

󸀠
(𝑡)|𝑑𝑡 = ∞.

Then the graph

Γ
𝑢
= {(𝑥, 𝑦) ∈ R

2
: 𝑥 = 𝑡, 𝑦 = 𝑢 (𝑡) for 𝑡 ∈ [0, 𝑡

0
]} (52)

of function 𝑢(𝑡) is a nonrectifiable curve in R2.

Proof. Because of (𝐻
1
), there is a sequence 𝑎

𝑛
∈ (𝑠
𝑛+1
, 𝑠
𝑛
) such

that 𝑢(𝑎
𝑛
) = 0 for all 𝑛 ≥ 𝑛

0
and hence we have

0 < ⋅ ⋅ ⋅ < 𝑠
𝑛+1

< 𝑎
𝑛
< 𝑠
𝑛
< 𝑎
𝑛−1

< ⋅ ⋅ ⋅ < 𝑠
𝑛0+1

< 𝑎
𝑛0
< 𝑠
𝑛0
< 𝑡
0
.

(53)

Let 𝑡
𝑛
∈ (0, 𝑡

0
] be a sequence defined by

𝑡
2𝑛−1

:= 𝑠
𝑛
, 𝑡
2𝑛
:= 𝑎
𝑛

for 𝑛 ≥ 1. (54)

Obviously for all𝑚 ≥ 𝑛
0
, the set {0, 𝑡

2𝑚−1
, . . . , 𝑡

2𝑛0−1
, 𝑡
0
}makes

a finite partition of interval [0, 𝑡
0
] and since length(Γ

𝑢
) is a

supremum of all sums∑ |𝑢(𝜏
𝑛
) − 𝑢(𝜏

𝑛−1
)| taken over all finite

partitions {𝜏
𝑛
} of [0, 𝑡

0
]; we conclude that

length (Γ
𝑢
) ≥

󵄨󵄨󵄨󵄨
𝑢 (0) − 𝑢 (𝑡

2𝑚−1
)
󵄨󵄨󵄨󵄨
+

2𝑚−1

∑

𝑛=2𝑛0

󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑛
) − 𝑢 (𝑡

𝑛−1
)
󵄨󵄨󵄨󵄨

+
󵄨󵄨󵄨󵄨󵄨
𝑢 (𝑡
2𝑛0−1

) − 𝑢 (𝑡
0
)
󵄨󵄨󵄨󵄨󵄨

≥

2𝑚−1

∑

𝑛=2𝑛0

󵄨󵄨󵄨󵄨
𝑢 (𝑡
𝑛
) − 𝑢 (𝑡

𝑛−1
)
󵄨󵄨󵄨󵄨
=

𝑚

∑

𝑛=𝑛0

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
.

(55)

Next, let, for instance, 𝜑(𝑡) be strictly decreasing near 𝑡 = 0
(the case when 𝜑(𝑡) is strictly increasing could be analogously
considered). Hence, from (𝐻

2
) and (𝐻

3
), it follows that

𝑚

∑

𝑛=𝑛0

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
≥ 𝑐
1

𝑚

∑

𝑛=𝑛0

𝑎 (𝑠
𝑛
)

≥
𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

𝑎 (𝑠
𝑛
) (𝜑 (𝑠

𝑛+1
) − 𝜑 (𝑠

𝑛
))

=
𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

∫

𝜑(𝑠𝑛+1)

𝜑(𝑠𝑛)

𝑎 (𝑠
𝑛
) 𝑑𝜏

=
𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

∫

𝜑(𝑠𝑛+1)

𝜑(𝑠𝑛)

[ max
𝑡∈[𝑠𝑛+1 ,𝑠𝑛]

𝑎 (𝑡)] 𝑑𝜏

≥
𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

∫

𝜑(𝑠𝑛+1)

𝜑(𝑠𝑛)

𝑎 (𝜑
−1

(𝜏)) 𝑑𝜏

=
𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

∫

𝑠𝑛

𝑠𝑛+1

𝑎 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡.

(56)

Now from (55) and previous inequality, for all 𝑚 ≥ 𝑛
0
we

obtain

length (Γ
𝑢
) ≥

𝑐
1

𝑐
2

𝑚

∑

𝑛=𝑛0

∫

𝑠𝑛

𝑠𝑛+1

𝑎 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

=
𝑐
1

𝑐
2

∫

𝑠𝑛0

𝑠𝑚+1

𝑎 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑡.

(57)

Letting 𝑚 → ∞ in previous inequality, the hypothesis (𝐻
4
)

proves this lemma.

Now, we are able to prove the following result.

Theorem 13. Let 𝜆(𝑡) = Re 𝜆(𝑡) ± 𝑖 Im 𝜆(𝑡) be two complex
conjugate eigenvalues of 𝐴(𝑡) for 𝑡 ∈ (0, 𝑡

0
]. Assume that

Re 𝜆(𝑡) ≥ 0 and Im 𝜆(𝑡) ̸= 0 near 𝑡 = 0 and that (5) holds.
Let every solution x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of system (1) satisfy
(37) as well as the following assumption: let 𝑢(𝑡) be defined by
𝑢(𝑡) := 𝑥(𝑡) or 𝑢(𝑡) := 𝑦(𝑡) and let there be two constants
𝑐
1
> 0, 𝑐

2
> 0, a number 𝑛

0
∈ N, and a decreasing sequence

𝑠
𝑛
∈ (0, 𝑡

0
], 𝑠
𝑛
→ 0 as 𝑛 → ∞, which all depend on function

𝑢(𝑡), such that for all 𝑛 ≥ 𝑛
0
, one has

𝑢 (𝑠
𝑛
) 𝑢 (𝑠
𝑛+1
) < 0,

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
≥ 𝑐
1
𝑒
−∫
𝑡0

𝑠𝑛
Re𝜆(𝑡)𝑑𝑡

,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠𝑛

𝑠𝑛+1

Im 𝜆 (𝑡) 𝑑𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
2
.

(58)

If

Im 𝜆 (𝑡) 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

𝑑𝑡 ∉ 𝐿
1
(0, 𝑡
0
) , (59)

then the zero solution of (1) is nonrectifiable attractive as 𝑡 →
0.
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Proof. At first, the attractivity of the zero solution of linear
system (1) follows from the assumptions (5) and (37).

Next, let 𝜑(𝑡) and 𝑎(𝑡) denote two new functions defined
by

𝜑 (𝑡) = ∫

𝑡0

𝑡

Im 𝜆 (𝑠) 𝑑𝑠, 𝑎 (𝑡) = 𝑒
−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠

. (60)

Let 𝑢(𝑡) := 𝑥(𝑡) or 𝑢(𝑡) := 𝑦(𝑡), where x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) is
a solution of system (1). With the help of notation (60) and
assumption (58), it is easy to check that the function 𝑢(𝑡)
satisfies all hypotheses (𝐻

1
), (𝐻
2
), and (𝐻

3
) from Lemma 12.

Indeed, the existence of a sequence 𝑠
𝑛
∈ (0, 𝑡

0
) satisfying (𝐻

1
)

follows from the first inequality in (58). Also, from (18), (58),
and (60) we obtain

𝜑
󸀠

(𝑡) = − Im 𝜆 (𝑡) ̸= 0 near 𝑡 = 0,

󵄨󵄨󵄨󵄨
𝜑 (𝑠
𝑛+1
) − 𝜑 (𝑠

𝑛
)
󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠𝑛+1

𝑠𝑛

Im 𝜆 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝑐
2

∀𝑛 ≥ 𝑛
0
,

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
≥ 𝑐
1
𝑒
−∫
𝑡0

𝑠𝑛
Re 𝜆(𝑠)𝑑𝑠

= 𝑐
1
𝑎 (𝑠
𝑛
) ∀𝑛 ≥ 𝑛

0
,

(61)

which show that (𝐻
2
) and (𝐻

3
) from Lemma 12 are fulfilled

too. Moreover, the equality

𝑎 (𝑡)
󵄨󵄨󵄨󵄨󵄨
𝜑
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
= | Im 𝜆 (𝑡)| 𝑒

−∫
𝑡0

𝑡
Re 𝜆(𝑠)𝑑𝑠 (62)

together with assumption (59) ensure that the hypothesis
(𝐻
4
) from Lemma 12 is also fulfilled. Now, by Lemma 12 we

obtain that the graph of 𝑢(𝑡) := 𝑥(𝑡) or 𝑢(𝑡) := 𝑦(𝑡) is a
nonrectifiable curve in R2. In particular, it follows that the
solution curve Γx is also a nonrectifiable curve in R2, where
x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)).

In the next theorem, the nonrectifiable attractivity is
obtained without supposing the a priori estimates (37) and
(58), since they immediately follow from the asymptotic
behaviour of 𝐴(𝑡) near 𝑡 = 0 given in (4).

Theorem 14. Let (4) be satisfied, and let 𝜆(𝑡) = Re 𝜆(𝑡) ±
𝑖 Im 𝜆(𝑡) be two complex conjugate eigenvalues of the matrix
𝐴(𝑡) for 𝑡 ∈ (0, 𝑡

0
]. Assume that Re 𝜆(𝑡) ≥ 0 near 𝑡 = 0 and

that (5) holds. If the condition (59) holds, then the zero solution
of (1) is nonrectifiable attractive as 𝑡 → 0.

Proof. This proof is a consequence of Theorem 13 and the
asymptotic formula (21). At first, according to Lemma 7,
every solution x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) of system (1) satisfies (21).
If we denote by 𝑢(𝑡) := 𝑥(𝑡) or 𝑢(𝑡) := 𝑦(𝑡), then (21) ensures
that 𝑢(𝑡) could be written in the form

𝑢 (𝑡) = [𝑐
1
+ 𝜀
1
(𝑡)] 𝑎 (𝑡) cos𝜑 (𝑡)

+ [𝑐
2
+ 𝜀
2
(𝑡)] 𝑎 (𝑡) sin𝜑 (𝑡) near 𝑡 = 0,

(63)

where 𝑐
1
, 𝑐
2
∈ R with 𝑐

2

1
+ 𝑐
2

2
> 0, 𝜀

1
, 𝜀
2
∈ 𝐶(0, 𝑡

0
],

lim
𝑡→0

𝜀
1
(𝑡) = lim

𝑡→0
𝜀
2
(𝑡) = 0, and 𝑎(𝑡), 𝜑(𝑡) are defined

in (60).

Since 𝜆(𝑡) is a continuous complex-valued function on
(0, 𝑡
0
], from (18), we conclude that

either Im 𝜆 (𝑡) < 0 or Im 𝜆 (𝑡) > 0 near 𝑡 = 0. (64)

Therefore, there are two real constants 𝑐
3
, 𝑐
4
∈ R and 𝛿 ∈

𝐶(0, 𝑡
0
] such that 𝑐

3
̸= 0, lim

𝑡→0
𝛿(𝑡) = 0 and

𝑢 (𝑡) = [𝑐
3
+ 𝛿 (𝑡)] 𝑒

−∫
𝑡0

𝑡
Re 𝜆(𝜎)𝑑𝜎

× sin(∫
𝑡0

𝑡

| Im 𝜆 (𝜎)| 𝑑𝜎 + 𝑐
4
) near 𝑡 = 0.

(65)

Because of (59), we have ∫ 𝑡0
𝑡
| Im 𝜆(𝜎)|𝑑𝜎 → ∞ as 𝑡 →

0 and therefore there is a decreasing sequence 𝑠
𝑛
∈ (0, 𝑡

0
] and

a number 𝑛
0
∈ N such that

∫

𝑡0

𝑠𝑛

| Im 𝜆 (𝜎)|𝑑𝜎 + 𝑐
4
=
𝜋

2
+ 𝑛𝜋 ∀ 𝑛 ≥ 𝑛

0
. (66)

Putting (66) into (65) and retaking 𝑛
0
∈ N as sufficiently large,

we get

𝑢 (𝑠
𝑛
) 𝑢 (𝑠
𝑛+1
) < 0,

󵄨󵄨󵄨󵄨
𝑢 (𝑠
𝑛
)
󵄨󵄨󵄨󵄨
≥

󵄨󵄨󵄨󵄨
𝑐
3

󵄨󵄨󵄨󵄨

2
𝑒
−∫
𝑡0

𝑠𝑛
Re 𝜆(𝑠)𝑑𝑠

∀𝑛 ≥ 𝑛
0
,

(67)

and because of (64) and (66),
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑠𝑛

𝑠𝑛+1

Im 𝜆 (𝑠) 𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= ∫

𝑠𝑛

𝑠𝑛+1

| Im 𝜆 (𝑠)| 𝑑𝑠

= ∫

𝑡0

𝑠𝑛+1

| Im 𝜆 (𝑠)| 𝑑𝑠

− ∫

𝑡0

𝑠𝑛

| Im 𝜆 (𝑠)| 𝑑𝑠 = 𝜋.

(68)

Now, statements (67) and (68) show that the function 𝑢(𝑡)
and sequence 𝑠

𝑛
defined, respectively, in (65) and (66) satisfy

the required condition (58). Therefore, the main conclusion
of this theorem immediately follows fromTheorem 13.

6. Proof of Theorem 4

In this section, we prove the rectifiable and nonrectifiable
attractivity for the zero solution of model system (7) as a
direct consequence of Theorem 3.

Let 𝐴(𝑡) be the matrix of the model system (7) given by

𝐴 (𝑡) = (
𝑒 (𝑡) 𝑡
−𝑝

𝑓 (𝑡) 𝑡
−2

−𝑔 (𝑡) 𝑡
−2

ℎ (𝑡) 𝑡
−𝑞) for 𝑡 ∈ (0, 𝑡

0
] , (69)

where the real numbers 𝑝, 𝑞, and functions 𝑒, 𝑓, 𝑔, and ℎ
satisfy (8), (9), and (10), respectively. We will show that such
a matrix 𝐴(𝑡) together with its eigenvalues 𝜆(𝑡) satisfy the
required conditions Re𝜆(𝑡) ≥ 0 near 𝑡 = 0, (5), and (4).

At first, because of (9), we have Re 𝜆(𝑡) = (𝑒(𝑡)𝑡
−𝑝
+

ℎ(𝑡)𝑡
−𝑞
)/2 > 0.
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Next, since max {𝑝, 𝑞} ≥ 1, let, for instance, max {𝑝, 𝑞} =
𝑝 ≥ 1, and 𝑡

0
∈ (0, 1]; from (9) we obtain a constant 𝑐

0
> 0

such that

∫

𝑡0

𝑡

Re 𝜆 (𝑠) 𝑑𝑠 = 1
2
∫

𝑡0

𝑡

(𝑒 (𝑠) 𝑠
−𝑝
+ ℎ (𝑠) 𝑠

−𝑞
) 𝑑𝑠

≥
1

2
∫

𝑡0

𝑡

𝑒 (𝑠) 𝑠
−𝑝
𝑑𝑠

≥ 𝑐
0
∫

𝑡0

𝑡

𝑠
−1
𝑑𝑠 = 𝑐

0
ln
𝑡
0

𝑡
󳨀→ ∞ as 𝑡 󳨀→ 0.

(70)

Now, it is clear that (70) proves the desired statement (5).
Finally, since 𝑝 < 2 and 𝑞 < 2,

lim
𝑡→0

[𝑡
2
𝐴 (𝑡)] = lim

𝑡→0

(
𝑒 (𝑡) 𝑡
2−𝑝

𝑓 (𝑡)

−𝑔 (𝑡) ℎ (𝑡) 𝑡
2−𝑞)

= (
0 𝑓 (0)

−𝑔 (0) 0
) =: 𝐴

0
,

(71)

where𝐴
0
is a constant matrix. Since 𝑓(0)𝑔(0) > 0, matrix𝐴

0

has two different eigenvalues. So, the condition (4) is fulfilled
too.

Thus, matrix 𝐴(𝑡) together with its eigenvalues satisfy
all required conditions so that Theorem 3 can be applied to
the model system (7) in all cases of 𝑝 and 𝑞 given in (11)–
(16). Since by Theorem 3 the rectifiable and nonrectifiable
attractivity of the zero solution of (1) depends on the
integrability of function

Φ (𝑡) = | Im 𝜆 (𝑡)| 𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠 for 𝑡 ∈ (0, 𝑡

0
] , (72)

we can conclude that the zero solutions of (7) is rectifiable
attractive if Φ ∈ 𝐿

1
(0, 𝑡
0
) and nonrectifiable attractive if Φ ∉

𝐿
1
(0, 𝑡
0
). Let us remark that in Lemma 6, it has been proved

that

| Im 𝜆 (𝑡)| ∼ 𝑡
−2 as 𝑡 󳨀→ 0. (73)

(i) Assume that max {𝑝, 𝑞} > 1. For instance, we assume
𝑝 > 1. Since 𝑒(𝑡) > 0 on [0, 𝑡

0
], we have 𝑒(𝑡)𝑡−𝑝+1 → ∞ as

𝑡 → 0. In particular, there exist 𝑡
1
∈ (0, 𝑡

0
] and 𝛿 > 0 such

that

𝑒 (𝑡) 𝑡
−𝑝+1

≥ 2 + 𝛿 for 𝑡 ∈ (0, 𝑡
1
] . (74)

Since

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

= 𝑒
(−1/2)∫

𝑡0

𝑡
(𝑒(𝑠)𝑠
−𝑝
+ℎ(𝑠)𝑠

−𝑞
)𝑑𝑠
, (75)

we have

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

≤ 𝑒
(−1/2)∫

𝑡0

𝑡
𝑒(𝑠)𝑠
−𝑝
𝑑𝑠

= 𝑒
(−1/2)∫

𝑡0

𝑡
𝑒(𝑠)𝑠
−𝑝+1
𝑠
−1
𝑑𝑠

≤ 𝑒
−(1+(𝛿/2))∫

𝑡0

𝑡
𝑠
−1
𝑑𝑠
= 𝑐𝑡
1+(𝛿/2)

,

(76)

where the constant 𝑐 = 𝑡
−1−(𝛿/2)

0
. Now from (72), (73), and

(76), we observe that

Φ (𝑡) ≤ 𝑐
1
𝑡
−2
𝑡
1+(𝛿/2)

= 𝑐
1
𝑡
−1+(𝛿/2)

∈ 𝐿
1
(0, 𝑡
0
) . (77)

Thus, it is shown thatΦ ∈ 𝐿
1
(0, 𝑡
0
).

(ii) Assume that (11) is fulfilled. Since 𝑒(𝑡) > 2 on [0, 𝑡
0
],

there exists 𝛿 > 0 such that 𝑒(𝑡) ≥ 2 + 𝛿 on [0, 𝑡
0
]. Since 𝑝 = 1

and ℎ(𝑡) > 0 on (0, 𝑡
0
], from (75) we have

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

≤ 𝑒
(−1/2)∫

𝑡0

𝑡
𝑒(𝑠)𝑠
−1
𝑑𝑠

≤ 𝑒
−(1+(𝛿/2))∫

𝑡1

𝑡
𝑠
−1
𝑑𝑠
= 𝑐𝑡
1+(𝛿/2)

,

(78)

where the constant 𝑐 = 𝑡
−1−(𝛿/2)

0
. Now from (72), (73), and

(78), we obtainΦ ∈ 𝐿
1
(0, 𝑡
0
). When (12) is fulfilled, we obtain

Φ ∈ 𝐿
1
(0, 𝑡
0
) by the similar argument.

Assume that (13) is fulfilled. Since 𝑒(𝑡)+ℎ(𝑡) > 2 on [0, 𝑡
0
],

there exists 𝛿 > 0 such that 𝑒(𝑡) + ℎ(𝑡) ≥ 2+𝛿 on [0, 𝑡
0
]. From

(75) we have

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

= 𝑒
(−1/2)∫

𝑡0

𝑡
𝑒(𝑠)+ℎ(𝑠)𝑠

−1
𝑑𝑠

≤ 𝑒
−(1+(𝛿/2))∫

𝑡0

𝑡
𝑠
−1
𝑑𝑠
= 𝑐𝑡
1+(𝛿/2)

,

(79)

where the constant 𝑐 = 𝑡−1−(𝛿/2)
0

. Thus we obtainΦ ∈ 𝐿
1
(0, 𝑡
0
)

by the argument above.
(iii) Let (14) be fulfilled. Since ℎ ∈ 𝐶([0, 𝑡

0
]), there is a

constant 𝑚
0
> 0 such that ℎ(𝑡) ≤ 𝑚

0
on [0, 𝑡

0
], and since

𝑞 < 1 there is a constant 𝑐
0
> 0 such that

𝑒
(−1/2)∫

𝑡0

𝑡
ℎ(𝑠)𝑠
−𝑞
𝑑𝑠
≥ 𝑒
−(𝑚0/2)∫

𝑡0

𝑡
𝑠
−𝑞
𝑑𝑠
≥ 𝑐
0

as 𝑡 󳨀→ 0.

(80)

Hence,

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

= 𝑒
(−1/2)∫

𝑡0

𝑡
(𝑒(𝑠)𝑠
−1
+ℎ(𝑠)𝑠

−𝑞
)𝑑𝑠

= 𝑒
−∫
𝑡0

𝑡
𝑠
−1
𝑑𝑠
𝑒
(−1/2)∫

𝑡0

𝑡
ℎ(𝑠)𝑠
−𝑞
𝑑𝑠

≥ 𝑐
0
𝑒
−∫
𝑡0

𝑡
𝑠
−1
𝑑𝑠
= 𝑐
0

𝑡

𝑡
0

.

(81)

Now, by combining (72), (73), and (81), we observe

∫

𝑡0

𝑡

Φ (𝑠) 𝑑𝑠 ≥
𝑐
1

𝑡
0

∫

𝑡0

𝑡

𝑠
−2
𝑠 𝑑𝑠 =

𝑐
1

𝑡
0

ln
𝑡
0

𝑡
󳨀→ ∞

as 𝑡 → 0.

(82)

Thus,Φ ∉ 𝐿
1
(0, 𝑡
0
). When (15) is fulfilled, we similarly obtain

Φ ∉ 𝐿
1
(0, 𝑡
0
).

Let (16) be fulfilled. Then, from (75) we have

𝑒
−∫
𝑡0

𝑡
Re𝜆(𝑠)𝑑𝑠

= 𝑒
(−1/2)∫

𝑡0

𝑡
(𝑒(𝑠)+ℎ(𝑠))𝑠

−1
𝑑𝑠

≥ 𝑒
−∫
𝑡0

𝑡
𝑠
−1
𝑑𝑠
=
𝑡

𝑡
0

.

(83)

By combining (72), (73), and (83), we obtain Φ ∉ 𝐿
1
(0, 𝑡
0
).

Thus, the proof is completed.
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Appendix

At first, we state and prove the existence and uniqueness of
solutions of linear system (1).

TheoremA.1. There exists a unique solution x of linear system
(1).

Proof. Putting 𝜏 = 1/𝑡 into system (1) and denoting w(𝜏) =
x(1/𝜏), we obtain the equivalent system

𝑑w
𝑑𝜏

= 𝐵 (𝜏)w for 𝜏 ∈ [𝜏
0
,∞) , w (𝜏

0
) = x
0
, (A.1)

where 𝜏
0
= 1/𝑡
0
and the matrix 𝐵(𝑡) is defined by (23). By the

standard theory for system (A.1), we obtain the existence and
uniqueness of the solution to (1).

At the second, we give some simple sufficient conditions
on the matrix-valued function 𝐴 = 𝐴(𝑡) such that the
solution curve Γx of every nontrivial solution x(𝑡) of linear
system (1) (as well as of (7)) is a Jordan curve.

Definition A.2. A solution x of linear system (1) is said to be
trivial solution of (1) near 𝑡 = 0 if there is 𝑡

1
∈ (0, 𝑡

0
] such

that x(𝑡) = 0 for all 𝑡 ∈ (0, 𝑡
1
]. Otherwise, x(𝑡) is said to be

nontrivial solution of (1) near 𝑡 = 0.

Theorem A.3. Let the matrix elements 𝑎
𝑖,𝑗
(𝑡) of 𝐴(𝑡) satisfy

min {𝑎
1,1
(𝑡) , 𝑎
2,2
(𝑡)}

>
1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨

𝑡 ∈ (0, 𝑡
0
] .

(A.2)

If x is a nontrivial solution of linear system (1) near 𝑡 = 0,
then ‖ x(𝑡)‖

2
is strictly positive and decreasing on (0, 𝑡

0
]. In

particular, the solution curve Γx is a Jordan curve.

Remark A.4. It is clear that if 𝑎
1,1
(𝑡) > 0, 𝑎

2,2
(𝑡) > 0 and

𝑎
1,2
(𝑡) = −𝑎

2,1
(𝑡) on (0, 𝑡

0
], then condition (A.2) is fulfilled.

Proof of Theorem A.3. Let x(𝑡) = (𝑥(𝑡), 𝑦(𝑡)) be a nontrivial
solution of system (1) near 𝑡 = 0. The assumption (A.2) can
be rewritten as

𝑎
1,1
(𝑡) >

1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨
,

𝑎
2,2
(𝑡) >

1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨

on (0, 𝑡
0
] .

(A.3)

Let V(𝑡) be a function defined by

V (𝑡) = ‖x (𝑡)‖ 2 = 𝑥2 (𝑡) + 𝑦2 (𝑡) for 𝑡 ∈ (0, 𝑡
0
] . (A.4)

Taking the derivative 𝑑/𝑑𝑡 in (A.4), it follows that

𝑑V

𝑑𝑡
= 2𝑥 (𝑡) 𝑥

󸀠

(𝑡) + 2𝑦 (𝑡) 𝑦
󸀠

(𝑡) for 𝑡 ∈ (0, 𝑡
0
] . (A.5)

Multiplying the first and second equation in system (1),
respectively, by 𝑥(𝑡) and 𝑦(𝑡), we obtain

𝑥 (𝑡) 𝑥
󸀠

(𝑡) + 𝑦 (𝑡) 𝑦
󸀠

(𝑡)

= 𝑎
1,1
(𝑡) 𝑥
2

(𝑡) + (𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)) 𝑥 (𝑡) 𝑦 (𝑡)

+ 𝑎
2,2
(𝑡) 𝑦
2

(𝑡) .

(A.6)

Because of inequality 𝑎𝑏 ≤ (𝑎2 + 𝑏2)/2, we have
󵄨󵄨󵄨󵄨
(𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)) 𝑥 (𝑡) 𝑦 (𝑡)

󵄨󵄨󵄨󵄨

≤
1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨
(𝑥
2

(𝑡) + 𝑦
2

(𝑡)) ,

(A.7)

which together with (A.6) derives that

𝑥 (𝑡) 𝑥
󸀠

(𝑡) + 𝑦 (𝑡) 𝑦
󸀠

(𝑡)

≥ 𝑎
1,1
(𝑡) 𝑥
2

(𝑡) −
1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨
(𝑥
2

(𝑡) + 𝑦
2

(𝑡))

+ 𝑎
2,2
(𝑡) 𝑦
2

(𝑡) = 𝐷 (𝑡) ,

(A.8)

where𝐷(𝑡) denotes the function

𝐷 (𝑡) = (𝑎
1,1
(𝑡) −

1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨
) 𝑥
2

(𝑡)

+ (𝑎
2,2
(𝑡) −

1

2

󵄨󵄨󵄨󵄨
𝑎
1,2
(𝑡) + 𝑎

2,1
(𝑡)
󵄨󵄨󵄨󵄨
) 𝑦
2

(𝑡) .

(A.9)

Putting (A.8) into (A.5), we obtain

𝑑V

𝑑𝑡
≥ 2𝐷 (𝑡) for 𝑡 ∈ (0, 𝑡

0
] . (A.10)

Because of (A.3), we have 𝐷(𝑡) ≥ 0 on (0, 𝑡
0
]. Hence, from

(A.10), we observe 𝑑V/𝑑𝑡 ≥ 0 on (0, 𝑡
0
]. Integrating this

inequality over the interval [𝑠, 𝑡] for all 0 < 𝑠 ≤ 𝑡 ≤ 𝑡
0
, we

get V(𝑠) ≤ V(𝑡). If we suppose for a moment that V(𝑡) = 0,
then from previous inequality we get V(𝑠) = 0 for all 𝑠 ∈ (0, 𝑡],
which is not possible because of Definition A.2. Therefore,
V(𝑡) > 0 for all 𝑡 ∈ (0, 𝑡

0
], which implies ‖x(𝑡)‖

2
> 0 for all

𝑡 ∈ (0, 𝑡
0
] because of (A.4). It proves the first statement of

this theorem.
Next, with the help of (A.3) and ‖x(𝑡)‖

2
> 0 for all 𝑡 ∈

(0, 𝑡
0
], we deduce that𝐷(𝑡) > 0 on (0, 𝑡

0
], which together with

(A.10) gives V󸀠(𝑡) > 0 on (0, 𝑡
0
]. Integrating this inequality

over the interval [𝑠, 𝑡] for all 0 < 𝑠 < 𝑡 ≤ 𝑡
0
, we get

V (𝑠) < V (𝑡) ∀𝑠, 𝑡 such that 0 < 𝑠 < 𝑡 ≤ 𝑡
0
. (A.11)

If, for instance, there exist 𝑠, 𝑡 such that 0 < 𝑠 < 𝑡 ≤ 𝑡
0
and

‖x(𝑠)‖
2
= ‖x(𝑡)‖

2
, then involving this equality into (A.4), we

obtain V(𝑠) = V(𝑡), which is not possible because of (A.11).
Therefore, ‖x(𝑡)‖

2
̸= ‖x(𝑠)‖

2
. Thus, it is shown that Γx is a

Jordan curve near 𝑡 = 0. In the same way, ‖x(𝑠)‖
2
< ‖x(𝑡)‖

2

for all 𝑠, 𝑡 such that 0 < 𝑠 < 𝑡 ≤ 𝑡
0
.

According to Remark A.4, previous theorem can be
applied to model system (7).
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Corollary A.5. Let 𝑒, ℎ ∈ 𝐶((0, 𝑡
0
]), 𝑒(𝑡) > 0, ℎ(𝑡) > 0, and

𝑓(𝑡) = 𝑔(𝑡) near 𝑡 = 0. If x(𝑡) is a nontrivial solution of
linear system (7) near 𝑡 = 0, then ‖x(𝑡)‖

2
is strictly positive

and decreasing on (0, 𝑡
0
]. In particular, the solution curve Γx is

a Jordan curve.

Finally, we point out that in some essential cases, the
model system (7) allows the explicit form of all its solutions.
Such systems are called the integrable systems; for details,
see [4]. Hence, the rectifiable and nonrectifiable attractivity
of the zero solution of (7) in such cases can be reproven in
an explicit way. That is, the statements of Theorem 4 can be
confirmed once more, but explicitly.

Proposition A.6. Let ℎ(𝑡) > 0 and 𝑓(𝑡) > 0 on (0, 𝑡
0
]. The

fundamental system of all solutions of linear differential system

𝑥
󸀠

(𝑡) = ℎ (𝑡) 𝑡
−𝑝
𝑥 (𝑡) + 𝑓 (𝑡) 𝑡

−2
𝑦 (𝑡) ,

𝑦
󸀠

(𝑡) = −𝑓 (𝑡) 𝑡
−2
𝑥 (𝑡) + ℎ (𝑡) 𝑡

−𝑝
𝑦 (𝑡) , 𝑡 ∈ (0, 𝑡

0
]

(A.12)

is explicitly given by the formula

𝑥 (𝑡) = 𝑒
−∫
𝑡0

𝑡
ℎ(𝑠)𝑠
−𝑝
𝑑𝑠

× [−𝑐
1
sin(∫

𝑡0

𝑡

𝑓 (𝑠) 𝑠
−2
𝑑𝑠)

+𝑐
2
cos(∫

𝑡0

𝑡

𝑓 (𝑠) 𝑠
−2
𝑑𝑠)] ,

𝑦 (𝑡) = 𝑒
−∫
𝑡0

𝑡
ℎ(𝑠)𝑠
−𝑝
𝑑𝑠

× [𝑐
1
cos(∫

𝑡0

𝑡

𝑓 (𝑠) 𝑠
−2
𝑑𝑠)

+𝑐
2
sin(∫

𝑡0

𝑡

𝑓 (𝑠) 𝑠
−2
𝑑𝑠)] .

(A.13)

Obviously for 𝑝 = 𝑞, 𝑒(𝑡) = ℎ(𝑡) > 0 and 𝑔(𝑡) = 𝑓(𝑡) > 0
on (0, 𝑡

0
], the system (A.12) is a particular case of our model

system (7). Hence, according to Theorem 4, we can state the
rectifiable and nonrectifiable attractivity near 𝑥 = 0 for the
system (A.12) as follows.

Corollary A.7. Let ℎ(𝑡) > 0 and 𝑓(𝑡) > 0 on (0, 𝑡
0
].

(i) If 𝑝 > 1, then the zero solution of (A.12) is rectifiable
attractive as 𝑡 → 0.

(ii) If 𝑝 = 1, then the zero solution of (A.12) is rectifiable
attractive as 𝑡 → 0 provided that ℎ(𝑡) > 1.

(iii) If 𝑝 = 1, then the zero solution of (A.12) is nonrectifi-
able attractive as 𝑡 → 0 provided that ℎ(𝑡) ≤ 1.

However, since by Proposition A.6 the system (A.12)
allows the explicit form of all its solutions, this means
that Corollary A.7 can be also shown by using Lemma 9,
Lemma 12, and Proposition A.6.
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