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We introduce a mixed finite element method for an elliptic equation modelling Darcy flow in porous media. We use a staggered mesh
where the two components of the velocity and the pressure are defined on three different sets of grid nodes. In the present mixed
finite element, the approximate velocity is continuous and the conservation law still holds locally. The LBB consistent condition is
established, while the L2 error estimates are obtained for both the velocity and the pressure. Numerical examples are presented to

confirm the theoretical analysis.

1. Introduction

We consider the discretization technique for the elliptic
problem modelling the flow in saturated porous media, or
the classical Darcy flow problem, including a system of mass
conservation law and Darcy’s law [1, 2]. The most popular
numerical methods for this elliptic equation focus on mixed
finite element methods, since by this kind of methods the
original scalar variable, called pressure, and its vector flux,
named Darcy velocity, can be approximated simultaneously
and maintain the local conservation. The classical theory for
the mixed finite element, which includes the LBB consistent
condition, the existence and uniqueness of the approximate
solution, and the error estimate, has been established. Some
mixed finite element methods such as RT mixed finite ele-
ment and BDM mixed finite element are introduced (as in [3-
6]), which satisfy the consistent condition and have optimal
order error estimate [7, 8]. Give some stabilized mixed finite
methods by adding to the classical mixed formulation some
least squares residual forms of the governing equations.

By using the abovementioned mixed finite element meth-
ods, the approximate velocity is continuous in the normal
direction and discontinuous in the tangential direction on
the edges of the element. This is reasonable for the case of
heterogenous permeability, yet it is desirable that the flux
be continuous in some applications [9]. In particular, when

we track the characteristic segment using the approximate
velocity, the discontinuities of the velocity may introduce
some difficulties when the characteristic line cross the edges
of element. While applying mass-conservative characteristic
finite element method to the coupled system of compressible
miscible displacement in porous media, the continuous flux
is crucial [10]. A brief description of this point will be found
at the last part of this paper.

To overcome this disadvantage, Arbogast and Wheeler
[11] introduced a mixed finite element method with an
approximate velocity continuous in both the normal direc-
tion and the tangential direction, which was got by adding
some freedom to the RT mixed finite element. In this
paper, we introduced a mixed finite element method with an
approximate velocity continuous in all directions. It is based
on rectangular mesh and uses continuous piecewise bilinear
functions to approximate the velocity components and uses
piecewise constant functions to approximate the pressure. We
obtain the element by improving a kind of element for Stokes
equation and Navier-Stokes equation given by Han [12], Han
and Wu [13], and Han and Yan [14]. By using this mixed finite
element, we can get continuous velocity vector and maintain
the local conservation. Comparing to the mixed finite ele-
ment method in [11], we need less degrees of freedom for the
same convergence rate. The LBB consistent condition and L2
error estimates of velocity and pressure are also established.



The outline of the rest of this paper is organized as follows.
In Sections 2 and 3, we recall the model problem and weak
formulation for the mixed finite element method and then
establish the discrete inf-sup consistent condition and L2
error estimates for the velocity and the pressure in Section 4.
In Section 5, we present some numerical examples which
verify the efficiency of the proposed mixed finite element
method. A valuable application of this method to mass-con-
servative characteristic (MCC) scheme for the coupled com-
pressible miscible displacement in porous media closes the
paper in Section 6.

2. The Mixed Finite Formulation
for Darcy Equation

The mathematical model for viscous flow in porous media
includes Darcy’s law and conservation law of mass, written as
follows:

u= —EVp on Q (Darcy’s law)
U

)

divu=¢ on Q (mass conservation)

u-n=0 on I,

where x > 0 is the permeability, 4 > 0 is the viscosity, and ¢ is
the volumetric flow rate source or sink. I' is the boundary of
Q, and 7 is the unit outward normal vector to I'. The variable
u = (u;,u,) is the Darcy velocity vector, and p is the pressure.
The source ¢ must satisfy the consistency constraint

J $dQ = 0. (2)
Q

Let L*(Q)) be the space of square integrable function in Q
with inner product (-,-) and norm || - |. We use the notation
of the Hilbert space

H (div, Q) = {u e [I? (@)]sdivu e L2 @}, ©
with norm
Il s o = el + 1 ivaa 2}, (4)
Define the following subspaces of H(div, ) and L*(Q):
V =H,(div,Q)={ue H(div,Q):u-n=0 on I},

S:{q|qeL2(Q):JquQ:O}.
©)

The classical weak variational formulation of Problem (1) is
as follows: find (u, p) € V x §, such that

awv)-b(v,p)=0 VveV,

b(u.q) =(¢q) VqeS.

(6)

Here,

a(u,v) = Jggu vdx  b(v,q) = JQq divvdx. (7)
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The following discussion and discrete analysis are related
to the weak form (6). Let V;, be a closed subspace of V via

Vo={veV:b(v,q) =0,Yq € S}. (8)

For the bilinear forms a(u, v) and b(v, q), we have the standard
result.

Lemma 1. The bilinear form a(u, v) is bounded on V- x 'V and
coercive on V,, and the bilinear form b(v, q) is bound on V' x S.
Namely,

(1) there exist two constants C; > 0 and o > 0 such that
la (w,v)| < Cyllull geaiv, o)Vl H@iv,o) Vv eV,
)

2
a(u,u) > o|lul Hdiv,o) V4 €V

(2) there is a constant C, > 0 such that
b (v.9)| < Colall ooVl a0y Yae€SveV.  (10)

For the space V and S, the Ladyzhenskaya-Babuska-
Brezzi(L-B-B) condition holds; see [15, 16], for example.

Lemma 2. There is a constant 3 > 0 such that

b >
Supﬂ >

2 Blall oo VaeS (1)
vev VIl mrgaiv,0)

It is clear that there exists a unique solution (u, p) € VxSto
the Problem (6).

3. Finite Element Discretization

In this section, we present the mixed finite element based on
rectangular mesh for the Darcy flow problem.

In [13], Han and Wu introduced a mixed finite element for
Stokes problem and then extended to solve the Navier-Stokes
problem [14]. Based on this element, we introduced the new
mixed finite element with a continuous flux approximation
for Darcy flow problem.

For simplicity, we suppose that the domain Q is a unit
square, and the mixed finite element discussed here can be
easily generalized to the case when the domain () is a rectan-
gular.

Let N be a given integer and h = 1/N. We construct the
finite-dimensional subspaces of S and V' by introducing three
different quadrangulations 7, T;11, Tfl of Q.

First, we divide Q into uniform squares

Ty ={(ey) i x < x<xy <y < yhs
j { 1 j-1 J} (12)

i,j=1,...,N,

where x; = ihand y; = jh. The corresponding quadrangula-
tion is denoted by 7;,. See Figure 1(a).

1, =1{T;1i,j=1,...,N}. (13)
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FIGURE 1: Quadrangulations: (a)7,, (b)ri,and (c) ‘rf‘.

Then, for all T; ; € 7;,, we connect all the neighbor mid-
points of the vertical sides of T; ; by straight segments if the
neighbor midpoints have the same vertical coordinate. Then,
Q is divided into squares and rectangles. The corresponding
quadrangulation is denoted by T;ll (see Figure 1(b)). Similarly,
forall T; ; € 7;, we connect all the neighbor midpoints of the
horizontal sides of T; ; by straight line segments if the neigh-
bor midpoints have the same horizontal coordinate. Then, we
obtained the third quadrangulation of Q, which is denoted by
Tfl (see Figure 1(c)).

Based on the quadrangulation 7;,, we define the piecewise
constant functional space used to approximate the pressure

Sy = {qh : gyl ¢ = constant, VT ¢ Th;J qpdx = 0} .
Q
(14)

Sy, is a subspace of S.

Furthermore, using the quadrangulations 7;, and 7}, we
construct a subspace of V. Denote by I';,I',,T'5, and T, the
south, right, north, and left sides on the boundary of Q. Set

Vh1 = {vh ec? (5) vl €Qq, (TI)VT1 € T;li,
v, =0 onl"zul“4},

V) = {vh ec? (5) vl 2 €Qq (TZ)VT2 €1,
v, =0 onl"lul"3},

(15)

where Q, | denotes the piecewise bilinear polynomial space
with respect to the variables x and y. Let

V, =V, x V. (16)

Obviously, V;, is a subspace of V.

Using the subspaces V}, and S, instead of V and S in the
variational Problem (6), we obtain the discrete problem: find
(> pp) € V3, X Sp,, such that

a(upvy) =b (v pp) =0 Vv, €V,

(17)
b(wpay) = ($an)  Vay € Sp.

4. Convergence Analysis and Error Estimate

In this section, we give the corresponding convergence anal-
ysis and error estimate. Firstly, we define an interpolating for
the following analysis.

For the quadrangulation 7;,, we divided the edges of all
squares into two sets. The first one denoted by L, contains
all vertical edges, and the second one denoted by L ;; contains
all horizontal edges. We define the interpolation operator



I:V — V, by u = (IL,u;, [ u,) € V;} x V7, which satisfy
the following:

J H;,ulds = j- u,ds YleLy,
! !
(18)
J Hfluzds = J- u,ds Vle Ly,
! 1

where Ly is a set of edges of elements got by bisecting the
most bottom element edges and the most top element edges
of Ly, and L ;s are got by bisecting the most left element edges
and the most right element edges of L;. See Figures 2 and 3.

Lemma 3. Foranyu € V, the interpolatingIu € V,, is unique-
ly determined by (18).

Proof. It is easy to see that (18) is equivalent to an equation of
AX = B, where A is a matrix and X, B are vectors. Direct
calculation shows that

A=h=diag {A,A,...}, (19)

and the form of submatrix A, is as follows

L. o 0 0 - 0 0 0 O
4 4
0 31 0 0 0 0 0 O
8 8
1 3 1
o - - -0 0 0 0 O
8§ 4 8
0 0 L3 ] 0 0 0 O
s 1 3 . (20)
0 0 0 0 O 31 0
8§ 4 8
1 3
0 0 0 0 O 0O - -0
8 8
1 1
o 06 o o 0 - 0 0 - -
4 4
We can see that the matrix is invertible and the equation is
solvable, and therefore X can be uniquely determined. [

Assume that the solution (u, p) of Problem (6) has the

following smoothness properties:
ueV =V[H(Q), peS(H' (. (1)

Then, we should give the following lemma about the proper-
ties of the interpolations defined in (18).

Lemma 4. (i) There exist two constants C; and C, indepen-
dent of h, such that

lu—TIul o0 < Csh/ 7 lul 0, i=0,1,i<j<2, (22)
inf |[p—gqu <Cihlpl, o
inf p~aul <Cihlplig (23)

(ii) There exists a constant C5 independent of h such that

el praie ) < Csllull 1o VueV. (24)
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Some edges on Ly,
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Corresponding edges on L,

FIGURE 2: Some edges on Ly, and corresponding edges on L.

(iii) For any u € V, we have that
J qpdiv (u—-TIu)dx =0, Vg, €S, (25)
Q

Proof. The estimates (22), (23), and (24) follow from Defini-
tion (18) and the approximation theory; see [1], for example.

For (25), based on Green formulation, we know that

I qp div (u —Tu) dx = ZJ qy, div (u — Tu) dx
Q

Tety,

- Z Jath (u - Tu) - fids

Tety,

- Z J Vg, - (u—TIu) dx

Tety, T
=y J an (uy - T, ) nyds
leLy !
+ Z J an (u2 Hhuz)nzds
leLy !
= th (uy = Tuy ) nyds
leL, !
+ Z th (u2 Hhuz)nzds
leL !
=0.

(26)

Here, #i = (n;,n,), and we use (18) for the last step. The proof
is completed. O
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FIGURE 3: Some edges on L ; and corresponding edges on L .

Theorem 5. The discrete Inf-sup condition is valid; namely,
there is a constant 3 > 0, such that

b (v qn)
sup ———— > Blg. VaneS.  (27)
Vi€V, "Vh" H(div,Q)

Proof. From the process above, we obtain that b(v,q,) =
b(Ilv,qy), any v € V,q,, € S;. For any p;, € S, there exists
Ve (Hé(Q))Z, such that

IVl L0 < Cé gn (28)

where Cg is a constant independent of g;,; then we obtain

Vev=gq,,

b (Vi qn) b (v, g,)
sup >
Vi Vil ey 1TV prgaiv.
_ b(v.q5) (29)
ITIVI| £rcaiv 0
2
el
1TV faiv 00
Using Lemma 4, we have that
b (v 1 ; 1
(Vi qn) > = 9l o > laul - (30)
vevi il Hav,o)  Cs Ve CsCe
Taking 8 = 1/C5C,, we complete the proof of (27). O

With the analysis technique presented by Arbogast and
Wheeler [11], we consider the numerical analysis of the mixed
finite element presented in this paper. Recall the RT;, mixed
element spaces V; x S, [3, 5, 6] based on the partition 7,

V,: =Qyo (1) X Qo1 () >

Define the interpolation operator I' : V' — V; by the
following equations:

S, = Sy (31)

J M'u,ds = J uds VlelLy,

1 ! (32)
J 'u,ds = J u,ds Ve Ly.

1 !

Denote by Py : S — S, the L? projection operator and by
Py = V — V, the (L*(Q))* vector projection operator. The
following properties of the projections hold:

lp - Pspll 4 < Chlpl,

(33)
||u - PV/u” o < Chllull ;.

Then, we have an important property about the operator IT'.

Lemma 6. For any u € QM(T},) X Q1,1(T;21): there holds the
equivalence IT'u = Pyiu; namely,

(u —'u, v) =0, Vve Vp:- (34)

Proof. As the definition of V, is based on each element T', we
focus our discussion on arbitrary elemente C 7;,,e = [x,, x,+
h] x [y, o + h]. Firstly, we consider the x-component (see
Figure 4). The analysis for y-component is similar.

For a function U; € V;}, on an element e, it is uniquely
given by its node values u;,i = 1,...,6. As U, is a continuous
bilinear function on each of the two parts as shown in
Figure 4. Then, from (32), we know that H'ul = a+ bxis
given by

J (a+bx)ds = (a+bxy)*h=(u; +2us+us) *

h

S

J (a+bx)ds=(a+b(xy+h))*h=(uy+2u, +ug) * Z
12

(35)
We deduce that
Uy + 2u; + us — 4bx,
4 >

(36)

b= ((uy —uy) +2 (uy — 1) + (g — us)) * W
It is clear that we just need to verify (34) for both v = 1 and
v=x.

We first consider v = 1. Denote by ¢, the node basis
function at the point i, which implies that ¢,(x;) = 8, ;, which
has the value 1if and only if i = j; otherwise, it is zero. By
direct calculation, we can get the basis, for example,

1 2 2 4 4
n=g(2mfregn) 2ogrein). @

SO
J U,dxdy
e
h
xot+h y0+§
= J J (19, + 1, + U3y + uy,) dx dy

Xo Yo

Xoth yot+h
+ J j (U35 + Uy, + Usps + ugp) dx dy
X Yoth/2

2 hZ
= g(u1+u2+u3+u4)+E(u3+u4+u5+u6)
h2
= g(u1+u2+2u3+2u4+u5+u6).

(38)
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FIGURE 4: An element on 7, and its corresponding portion on ;.

By direct computation, we can easily see that  Theorem 7. If (u, p) satisfy (6) and (uy,, p;,) satisfy (17), then
J 1'U,dx dy has the same value, so there exists a positive constant C independent of h such that the
¢ following error estimates hold:

J H'Uldx dy = J U,dxdy. (39) ||u _ ”h” o < Chlull,,
_ (43)
When v = x, we have that “p _ Ph" , <Ch (lull, + ||P|| 1).
Xoth ¢ yoth
J H'U1 * xdxdy = J J ax + bx*dx dy Proof. First, we focus on the error u —u;,. From (6), (17), (18),
e x J and (32), we derive that
3
=a (xoh2 + i) (40) b(u.qy) = b(upq,) =b(Mu,q,) =b (HI”’ Qh)’ vqy € Sp.
2 (44)
b (x§h2 gk + %h“), Let v = IT'v, in (6); then
where a,b are defined in (36). Next, we compare the coeffi- a (u, H'vh) -b (H'vh,p) =0. (45)
cients of u; in (40) with the coefficients in J U, * xdxdy,
¢ Namely,
Yoth/2 ¢ xoth
J ¢, * xdxdy = J J @ * xdxdy a(Pyu,v,) = (PV-v, p)=a(Pyu,v,)—b(v,, Pp) =0.
e Yo Xo (46)

xo+h
h 1 2, 2 (41) : .
== - (Zx Rl E%)C) Here, we used the property V-II'v = P,V -v. Subtracting from

2) x5 4 (17), we get that
1 1
= ﬂlﬁ + gxoh2 =k, a(Pyu—uy,v,)—b(v, P.p—p,) =0. (47)
which determine k, as the coefficient of u;. With similar com- ~ Take
putation, we obtain that
., vp = Hu—u, g, =Pp—py (48)
xoh™ h
ks =k, k2:k6:°T+E, Then
(42)
X W X W a(Pyu—u,, Tu—u,) —b(Tlu—u, P.p — p,) =0. (49)
ky=—+—, = — + —.
4 12 4 6 Due to (44), we find that
Comparing with (40), we can find that (34) is true with v = x.
So, we certify the lemma. O b (Mu — w, Pp = py) = 0. (50)
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Now, we analyze the error u — 1, based on the equations
above
a(u—uy,u—u,)
=a(u—w,u—Tu)+a(u—uw, Mu—u,)
=a(u—w,u—Tu)+a(u—Pyu,u—u,)

+a(Pyu—up, Mu—uy,)

1 (51)
<eflu- uh”g + €—||u ~ Tu| ¢
1

1
+ &I —ull 2+ —|u—-P,ul}
€

1
reglu-wlg+ o v

where ¢; > 0,i = 1,2, 3 are positive constants. Take the value
of €, = €; = p/4x, €, = 1, and combining with (22) and (33),
we conclude that

||u - uh” o < Chllull ;. (52)

We also can obtain a higher order error estimate for
|P,p — pyll. Consider the classical duality argument. Let ¢ be
the solution of the following elliptical problem:

0
Ap =P.p - pp a—i’ = 0. (53)

By the elliptic regularity, the estimate holds: [}|p <
ClIP;p - pplly- So

IP.p = pull

=(Pp - pV-V9)
(P.p = pp V- TIVY)
a(Pyu—u, TIV¢)

a(Pyu—u,, IV — P, V) + a(Pyu—u,, P, V)

=a(Pyu—u,, IV$ — P,V¢) +a(Pyu—u, P,Ve)
+a(u—uy,PyVe)

=a(Pyu—w, IV — P, V) +a(u—uy,, P,V — V)

+a(u-u,Ve).
(54)

Now, we estimate the right hand terms of the above ine-
quality. From (33), (22), and (52), we have

a(Pyu—uy, TIVG — P, V) = a (Pyu — u, TIVG — Vep)
+a(u—u,IIVP — Vo)
+a(Pyu—u,Vo—P,V¢)
+a(u-u,Vo-P,Ve)
< CHully | @l

< CHlully | |Pp — pul 0
(55)

It is easy to see that
a(u -1, PyV$ - V) < CH|lull ¢,y
< CHull [Pop = pull
a(u—uy, Vo)
=a(u-Tu,V¢) +a(Tu - u,, V¢ — P,VP)  (56)

+a (Tlu — uy,, P,y V)
<C(ul:gl, + il J9l.)

< CH*|lul 2||PsP - Ph" 0

Here, we used the fact that a(TTu—u;,, P, V¢) = 0 which is got
from the Green formulation and (44).
Combining the above inequalities, we conclude that

lp = pullo < llp = Pl o + P2 = pull o
< Ch(llully + [l o) -
We complete the proof. O

It is worth mentioning that we analyze this mixed finite
element method in a direct way as it is not straightforward to
apply the classical inf-sup theory. We just have the coercivity
property for a(uy,v;,) on the normal L, space, not in the
subspace of vy, = {v, € V}, : b(v,,q,) = 0,Yq, € S}, and
the same issue also occurs in [11]. The problem is that testing
(V- v,w) by w € W, does not control the full divergence
of V, and it does not occur when this method is applied to
Stokes or Navier-Stokes equations (as in [13, 14]). As a result,
we just obtain a convergence rate of [u —u|,. Failing to
obtain convergence rate of [lu —u,| H(div,0) 18 @ weak point
of this proposed mixed formulation compared to the clas-
sical Raviart-Thomas mixed method. But the significance of
continuous flux applied to mass conservation can be found in
Section 6.

5. Numerical Examples

In this section, we present some numerical results for the
model Problem (1). For simplicity, we assume that the domain



TABLE 1: Three numerical test cases.

Case  Coefficient u/x ~ True solution u True solution p

2 4

1 1 (x{_“;) (x—1/2)(y - 1/2)
) Xy —xy
st 0 Kly—xty

2 0 1 ( A 2> (x=1/2)(y - 1/2)
x+y o xXy

ery2 0 —Xy
e X
3 1 ( ) ) ye
0 x* cos y
X+y

is a unit square Q = [0, 1] x [0, 1] and the test cases are sum-
marized in Table 1. We can choose the boundary conditions
and the right hand terms according to the analytical solutions.

We compare our method to the formulation constructed
by Arbogast and Wheeler [11]. Its corresponding discrete
finite element spaces are

V= {Vh < (C(O) (5))2 2Vl 7 € Qp (T)

x Qu (T),¥ T € Th},

_ (58)
Sp= {qh : gyl 7 = constant,

VT € Th;j qpdx = O}.
Q

The results of the error estimate with various norms are listed
in Table 2, while the corresponding convergence rates of the

presented method are shown in Table 3.
Close results of numerical errors for both formulations

are shown in Table 2. From Table 3, we can see that p con-
verges to p;, as O(h) and P, p— p;, as O(h?) for our formulation,
which both agree with the theorem. From the examples,
we can observe that u;, converges to u somewhat better
than expected, and it appears that on the uniform grid we
attain O(h*'?) superconvergence in the L? norm which is
similar to the tests of Arbogast’s formulation [11]. Yet, the
degrees of freedom of our method are less than Arbogast’s
scheme. As in the case of 64 * 64, the degrees of freedom of
Arbogast’s scheme are 20866 and 12676 for our formulation.
The convergence rate of [|u — [l g4y o) 18 first order, but here
we cannot give the corresponding analysis.

6. A Valuable Application

In this section, we briefly show an application of the proposed
mixed finite element method to the miscible displacement
of one incompressible fluid by another in porous media. The
model is as follows:

UK 'u+Vp=y(@)Vd, (x,t)eQx],

</5a—C+V-(uC)—V-(D(u)VC):5q,

3 (x,t) e Qx ],
Viu=g, (x1t)eQx],
u-n=g;, (x1t)eoQx],
C(x,0=Cy(x), xe€Q,
(59)
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where p(C) and d are the gravity coefficient and vertical
coordinate, ¢(x) is the porosity of the rock, and Cq rep-
resents a known source. D(x,u) is the molecular diffusion
and mechanical dispersion coefficient. For convenience, we
denote that f = Cqanda(C) = ‘u(C)K_l.LetX :(0,T] - R?
be the solution of the ordinary differential equation

dy u(x(et1),7)
dr

>

¢ (x) (60)
X (1) = x.

Let V = H(div,Q), S = L%(Q), M = HY(Q); then, we derive
the entire weak formulation for the model: find (u, p,C) €
V x § x M, such that

@@ uv)—(p,V-v)=(y(C)Vd,v), VYvevy,

<¢(x) dCler) , gC,w) +(DVC, V) = (f,w),
dr (61)

Yw e M,

(V-u,90)=(9.9), Voes.

Let At be the time step for both concentration and pressure;
define

My, ={v, e CO(Q): vl r €Q, (1), VT €1,}. (62)

Combing with the new characteristic finite element method
which preserves the mass balance proposed by Rui and Tabata
[10], the approximate characteristic line of y is defined as

un
At (63)
¢ (x)
We obtain the corresponding full-discrete mass-conservative
characteristic (MCC) scheme: find (u,, py,, Cp,) € V;,xS,xM,,,
such that

X () = x-

(a(Cp) s vi) = (P V- vi)
=(y(Cp)Vd,v,), Vv, €V,

< ¢$C; — (¢Ci ") o X"

’q)h) + (D (,) VG, Vo)

At
=(fion), Vo, eM,
(V-upan) =(9:qn)> Van €Sy
C, =C"
(64)
where
ox"
" = det
Y ¢ ( 0x )
V-u, 2V
=1- At + uh?At (65)

”Z,l ) <”Z,2 ) 2
+V| —= |-curl | —= | At".
( ¢ ¢
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TABLE 2: The numerical error for fm. 1 (our formulation) and fm. 2 (Arbogast’s formulation).
oo Mo ot — IV - =)l Ip - pl 1P.p— pyl
fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2
4 4.90e -2 5.67e — 2 3.06e -1 3.24e -1 2.93e -2 2.93e -2 4.53e -3 4.17e -3
8 1.78¢ — 2 2.05¢ - 2 1.53¢ -1 1.62e — 1 1.47e - 2 1.47e -2 1.24e -3 1.20e - 3
1 16 6.45¢ - 3 7.37e -3 7.67e -2 8.13e — 2 7.37e -3 7.37e -3 3.18¢ — 4 3.15e -4
32 2.31le—-3 2.64e -3 3.84e -2 4.07e -2 3.68¢ -3 3.68e -3 8.0le -5 7.98¢ — 5
64 8.25e — 4 9.38¢ — 4 1.92e -2 2.03e -2 1.84e -3 1.84e -3 2.0le-5 2.0le-5
4 4.70e — 2 547e -2 2.99e - 1 3.22e -1 2.95e - 2 2.94e -2 542e -3 4.97e -3
8 1.72e - 2 1.99e -2 1.53e -1 1.63e -1 1.47e -2 1.47e -2 1.54e -3 1.48e -3
2 16 6.25e — 3 7.19¢ -3 7.75e — 2 8.27e — 2 7.37e -3 7.37e -3 4.04e — 4 3.98e -4
32 2.25e -3 2.58e -3 3.89% — 2 4.15e -2 3.68¢ -3 3.68e -3 1.03e - 4 1.02e — 4
64 8.08e — 4 9.2le—4 1.95e -2 2.08e — 2 1.84e -3 1.84e -3 2.5%9¢ -5 2.58e -5
4 9.65e — 2 1.09¢ - 1 4.14e -1 4.67e - 1 1.49 - 1 1.49¢ - 1 7.39¢ - 3 6.2le -3
8 3.79¢ -2 43le-2 2.16e -1 2.46e — 1 7.44e — 2 7.44e — 2 2.14e -3 1.8%9¢ -3
3 16 1.42e -2 1.62e -2 1.1le—-1 1.28e -1 3.72e -2 3.72e -2 5.72e — 4 5.19¢ — 4
32 5.19¢ -3 591e-3 5.63e — 2 6.51e — 2 1.86e — 2 1.86e — 2 1.47e -4 1.35e — 4
64 1.87e -3 2.13e -3 2.84e -2 3.28¢e -2 9.31e-3 9.31e—-3 3.72e -5 3.44e -5
TABLE 3: The corresponding convergence rates of fm. 1 and fm. 2.
Case Mesh llee =l IV - (=)l lp - pul I1Pp = pull
fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2 fm. 1 fm. 2
8 1.459 1.468 0.997 1.001 0.995 0.993 1.875 1.795
16 1.468 1.476 0.998 0.995 0.999 0.999 1.961 1.934
1 32 1.479 1.484 1.000 0.998 1.000 1.000 1.987 1.978
64 1.486 1.489 1.000 1.000 1.000 1.000 1.996 1.993
8 1.449 1.457 0.968 0.978 0.999 0.996 1.817 1.742
16 1.462 1.471 0.983 0.984 1.001 1.001 1.930 1.901
2 32 1.471 1.479 0.993 0.993 1.001 1.000 1.976 1.960
64 1.480 1.485 0.997 0.997 1.000 1.000 1.989 1.984
8 1.347 1.340 0.942 0.924 0.998 0.997 1.787 1.708
16 1.416 1.414 0.957 0.945 0.999 0.999 1.906 1.870
3 32 1.452 1.452 0.979 0.973 1.000 1.000 1.959 1.942
64 1.472 1.473 0.990 0.986 1.000 1.000 1.983 1.975

We can see that the continuous flux is indispensable for y".
Let ¢, = 1 in (64), and summing it up from»n = 1 to N, we
get the mass balance

N 0 J
JngCh dx = JQ¢Chdx . Atn; JQ fdx. (66)

Here, we just give numerical example to show the feasibility
of this application, and the theoretical analysis of stability,
mass balance, and convergence of this discrete scheme will be
discussed in the future. Firstly, we define compute mass error
and relative mass error as follows:

N
compute mass error : J ¢C), dx
Q

- <jQ¢C2dx oy i Jof"dx> ,

_[Q(/)ChNdx - IQ(/)CNdx
quSCNdx '

relative mass error :

(67)

Now, we select 4(C) = C, and the following analytical solu-
tion of the problem is

u(x, y,t)= (e +t,e +1t),
plxyt)=e’(x+57),

C(x,y.t) =e_t<<x— %)2 + (y— %>2>

The error results with different norms of this numerical simu-
lation can be listed in Tables 4 and 5, and at last we give a mass
error to check the mass conservation in Table 6.

As can be seen from Tables 4 and 5, we conjecture that
almost all the convergence rates are true in general. From
Table 6 we find that mass balance is right as computational
mass error resulting from computer is inevitable and nearly
invariable for different meshes, while the relative mass error
decreases as was expected. The corresponding theoretical
analysis about this system will be considered in the future
work.

(68)
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TABLE 4: Numerical error and convergence rate (At = Ch).

Mesh 5x5 10 x 10 20 x 20 40 x 40

Norm type Error Rate Error Rate Error Rate Error Rate

el 1212 1.83e—4 — 7.10e - 5 1.36 3.38¢-5 1.07 1.65¢ - 5 1.03

eal o 2, 1.29¢ -2 - 519 - 3 1.31 2.64¢ -3 0.97 1.37¢ -3 0.95

Il 22y 1.33e -3 — 6.67¢ — 4 1.00 3.33¢ -4 1.00 1.67¢ — 4 1.00

12 o 2y 9.43¢ -2 — 4.71e -2 1.00 2.35¢ -2 1.00 1.18¢ -2 1.00

ICH e 2.32¢-3 — 1.16e -3 1.01 5.78¢ — 4 1.00 2.88¢ — 4 1.00

ICH oo a1y 1.63¢— 1 — 8.18¢ — 2 1.00 41le-2 0.99 2.05¢ — 2 0.99
TaBLE 5: Numerical error and convergence rate (At = CH?).

Mesh 5x5 10 x 10 20 x 20 40 x 40

Norm type Error Rate Error Rate Error Rate Error Rate

ICIl 22y 8.48¢ -5 — 2.13e-5 1.995 537e-6 1.986 1.36e - 6 1.971

ICl oo 22y 1.34e -2 — 3.37e-3 1.989 8.56e — 4 1.978 22le—-4 1.952

TABLE 6: Mass error for concentration C (At = Ch). [9] J. Bear, Dynamics of Fluids in Porous Media, Dover, New York,
NY, USA, 1972.
Mesh 5x5 10x10 20x20 40x40

Compute mass error 1.209¢ —3 1.243e — 3 1.269¢ — 3 1.284e -3
Relative mass error  2.068e — 2 5.427e — 3 1.487e —3 4.371e — 4
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