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The nonlinear matrix equation X — A*X A = Q with p > 0 is investigated. We consider two cases of this equation: the case
p = 1l and the case 0 < p < 1. In the case p > 1, a new sufficient condition for the existence of a unique positive definite solution
for the matrix equation is obtained. A perturbation estimate for the positive definite solution is derived. Explicit expressions of
the condition number for the positive definite solution are given. In the case 0 < p < 1, a new sharper perturbation bound for
the unique positive definite solution is derived. A new backward error of an approximate solution to the unique positive definite
solution is obtained. The theoretical results are illustrated by numerical examples.

1. Introduction

In this paper, we consider the Hermitian positive definite
solution of the nonlinear matrix equation

X-A"XPA=Q 1

where A, Q, and X are n x n complex matrices, Q is a
positive definite matrix, and p > 0. This type of nonlinear
matrix equations arises in the analysis of ladder networks, the
dynamic programming, control theory, stochastic filtering,
statistics, and many applications [1-7].

In the last few years, (1) was investigated in some special
cases. For the nonlinear matrix equations X — A*X'A = Q
[8-12], X —A*X 2A=Q[I3,14], X - A*X "A = Q [15, 16],
and X* - A*X*A = Q [17], there were many contributions
in the literature to the solvability, numerical solutions, and
perturbation analysis. In addition, the related equations X +
A*XTA = Q[9-11,18-23], X + A*X 2A = Q [13, 24, 25],
X+A XA =Q16,26], X°* + A*X A = Q [17, 27-30],
X+A'X9A=Q[31-33],and X + ! AT X 'A; = Q[34-
36] were studied by many scholars.

In [31], a sufficient condition for the equation X -
A"XPA =Q (0 < p < 1) to have a unique positive definite
solution was provided. When the coeflicient matrix A is
nonsingular, several sufficient conditions for the equation X —

A*X™A =Q (g = 1) to have a unique positive definite solu-
tion were given in [37]. When the coefficient matrix A is an
arbitrary complex matrix, necessary conditions and sufficient
conditions for the existence of positive definite solutions for
the equation X — A*X 1A = Q (q > 1) were derived in [38].
Li and Zhang in [39] proved that there always exists a unique
positive definite solution to the equation X — A*XPA =
Q (0 < p < 1). They also obtained a perturbation bound and
a backward error of an approximate solution for the unique
solution of the equation X - A*XPA=Q (0< p< 1).

As a continuation of the previous results, the rest of
the paper is organized as follows. Section2 gives some
preliminary lemmas that will be needed to develop this
work. In Section 3, a new sufficient condition for (1) with
p = 1 having a unique positive definite solution is derived.
In Section 4, a perturbation bound for the positive definite
solution to (1) with p > 1 is given. In Section 5, applying
the integral representation of matrix function, we also discuss
the explicit expressions of condition number for the positive
definite solution to (1) with p > 1. Furthermore, in Section 6,
a new sharper perturbation bound for the unique positive
definite solution to (1) with 0 < p < 1 is given. In Section 7,
a new backward error of an approximate solution to (1) with
0 < p < lis obtained. Finally, several numerical examples are
presented in Section 8.



We denote by """ the set of n x n complex matrices, by
" the set of n x n Hermitian matrices, by I the identity
matrix, by ||-|| the spectral norm, by | - ||z the Frobenius norm
and by A, (M) and A, (M) the maximal and minimal
eigenvalues of M, respectively. For A = (a;) € €™
with columns a; and a matrix B, A ® B = (a,-jB) is a
Kronecker product, and vec A is a vector defined by vec A =
(alT,...,aZ)T. For X,Y € ™", we write X > Y (resp,
X > Y)if X - Y is Hermitian positive semidefinite (resp.,
definite). Letk = A, (A" A), k = A,,;, (A" A).

2. Preliminaries

In this section we quote some preliminary lemmas that we
use later.

Lemma 1 (see [39, Lemma 3.2]). For every positive definite
matrix X € Z"" and 0 < p < 1, then

(i) X P = (sin prr/m) [} (M + X)"APdA.
(ii) X P = (sin pr/pr) [, (AL +X)" X(AI + X)"'A"PdA.
Lemma 2 (see [39, Theorem 2.5]). There exists a unique

positive definite solution X of X — A*XPA=Q (0 < p< 1)
and the iteration

Xo>0, X,=Q+A'XPA n=12.. (2

converges to X.

Lemma 3 (see [32, Lemma 2]). (i) If X € Z"", then e |
M min (X)
e .

(i) If X € X" and r >
(/1) [, e*sds.

1 —
(iii) If A, B € & then eATB _ oA _ J‘O IDApHATB) 7

0, then X7 =

3. A Sufficient Condition for the Existence of a
Unique Solution of X-A"X A =Q (p>1)

In this section, we derive a new sufficient condition for the
existence of a unique solution of X - A*X PA =Q (p = 1)
beginning with the lemma.

Lemma 4 (see [38, Theorem 5, Remark 4]). If
B> ()", (3)

then (1) has a unique positive definite solution X € [PI,«I],
where o and [3 are, respectively, positive solutions of the
following equations:

p
(A @) (Mo @+ ) =% @

= \?
-t (M@ 5 ) =k O

Furthermore,

Amin (Q) < B <. (6)
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Theorem 5. If

_ P
((pE)l/(PH) _ Amin (Q)) <Amax Q) + W) <K,

(Amin (Q p)P/F2AED ()

D +1-p>0, (8)

then (1) has a unique positive definite solution.

Proof. We first prove 8 > (pic)"/?*!), where 8 is the positive
solution to (5). Let

= \?
F )= (5= A @) (e @+ =) =5 O

By computation, we obtain

] K K p-1
£ = ;(Am @+ x—P)
(10)

X <@XP +p2Amin (Q)x_l +1 _p2> :

Define

max (Q)
3

g(x) = A P A Qx T H1-pt (1)

Then g(x) is decreasing on [0, A, (Q) p/(A a0 (Q))YPH]
and increasing on A, (Q) pi/(A oy (Q)YP*Y, +00), which
implies that

/\min (Q) p% 1/(P+1)
gmin - g (( /\max (Q) > )

(Amin (Q p)” N0 (Q
:(1+p)< T +1-p].

(12)

According to the condition (8), it follows that g,.;. > 0. Note
that

_ .
F0= S @+ 5) g 0

which implies that f(x) is increasing on (0, +00). Consid-
ering the condition (7), one sees that f((pr)/®™) < o.
Combining that and the definition of 8 in Lemma 4, we
obtain 8 > (p)"/?*V. By Lemma 4, (1) has a unique positive
definite solution. O

4. Perturbation Bound for
X-A"XPA=Q (p=1)

Li and Zhang in [39] proved that there always exists
a unique positive definite solution to the equation
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X-A"XPA = Q0 < p < 1). They also obtained a
perturbation bound for the unique solution. But their
approach becomes invalid for the case of p > 1. Since
the equation X — A*XPA = Q (p > 1) does not always
have a unique positive definite solution, there are two
difficulties for a perturbation analysis of the equation
X - A*XPA = Q(p = 1). One difficulty is how to find
some reasonable restrictions on the coeflicient matrices of
perturbed equation ensuring that this equation has a unique
positive definite solution. The other difficulty is how to find
an expression of AX which is easy to handle.

Assume that the coefficient matrix A is perturbed to A =
AA + A. Let X = AX + X with AX € %" satisfying the
perturbed equation

X-A"XPA=Q p=1 (14)
In the following, we derive a perturbation estimate for
the positive definite solution to the matrix equation X —
A"XPA =Q (p > 1) beginning with the lemma.
Lemma 6 (see [38, Corollary 1. Remark 4]). If
PIAI" < A75 Q) (15)

then (1) has a unique positive definite solution X. Moreover,
X > A (QL

Theorem 7. If

p+l p+l
||A||<\jM, "AA"<\jM_”A”’ (16)
p p

then
X-A"XPA=Q, X-A'XPA=0Q (17)

have unique positive definite solutions X and X, respectively.
Furthermore,

X-X 2 Al + |AA
K-x]_ cranviaan oo
IXI— AFL (Q - pllA]

Proof. By (16), it follows that A < [A| + [AA] <
\Mg:) (Q)/p. According to Lemma 6, the condition (16)

ensures that (1) and (14) have unique positive definite solu-
tions X and X, respectively. Furthermore, we obtain that

X 2 Amin (Q) I’ X 2 /\min (Q) I (19)
Subtracting (14) from (1) gives
AX=A"XPA-A"XPA
(20)

PoXTP)A+AATX PA+ AXPAA.

By Lemma 3 and inequalities in (19), we have

"AX +ATXPA- A*X‘*PAH

= lIAX + A" L J:O (eisX - eisg) P dsA

I'(p)
1 —
llAX+A —J J e_(l_t)SXAXe_tSthsPdsA‘
0
oo rl —
> IAX] - A "Ax”j j ||e‘“‘”sx o7 dstds
0
2 —
> [AX]- AN AX]| JOO Jl 17050 (D) 15 (0) 1, P g
L(p) Jo Jo
2 (e
> [AX]- IAI° AX] j jle—(l—t)sAmin(Q)e—tS/\min(Q)dtSpds
T(p) Jo Jo
2 0
=||AX||——"A" "AX”I I Anin(Q gy 5P ds
L(p) Jo Jo
_[AX] - T(p+1) _ IAJ” |AX]]
L) ML
CAZ(Q - plAIP
= I1AX].
/\mm (Q)
(21
Noting (16), we have
1 2
AP (Q = plIAI > 0. (22)

Combining (20) and (21), one sees that

A(Q) - pllAJ

* =P e
) IAX] < |AA*XPA+ A X PAA|

< (IAA] + 2 JAD) [AA] X7

< (lAAl+2AD 1AAIAE, (Q),

min

(23)
which implies that
AX AA|+2]A
IAX] __(2M1+ 204D,y o1
X1 2% (Q - plAl
O

5. Condition Number for
X-A"XPA=Q (p=1)

A condition number is a measurement of the sensitivity of
the positive definite stabilizing solutions to small changes in
the coefficient matrices. In this section, we apply the theory



of condition number developed by Rice [40] to derive explicit
expressions of the condition number for the matrix equation
X-A'XPA=Q(p=1).

Here we consider the perturbed equation

X-A'XPA=Q, p=1, (25)

where A and Q are small perturbations of A and Q in (1),
respectively.

Suppose that plAI* < A21(Q) and plAI° < A2L(@).

According to Lemma 6, (1) 2111;11[(11 (25) have unique pncl;rslitive
definite solutions X and X, respectively. Let AX = X — X,
AQ=Q-Q,and AA=A-A.

Subtracting (25) from (1) gives

AX=A"XPA-A"XPA+AQ

=A"(XP-XTP)A+AA'XPA+ A" X PAA+AQ

=_A" ﬁ LOO (e_SX - e_&) sP7dsA

FAA*X PA+ A" X PAA+AQ

oo rl —
=-A" L J J e DX ()~( - X) e X dtsPdsA
T(p) Jo Jo

+AA*X PA+ A" X PAA +AQ

— A 1 j‘x’ Jl (e—u-t)s)? _ e—(l—t)sX)
T(p) Jo Jo

x AXe "X dtsPdsA + AQ

o 1
I'(p)

— (A" XPAA - A"(X + AX)PAA)

oo 1l
J j e XA XX grsP ds A
o Jo

+ A"XPAA - (AA"XPA- AA"(X + AX)PA)

+AAXFA

il |

1 —
J o~ (mmA-0sX p yr ~m(1-0s%
0

x AXe "Xdm (1 - t) dts" dsA
+ AQ

. 1
I'(p)
+AA*X PAA+ A X PAA+ AA*XPA

oo 1
J J e XA XX grsP dsA
o Jo

— 1 oo 1 o B
.y —J j e WOSHAX) A 3o X 1 P ASAA
0 0

I'(p)

—AA” L JOO Jl e ITDSEHAX) A xo7X g1 6P S A
T(p) Jo Jo
(26)
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Therefore,

s 1o _aons “ts
AX+A mj Je(l DX\ Xe X dtsP dsA
P)Jo Jo

= E+h(AX),

(27)

where
B=XPA,
E=AQ+ (B"AA+AAB) + AA"X PAA,

h(AX)

1 o rl 1
A J J J o~ (=m)1-0sX
L(p) Jo Jo Jo

x AXe—m(l—t)sj(-AXe—tsX

x dm (1 —t)dts"  dsA

A 1 © ! —(1-1)s —1s.
-A @J J e ITDSXHAX) A xo B X g1 P ASA A
o Jo
— AA" % JOO Jl o ITDSEHAX) A w0 X 14 6P S A
P)Jo Jo
(28)
Lemma 8. If
PIAI < A0 (Q), (29)
then the linear operator V : " — F™" defined by
1 O (1isXy ., —tsX
VW:W+—J JAe We ** Adtst ds,
r(p) 0 Jo (30)
W e %nxn
is invertible.
Proof. Define the operator R : " — ™" by
L' v —apsx., —tsx
RZ:—J JAe 2 ze 7t AdtsPds,
7 ¢ %nxn,
it follows that
VIV = W + RW. (32)

Then, V is invertible if and only if I + R is invertible.
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According to Lemma 3 and the condition (29), we have

RW]|
oo 1
AP W [ [ ] o] destas
p) o Jo
oo rl
||A|| ||W|| - j J e*(1*t)S/\mm(X)e*ts)wmxn(X)dtSPds
P) o Jo

oo rl
<||A|| ||W|| p J J e_(l_t)SAmin(Q)e_tSA’min(Q)dtSPdS

o0
A W e*S/\min(Q) sPds
T ( ) Jo

_plAP
APH

min

Wi < 1wl
(33)

which implies that [|R|| < 1 and I + R is invertible. Therefore,
the operator V is invertible. O

Thus, we can rewrite (27) as

AX =V 'AQ+V ' (B*AA + AA*B)
(34)
+V ' (AA*XPAA) + V7 (h(AX)),

AX =V 'AQ+ V' (B*AA + AA*B)
(35)
+0(I(AA,AQ)}),  (AA,AQ) — o.

By the theory of condition number developed by Rice
[40], we define the condition number of the Hermitian
positive definite solution X to the matrix equation X —
A'XPA=Q (p=1)by

AX
c(X) = lim sup %, (36)
0= aamaaipl,<s &

where &, 7, and p are positive parameters. Taking & = 5 =
p = 1in (36) gives the absolute condition number ¢, bS(X)
and taking & = | X|lz, 17 = Al and p = [|Qll in (36) gives
the relative condition number ¢, (X).

Substituting (35) into (36), we get

[V (aQ+BAA + AA*B)"F
I(aA/n,AQ/p)| 5

c(X) == max
& (aa/maq/p)+0
AAEG™" AQeF™"

1 [V (pH + 1 (B"E+E*B))|,

= = max
(EH)#0 I(E, H)llf

Ec@™" HeF™"

(37)

Let V be the matrix representation of the linear operator V. It
follows from Lemma 4.3.2. in [41] that

vec (VW) =V -vecW. (38)

5
By Lemma 4.3.1. in [41], we have
vec (VW)
1 (@Y —tsx \T * —(1-t)sX
= I®I+—J J(eSA) ®(Ae S)dl‘spds
I(p)Jo Jo
-vecW.
(39)
Then,
(o,
V:I®I+—J J (e%a)"
® (A*ef(H)SX) dtsPds.
Let
vi=8+i3,
V'(IeB) =V (Ie(XA)")=U, +iQ,
v'!('enm=v" ((X*PA)T ® 1) n-u,+io, Y
s [s = v o[+l 99
c=lz s | c=1Q,+Q, U, -U,
vecH = x+1iy, vecE =a+ib,
(42)

g= (xT’ y, aT’bT)T)
where x, y,a,b € &, 8,%,U,,U,,Q,,Q, € B, M =
(E,H), i= V-1, Ilisthe vec-permutation matrix, that is,
vecE" = TvecE. (43)
Furthermore, we obtain that
|V~ (pH + 7 (B*E+E"B))|,
ICE, H)lp

(44)

¢ = Fu

= EII\E}% ”pV VecH+r]V

x ((I®B*)VCCE +(BT®I)VecE*)||)

x (llvec (E, H)I)™*

1 . .
= EE% o (S+iZ) (x +iy)

+71 (U, +iQ,) (a + ib) (45)
+(U, +iQ,) (a - ib)]|
x ([[vec (E, H)|)™!

1o I(p S.,nU.) gl
e I9l

= % ||(pSC,11UC)||, Eec@™ Hex™



Then, we have the following theorem.

Theorem 9. pr||A||2 < APH(Q), then the condition number

min

c(X) defined by (36) has the explicit expression
1
¢(X¥) = g I(pSenUl (46)

where the matrices S, and U, are defined by (40)-(41).

Remark 10. From (46) we have the relative condition number

I(IQIES. I1AlI:U)|

47
X1 )

Crel (X) =

5.1. The Real Case. In this subsection, we consider the real
case, that is, where all the coefficients matrices A, Q of the
matrix equation X — A*XPA = Q (p > 1) are real. In
such a case the corresponding solution X is also real. Similar
arguments as in Theorem 9 give the following theorem.

Theorem 11. Let A, Q be real, c¢(X) the condition number
defined by (36). prIIAII2 < /\f:;(Q), then c(X) has the explicit
expression

(0 = & 1(pS., 10, (48)
where
_ L o rl —tsX T
S, = (1®1+ 0 JO JO (e*A)
-1
® (ATe_(H)SX) dtspds> , (49)

U =S, [Te(ATXP)+((ATXP)eI)T].

Proof. Let

U =v"'((IeB")+(B" 1))

(50)
=5, ((1e(x?4)") + ((x?4) ®1)11)

T T\T
vecH = x, vecE =a, g=(x,a),

2
where x,a,€ R", M = (E,H), i = -1, Il is the vec-
permutation matrix, that is,

vec E! =TI vecE. (51)
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It follows from (44) that
[V (pH +n (B"E+ E"B))| .

c(X) = lmax
I(E, H)Il g

EM#0

= %ﬂ% “pV“1 vecH

+qV " (1@ B") vecE+ (B" @ I) vec E' |
x (llvec (E, H)I)™*

_1 N(eS.nU) gl
= ax————
Ea+0 |g|

1
= L 1(pS70,).
(52)
0

Remark 12. In the real case the relative condition number is
given by

1(IQIES, I1Al:U, )|

et (X) = (53)
1 1
6. New Perturbation Bound for
X-A"XPA=Q (0<p<1)
Here, we consider the perturbed equation
X-A'XPA=Q, 0<p<l, (54)

where A and Q are small perturbations of A and Q in (1),
respectively. We assume that X and X are the solutions of (1)
and (54), respectively. Let AX = X — X, AQ = Q - Q, and
AA=A- A

In this section, we develop a new perturbation bound for
the solution of (1) which is sharper than that in [39, Theorem
31].

Subtracting (1) from (54), using Lemma 1, we have

AX 4 SPT ro (A1 +x)7 4]
T 0
x AX [(M+X)"A]A7PdA = E+ h (AX),
(55)
where
B=XPA,

E=AQ+ (B"AA+AA"B) + AA"X PAA,

SIPT 4+ J (AL +X)™!
0

h(AX) =
X AX(AI + X +AX)™!

x AX(M + X) 'APdAA
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B SlinrA«* J’ (AI+X)_1AX(/\I+X+AX)_1A_Pd/\AA
T 0

_SIPT 4 J AL+ X)'AXAL + X + AX) A PdAA.
T 0

(56)

By Lemma 5.1in [39], the linear operator L : ™" — "
defined by

sin prmr

LW =W + ro (A1 +x)7"A]

0

xw [+ x)"a]ardy, 7
W c %nxn

is invertible.
We also define operator P : €"" — Z™" by

PZ=L"(B*Z+Z'B),
(58)
Ze6™, i=12,...,m.

Thus, we can rewrite (55) as

AX =L'AQ+PAA+ L' (AA*X PAA) + L7 (h(AX)).

(59)
Define
-1 _ -1 _
[ = max, W] P = max ez
[Wi=1 1Zl=1
Now we denote
_1n-1 _ _
= = x L = 0xL
n=IPl,  n=pElAl
) (61)
e = T1AQI +n1AAL + SIAAL,
0= %CE AL+ 1AA[D) AA] .
Theorem 13. If
_ 2
o<1, €< i1-o0) N
((l +lo+2n+2+(lo+1) (n+ l))
(62)
then
|X-x]
2le
< =u,
I(1+%e-0)+ \/12(1 +le—0) —4le(l+7)
(63)

Proof. Let

f(AX) =L'AQ + PAA+ L7 (AA* X PAA)
(64)
+ L7 (h(AX)).

Obviously, f : Z™" — '™ is continuous. The condition
(62) ensures that the quadratic equation

((+n)x 11 +le-0)x+le=0 (65)
in x has two positive real roots. The smaller one is
3 2le
) I(1+8e-0)+ \/12(1 +le-0) —4lCe(l+;1).

Define Q = {AX € Z" : |AX| < w,}. Then for any AX €
Q, by (62), we have

M

(66)

|x~ax]
< | [iaxi
2e B fe+o-1
<G =€ l+le-0 l1+le-o

s1+<(-l(1—0)2/C<l+lo+211+2\/(la+;1)(;7+l)>
+a—1>><(1+(§e—a)_1

I(1-0)+(0-1)(+1lo+2n)

=it (I+1o+2n)(1+e-o0)

_ -2(1-0)(lo+n)
T (lo+1+2n)(1+%e-0)

(67)

It follows that I — X' AX is nonsingular and

|- x7'ax| < (68)

! < ! .
1-||x-1AaX| ~ 1-¢lAX]|
Therefore

If (ax)]
< 7 1AQ1 + nla4]

IAX]?
1-{AX]

IAX] (69)
1-¢|AX]|

¥ §||AA,-||2 ¥ %CEIIAIIZ

+ %(5 1Al +TAA[D) NAA] -

nCIAX]
11 =-ClAXT)

o |AX]
1-ClAX]

o, nius
+ + =u,,
I_CM* l(l_C."l*) H

<€



for AX € Q, in which the last equality is due to the fact
that y, is a solution to (65). That is f(Q) < Q. According
to Schauder fixed point theorem, there exists AX, € Q such
that f(AX,) = AX,. It follows that X + AX, is a Hermitian
solution of (54). By Lemma 2, we know that the solution of

(54) is unique. Then AX, = X — X and | X - X|| < U ]

7. New Backward Error for
X-A"XPA=Q (0<p<1)

In this section, we evaluate a new backward error estimate
for an approximate solution to the unique solution, which is
sharper than that in [39, Theorem 4.1], .

Theorem 14. Let X > 0 be an approximation to the solution
X of ). IFIXPRAI"|X ] < 1 and the residual R(X) = Q +
A*XPA - X satisfies

"R (X)” < % min {1, #I(Y)} . where
—_ _ _ (70)
0, = (1= X724 | %)) A (%)
+|R(Z)] >0,
then
")? - X” <0 “R (}?)" , where
2 (X) (7)

o+ |62 — 41, (R) [R(X)]

To prove the above theorem, we first verify the following
lemma.

Lemma 15. For every positive definite matrix X € #™", 0 <
p<LifX+AX=>(1/v)I >0, then

“A* (X+AX)F - X—P)A"
< p (16X + HAXE) [x P2 Al [x7].

Proof. It follows from Lemma 1 that

JA* (X +AX)FP - X7P) A

A" <—Sinp T ro (AI+X +AX) A T+X)7)
TT 0

x A7Pd)) AH

sin prr
L Sinp <
T

A J AI+X) ' AX A+ X) ' A7PdA All)
0

. sin pr <|

A* j AL+ X)'AXOM + X + AX)™
T

0

x AX(AM + X)'A7PdA AII) .

(73)
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Note that AX(E IAXII, X + AX > (1/v)I > 0,and X P =
(sin prr/ prm) .[0 AL+ X) ' XM + X)"A7P d), we have

A" J AL+ X) AXAT + X)"'APdA A”
0

<

A* J M+ X) ' XXT'AX (M + X) AP AH
0

A* ro AT+ X) ' XM+ X)'APdA AII ||X*1H IAX]
0

= P jarxra) x| iaxi,

sin (prmr)

(74)

A J AL+ X)) 'AXOM + X + AX) ™
0

xAX(M + X)_I/\‘Pd/\AH

A J AL+ X)'xx!
0

x AX(M + X + AX) ' AXAL + X) ' APd) All (75)

<

A <r° AL+ X)" XL+ X)_l/\_Pd/\A)”
0

XY X7

= P jarxr A axPxY.

sin (pr)

A combination of (73)-(75) gives
[A" (X +AX)F - X7P) A
< plla*xPA| x| 1ax]
+p AT X P A| vIAX]? “X‘1||

=p (IIAX|| + VIIAX||2) HX_P/ZA”Z “X_l" |

(76)

Here, we have used the result [A*X PA| =
2

[(XPRA)* (X P12 A)| X P2A|" to derive the last

equality (refer to [42, Problem 11. Page 312]). O

Proof of Theorem 14. Let

¥={AX ex™": |AX| <6 ||R (X’)||}. (77)
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TABLE 1: Assumptions check for Example 1 with different values of
J.

j 4 5 6 7

ass, 0.0455 0.0456 0.0456 0.0456
ass, 0.9999 1.0000 1.0000 1.0000
ass, 0.3957 0.3959 0.3959 0.3959

Obviously, V¥ is a nonempty bounded convex closed set. Let
gax) = A" ((X+ax) " -XP)a+R(X). (8)

Evidently g : ¥ — #"™" is continuous. The condition (70)
ensures that the equation

7 = [( =R AL ) A (3) + R ()]

* i (X) [R(X)] = 0

Y
(79)

in y has two positive real roots. The smaller one is y, =
22 min X)IRX)N/6; + \/0% =4 iy XIRX)|, where 6, =

— 2~ — —
(1= IXP2APNX DA i () + IR
We will prove that g(¥) < V. For every AX € ¥, we have

AX > -6 “R (5(’)|| 1. (80)
Hence,

X2 X0 ()0 (.

Using (70) and (71), one sees that
2 (X) [R(Z)]
61+ 87 ~ 4 (X) [R (X))

Aumin (X) |R (X X
EUTILTIEN

o|r(%)] -

(82)

Therefore, (A,;,(X) — OIIR(X)INI > 0.
According to (72), we obtain

lg ax)]

Sp(llAXII+

AP
Ain (X) =0 |R (3] )

<Al ]+ R (B

(o= (X))’ >

Ain (X) = 0[R (X))

< (XAl ) + R ()]

(83)

<(ols(e-

=6[r(X)[.

for AX €V, in which the last equality is due to the fact that
B|R(X)| is a solution to (79). That is g(¥) ¢ VY. By Brouwer
fixed point theorem, there existsa AX € ¥ such that g(AX) =
AX.Hence X+AX is a solution of (1). Moreover, by Lemma 2,
we know that the solution X of (1) is unique. Then

|X- x| =1ax1<6|r(X)|. (84)

O

8. Numerical Examples

To illustrate the theoretical results of the previous sections,
in this section four simple examples are given, which were
carried out using MATLAB 7.1. For the stopping criterion we
take &, (X) = | X, - A" X;PA - Q| < 1.0e - 10.

Example 1. We consider the matrix equation

X-A*X"A=1, (85)
where
A (2 095
A—m, A0—<0 ! > (86)

Suppose that the coefficient matrix A is perturbed to A = A+
AA, where
107/ T
AN = ——=(C +C 87
SR )

and C is a random matrix generated by MATLAB function
randn.

We compare our own result p, /| X|| £ err, in Theorem 13
with the perturbation bound &, £ err; proposed in [39,
Theorem 3.1].

The assumption in [39, Theorem 3.1] is

ass; = IAI* +¢ - Al - IAA] > 0. (88)
The assumptions in Theorem 13 are
ass, =1-0>0,

I(1-0)
ass; = (1-0) -€>0.

C(l+ol+2;1+2\/(la+;1)(;7+l)>

By computation, we list them in Table 1.

The results listed in Table 1 show that the assumptions in
Theorem 3.1 [39] and Theorem 13 are satisfied.

By Theorem 3.1in [39] and Theorem 13, we can compute
the relative perturbation bounds err,, err,, respectively. These
results averaged as the geometric mean of 10 randomly
perturbed runs. Some results are listed in Table 2.

The results listed in Table 2 show that the perturbation
bound err, given by Theorem 13 is fairly sharp, while the
bound err, given by Theorem 3.1 in [39] is conservative.

(89)
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TABLE 2: Perturbation bounds for Example 1 with different values of ;.
4 5 6 7
||X — X” 5 6 7 8
iXI 6.8119 x 10~ 4.2332x 10 4.3287 x 10~ 5.5767 x 10~
err, 2.6003 x 107 2.1375x 107 1.9229 x 107 2.7300 x 1077
err, 8.8966 x 107° 6.5825 x 10°° 7.2867 x 1077 9.3455x 10°°
TaBLE 3: Results for Example 2 with different values of k.
k 4 5 6 7
|X: - x| 6.2131x 107 1.5830 x 1077 8.2486 x 107° 6.0132x 1071°
v, |R(X)| 2.5930 x 107 6.6257 x 10”7 3.5697 x 10° 24646 x 107
K, 4.1734 4.1856 4.3277 4.0986
0|R(X,)| 7.0053 x 107 1.7900 x 1077 9.6440 x 107° 6.6583 x 1071°
K, 1.1275 1.1308 1.1692 1.1073
Example 2. Consider the equation From the results listed in Table 3 we see that the new
" backward error bound 0||R(X,)|| is sharper and closer to the
X-AX""TA=Q (90)  actual error than the backward error bound v, [R(X)I in

for

0.2 0.2 0.8939 0.2987

A= (0.1 0.1 ) Q= (0.1991 0.6614)' ©n
Choose X, = 3Q. Let the approximate solution X, be given
with the iterative method (2), where k is the iteration number.
Assume that the solution X of (1) is unknown.

We compare our own result with the backward error
proposed in Theorem 4.1 [39].

The residual R(X;) = Q + A*)?;PA — X, satisfies the
conditions in Theorem 4.1 [39] and in Theorem 14.

By Theorem 4.1 in [39], we can compute the backward
error bound

[39]. Moreover, we see that the backward error OIR(X)| for
an approximate solution X seems to be independent of the
conditioning of the solution X.

Example 3. We consider the matrix equation

X-A*XA =51, (95)
where
A, 2 0.95
A=m, A0=<0 . ) (96)

We now consider the perturbation bounds for the solu-
tion X when the coefficient matrix A is perturbed to A =
A+ AA, where

aa 107 (c"+c) (©7)
[ K= x| <. [R(Re)]. - where “fereq
20 X, ! I (92) and C is a random matrix generated by MATLAB function
k k

v, = — — 5
1-(3/4) |X72AX7

By Theorem 14, we can compute the new backward error
bound

"Xk - X” <0 “R (Xk)", where

2Amin (Xk)

= — — 93
6, + 8 41, (o) [R (%) >
6, = (1= [ AL %) A (%) + R ()]
Let
) -
RGN e,
%e-x] T %]

Some results are shown in Table 3.

randn.

The conditions in Theorem 7 are satisfied.

By Theorem 7, we can compute the relative perturbation
bound g with different values of j. These results averaged as
the geometric mean of 10 randomly perturbed runs. Some
results are listed in Table 4.

The results listed in Table 4 show that the perturbation
bound ¢ given by Theorem 7 is fairly sharp.

Example 4. Consider the matrix equation X - A*X A = Q,
where
(05 0.55-107F (51
A—<1 ] ) Q—(l 5>. (98)

By Remark 12, we can compute the relative condition
number ¢, (X). Some results are listed in Table 5.

Table 5 shows that the unique positive definite solution X
is well conditioned.
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TABLE 4: Results for Example 3 with different values of j.

j 4 5 6 7
X-X

"”X”" 1.1892 x 1077 2.1101 x 1078 2.4085 % 10~° 1.6847 x 1071°

0 2.0791 x 1077 3.5353 x 10°° 3.9573x 10~° 3.2580 x 1071

TABLE 5: Results for Example 4 with different values of k.

k 1 3 5 7 9
Ga(X) 12510 10991 10009 10009 10009
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