
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2013, Article ID 432936, 12 pages
http://dx.doi.org/10.1155/2013/432936

Research Article
Oscillation and Nonoscillation of Asymptotically Almost
Periodic Half-Linear Difference Equations

Michal Veselý1 and Petr Hasil2

1 Department of Mathematics and Statistics, Masaryk University, Kotlářská 2, 611 37 Brno, Czech Republic
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We analyse half-linear difference equations with asymptotically almost periodic coefficients. Using the adapted Riccati transforma-
tion, we prove that these equations are conditionally oscillatory. We explicitly find a constant, determined by the coefficients of a
given equation, which is the borderline between the oscillation and the nonoscillation of the equation. We also mention corollaries
of our result with several examples.

1. Introduction

We intend to study the oscillation behaviour of the second-
order half-linear difference equation

Δ [𝑟𝑘Φ(Δ𝑦𝑘)] + 𝑝𝑘Φ(𝑦𝑘+1) = 0, (1)

where Φ(𝑦) = |𝑦|
𝑝−1 sgn𝑦, 𝑝 > 1, and 𝑟𝑘 ̸= 0 for all consid-

ered 𝑘. Throughout this paper, we consider integers 𝑘 ≥ 𝑚

for a sufficiently large 𝑚 ∈ N. Concerning the oscillation
and nonoscillation of these equations,many results have been
obtained in the last years. The basic facts of the oscillation
theory for (1) are established in [1]. Several criteria for
(non)oscillation of (1) are proved, for example, in [2–6] (for
(1) with 𝑟𝑘 ≡ 1, see [7–9]; for the continuous case, see [10–
12]). Oscillatory properties of slightlymore general difference
equations are investigated, for example, in [13, 14]. A detailed
literature overview can be found in [15].

The oscillation theory of half-linear difference equations
is motivated by the continuous case and by the linear case.

Equation (1) is the discretization of the half-linear differ-
ential equation

[𝑟 (𝑡) Φ (𝑦
󸀠
(𝑡))]
󸀠

+ 𝑝 (𝑡)Φ (𝑦 (𝑡)) = 0, 𝑟 (𝑡) > 0. (2)

The first occurrence of an equation of this form is dated
back to 1961 (see [16]). But [17, 18] are regarded as the basic

papers in this field. For a comprehensive overview of half-
linear differential equations, we refer to [19] with references
cited therein. Note that techniques needed in the discrete
theory are often more complicated than their continuous
counterparts. In this paper, we apply the Riccati method
which is used in the continuous case as well. Comparing this
paper with its continuous counterpart [20], one can see that
the discrete method requires several nontrivial extra steps
and is technically more exacting. Particularly, we cannot use
the fact that the ranges of considered solutions are intervals.

Equation (1) is a generalization of the linear equation

Δ (𝑟𝑘Δ𝑦𝑘) + 𝑝𝑘𝑦𝑘+1 = 0, 𝑟𝑘 ̸= 0, (3)

whose oscillation theory is well described in the literature
(see [21, 22] and references therein). There are limitations of
the tools known from the theory of linear equations (e.g.,
the transformation theory and theCasoratian identity).These
limitations are more or less consequences of the fact that
the solution space of half-linear equations is not additive.
Nevertheless, it remains homogeneous (likewise in the linear
case). This observation motivates the term “half-linear.”

Actually, we consider (1) in the form

Δ [𝑟𝑘Φ(Δ𝑦𝑘)] +
𝛾𝑠𝑘

(𝑘 + 1)
(𝑝)
Φ(𝑦𝑘+1) = 0, (4)
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where {𝑟𝑘}, {𝑠𝑘} are positive sequences, 𝛾 > 0, and 𝑘
(𝑝) stands

for the so-called generalized power function. Our objective
is to prove that (4) is conditionally oscillatory and to find
the corresponding oscillation constant. We recall that (4) is
conditionally oscillatory if there exists Γ > 0with the property
that (4) is oscillatory for 𝛾 > Γ and nonoscillatory for 𝛾 < Γ.
In this case, Γ is called the oscillation constant of (4). Note that
we consider the form with the generalized power function
1/(𝑘 + 1)

(𝑝) because we want to be consistent with previous
results and ourmethod ismuchmore transparent in this case.

According to the best of our knowledge, the first result
about the conditional oscillation of a second-order equation
was proved by Kneser back in 1893 (see [23]). In [23], it is
shown that the differential equation

𝑦
󸀠󸀠
(𝑡) +

𝛾

𝑡2
𝑦 (𝑡) = 0 (5)

is conditionally oscillatory with the oscillation constant Γ =
1/4. The corresponding difference equation

Δ
2
𝑦𝑘 +

𝛾

(𝑘 + 1) 𝑘
𝑦𝑘+1 = 0 (6)

is conditionally oscillatory with the oscillation constant Γ =
1/4 as well (see [24]). In [25], the previous Kneser result is
generalized for the equation

[𝑟 (𝑡) 𝑦
󸀠
(𝑡)]
󸀠

+
𝛾𝑠 (𝑡)

𝑡2
𝑦 (𝑡) = 0, (7)

where 𝑟, 𝑠 : R → R are positive periodic continuous fun-
ctions.We can alsomention [26] andmore generally [27, 28].
For the discrete linear equation

Δ (𝑟𝑘Δ𝑦𝑘) +
𝛾𝑠𝑘

(𝑘 + 1) 𝑘
𝑦𝑘+1 = 0, (8)

we refer to [29], where the corresponding result is obtained.
Nevertheless, the first discrete version of the result of [25] was
proved in [30]. The oscillation constant from [30] coincides
with the one from [29] if the considered coefficients are
asymptotically constant. In fact, the conditional oscillation of
(8) with almost periodic coefficients is proved in [29]. The
oscillation constant for the periodic half-linear equation

[𝑟 (𝑡) Φ (𝑦
󸀠
(𝑡))]
󸀠

+
𝛾𝑠 (𝑡)

𝑡𝑝
Φ(𝑦 (𝑡)) = 0 (9)

is derived in [31] (see also [32]) and the oscillation constant
for (9) with asymptotically almost periodic coefficients is
obtained in [20]. Our aim is to prove the discrete counterpart
of the main result of [20]; that is, we find the oscillation con-
stant for (4) with asymptotically almost periodic coefficients.
We add that this result is new in the periodic case and in the
linear case as well.

The paper is organized as follows. In Section 2, we recall
elements of the theory of almost periodic and asymptoti-
cally almost periodic sequences, which we will use later. In
Section 3, we mention basic definitions from the oscillation
theory and we derive the adapted Riccati equation. Using the

prepared Riccati technique, we prove the announced result in
Section 4.Then, we state its corollaries and we illustrate them
by examples. We also show a way how the main result can
be applied for equations with coefficients which change their
signs.

Henceforth, let 𝑝 > 1 be arbitrarily given and let 𝑞 ∈ R

be such that

1

𝑝
+
1

𝑞
= 1, i.e., 𝑝 + 𝑞 = 𝑝𝑞. (10)

Thus, forΦ(𝑥) = |𝑥|𝑝−1 sgn𝑥, we haveΦ−1(𝑥) = |𝑥|𝑞−1 sgn𝑥.
For the reader’s convenience, we recall the generalized power
function (sometimes called the falling factorial power)

𝑘
(𝛼)
=

Γ (𝑘 + 1)

Γ (𝑘 + 1 − 𝛼)
, 𝛼 ∈ (−1, 𝑘) , 𝑘 ∈ N, (11)

where

Γ (𝑥) = ∫

∞

0

𝑒
−𝑠
𝑠
𝑥−1

𝑑𝑠, 𝑥 > 1, (12)

and the identities

Δ𝑘
(𝛼+1)

= (𝛼 + 1) 𝑘
(𝛼)
,

𝑘
(𝛼+1)

𝑘(𝛼)
= 𝑘 − 𝛼,

𝛼 ∈ (−1, 𝑘) , 𝑘 ∈ N,

(13)

which we will often apply later. We also refer to [22,
Chapter 2].

2. Asymptotic Almost Periodicity

We begin with the notion of almost periodicity. The funda-
mental results of the theory of almost periodic sequences can
be found, for example, in [33, Section I.6].

Definition 1. A sequence {𝑓𝑘}𝑘∈Z ⊂ R is called almost periodic
if, for every 𝜀 > 0, there exists an integer 𝑝(𝜀) with the
property that any set consisting of 𝑝(𝜀) consecutive integers
contains at least one number 𝑙 for which

󵄨󵄨󵄨󵄨𝑓𝑘+𝑙 − 𝑓𝑘
󵄨󵄨󵄨󵄨 < 𝜀, 𝑘 ∈ Z. (14)

Definition 2. A continuous function 𝑓 : R → R is called
almost periodic if, for every 𝜀 > 0, there exists a number𝑝(𝜀) >
0 such that any interval of length 𝑝(𝜀) of the real line contains
at least one point 𝑠 satisfying

󵄨󵄨󵄨󵄨𝑓 (𝑡 + 𝑠) − 𝑓 (𝑡)
󵄨󵄨󵄨󵄨 < 𝜀, 𝑡 ∈ R. (15)

Theorem 3. A necessary and sufficient condition for a seq-
uence {𝑓𝑘}𝑘∈Z ⊂ R to be almost periodic is the existence of an
almost periodic function 𝑔 : R → R with the property that
𝑓𝑘 = 𝑔(𝑘) for all 𝑘 ∈ Z.

Proof. See [33, Theorem 1.27].
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Theorem 4. Any almost periodic sequence is bounded.

Proof. The statement of the theorem follows fromTheorem 3
and from the boundedness of any almost periodic function
on the real line (see, e.g., [33, Theorem 1.2]).

Theorem 5. A sequence {𝑓𝑘}𝑘∈Z ⊂ R is almost periodic if and
only if any sequence of the form {{𝑓𝑘+ℎ(𝑛)}𝑘∈Z}𝑛∈N, where ℎ(𝑛) ∈
Z, has a uniformly convergent subsequence with respect to 𝑘.

Proof. See [33, Theorem 1.26].

The following result is a consequence ofTheorems 4 and 5.

Corollary 6. The sum and the product of two almost periodic
sequences are almost periodic as well.

Theorem 7. If {𝑓𝑘}𝑘∈Z is almost periodic, then the limit

lim
𝑘→∞

1

𝑘

𝑗+𝑘−1

∑

𝑖=𝑗

𝑓𝑖 (16)

is finite and exists uniformly with respect to 𝑗 ∈ Z.

Proof. See [33, Theorem 1.28].

Theorem8. If {𝑓𝑘}𝑘∈Z ⊂ R is almost periodic and𝐹 : R → R

is a uniformly continuous function on the set {𝑓𝑘; 𝑘 ∈ Z}, then
the composition {𝐹(𝑓𝑘)}𝑘∈Z is almost periodic.

Proof. The theorem follows, for example, from [34,
Theorem 2.4].

As a direct generalization of almost periodicity, we
consider the asymptotic almost periodicity. We refer to [35],
where asymptotically almost periodic sequences were intro-
duced with their basic characteristics.

Definition 9. Wesay that a sequence {𝑓𝑘}𝑘∈N ⊂ R is asymptot-
ically almost periodic if it can be represented in the form𝑓𝑘 =

𝑓
1

𝑘
+𝑓
2

𝑘
, 𝑘 ∈ N, where {𝑓1

𝑘
}𝑘∈Z is almost periodic and {𝑓2

𝑘
}𝑘∈N

has the property that lim 𝑘→∞𝑓
2

𝑘
= 0. The sequence {𝑓1

𝑘
} is

called the almost periodic part of {𝑓𝑘}.

Considering Theorem 7, we immediately obtain the foll-
owing.

Corollary 10. Let an asymptotically almost periodic sequence
{𝑓𝑘}𝑘∈N be given, and let {𝑓1

𝑘
}𝑘∈Z be its almost periodic part.

The limit

𝑀({𝑓𝑘}) := lim
𝑘→∞

1

𝑘

𝑗+𝑘−1

∑

𝑖=𝑗

𝑓𝑖 = lim
𝑘→∞

1

𝑘

𝑗+𝑘−1

∑

𝑖=𝑗

𝑓
1

𝑖
(17)

is finite and exists uniformly with respect to 𝑗 ∈ N.

Definition 11. The number 𝑀({𝑓𝑘}) introduced in (17) is
called the mean value of an asymptotically almost periodic
sequence {𝑓𝑘}𝑘∈N.

Remark 12. According to Definition 1 and (17), we have
𝑀({𝑓𝑘}) > 0 for any positive asymptotically almost periodic
sequence {𝑓𝑘}𝑘∈N with the property that lim sup

𝑘→∞
𝑓𝑘 > 0.

Corollary 13. If {𝑓𝑘}𝑘∈N is an asymptotically almost periodic
sequence satisfying

inf {𝑓𝑘; 𝑘 ∈ N} > 0, (18)

then the sequence {𝑔𝑘}𝑘∈N, defined by the formula 𝑔𝑘 = 𝑓𝛼𝑘 , is
asymptotically almost periodic for arbitrarily given 𝛼 ∈ R.

Proof. Let 𝑓𝑘 = 𝑓1𝑘 + 𝑓
2

𝑘
, 𝑘 ∈ N, where {𝑓1

𝑘
}𝑘∈Z is the almost

periodic part of {𝑓𝑘}. Considering Definition 1, we have

inf {𝑓1
𝑘
; 𝑘 ∈ Z} = inf {𝑓1

𝑘
; 𝑘 ∈ Z, 𝑘 ≥ 𝑎} , 𝑎 ∈ R, (19)

and therefore (see (18))

inf {𝑓1
𝑘
; 𝑘 ∈ Z} ≥ inf {𝑓𝑘; 𝑘 ∈ N} > 0. (20)

If we put 𝑔1
𝑘
:= [𝑓
1

𝑘
]
𝛼, 𝑘 ∈ Z, then Theorems 4 and 8 imply

the almost periodicity of {𝑔1
𝑘
}𝑘∈Z. Since

lim
𝑘→∞

(𝑔𝑘 − 𝑔
1

𝑘
) = lim
𝑘→∞

([𝑓
1

𝑘
+ 𝑓
2

𝑘
]
𝛼

− [𝑓
1

𝑘
]
𝛼

) = 0, (21)

we know that {𝑔𝑘} can be expressed as the sum of the almost
periodic sequence {𝑔1

𝑘
} and the sequence {𝑔𝑘−𝑔

1

𝑘
} vanishing at

infinity. It means that {𝑔𝑘} is asymptotically almost periodic.

3. Half-Linear Riccati Equation

In this section, we recall the oscillation behaviour of half-
linear difference equations and we introduce the (adapted)
half-linear Riccati equation. For more details, we refer to [15,
Chapter 3] or [19, Chapter 8] (with references cited therein).
We remark that the (adapted) Riccati technique is an essential
tool to prove the following givenTheorem 17.

Let us consider the equation

Δ [𝑟𝑘Φ(Δ𝑥𝑘)] + 𝑝𝑘Φ(𝑥𝑘+1) = 0, (22)

where 𝑟𝑘, 𝑝𝑘 > 0 for all considered 𝑘 and the sequence {𝑟𝑘} is
bounded. We say that an interval (𝑙, 𝑙 + 1], 𝑙 ∈ N, contains
the generalized zero of a solution {𝑥𝑘} of (22) if 𝑥𝑙 ̸= 0 and
𝑥𝑙𝑥𝑙+1 ≤ 0. Equation (22) is said to be disconjugate on a set
{𝑙, 𝑙+1, . . . , 𝑙+𝑛} provided any solution of (22) has atmost one
generalized zero on (𝑙, 𝑙+𝑛+1] and the solution {𝑥𝑘} given by
the initial value 𝑥𝑙 = 0 has no generalized zero on (𝑙, 𝑙+𝑛+1].
Otherwise, (22) is said to be conjugate on {𝑙, 𝑙 + 1, . . . , 𝑙 + 𝑛}.

The Sturm type separation theorem is valid for (22) (see
[1, Theorem 3]). Thus, the oscillation of an arbitrary solution
of (22) implies the oscillation of all solutions of (22). It means
that we can categorize (22) as oscillatory or nonoscillatory.

Definition 14. Equation (22) is called nonoscillatory if there
exists 𝑛 ∈ N with the property that (22) is disconjugate on
{𝑛, 𝑛 + 1, . . . , 𝑛 + 𝑖} for all 𝑖 ∈ N. In the opposite case, (22) is
called oscillatory.
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Now, we turn our attention to the half-linear Riccati equ-
ation. Using the substitution

𝑤𝑘 = 𝑟𝑘Φ(
Δ𝑥𝑘

𝑥𝑘

) , (23)

we transform (22) into

Δ𝑤𝑘 + 𝑝𝑘 + 𝑤𝑘 (1 −
𝑟𝑘

Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(𝑤𝑘)]

) = 0. (24)

According to [15, Lemma 3.2.6, (I8)], if 𝑤𝑘 + 𝑟𝑘 > 0, then

𝑤𝑘 (1 −
𝑟𝑘

Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(𝑤𝑘)]

)

=
(𝑝 − 1)

󵄨󵄨󵄨󵄨𝑤𝑘
󵄨󵄨󵄨󵄨

𝑞󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

𝑝−2

Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(𝑤𝑘)]

,

(25)

where 𝛽
𝑘
is between Φ−1(𝑟𝑘) and Φ

−1
(𝑟𝑘) + Φ

−1
(𝑤𝑘); that is,

for 𝑤𝑘 + 𝑟𝑘 > 0, we can rewrite (24) in the following form:

Δ𝑤𝑘 + 𝑝𝑘 +
(𝑝 − 1)

󵄨󵄨󵄨󵄨𝑤𝑘
󵄨󵄨󵄨󵄨

𝑞󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

𝑝−2

Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(𝑤𝑘)]

= 0. (26)

Next, putting

𝜁𝑘 = −𝑘
(𝑝−1)

𝑤𝑘, (27)

we obtain

Δ𝜁𝑘=−Δ (𝑘
(𝑝−1)

𝑤𝑘)=− (𝑝 − 1) 𝑘
(𝑝−2)

𝑤𝑘 − (𝑘 + 1)
(𝑝−1)

Δ𝑤𝑘,

(28)

and then, applying (26), we obtain the adapted Riccati
equation

Δ𝜁𝑘 =
1

𝑘 − 𝑝 + 2

× [ (𝑝 − 1) 𝜁𝑘 + (𝑘 + 1)
(𝑝)
𝑝𝑘

+
(𝑘 + 1) (𝑝 − 1)

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

[𝑘(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(−𝜁𝑘/𝑘

(𝑝−1))]

] ,

(29)

where 𝛽
𝑘
is between Φ−1(𝑟𝑘) and Φ

−1
(𝑟𝑘) + Φ

−1
(−𝜁𝑘/𝑘

(𝑝−1)
).

4. Conditional Oscillation

To prove the announced theorem, we need the following two
lemmas.

Lemma 15. If (22) is nonoscillatory, then there exists a
negative solution {𝜁𝑘}𝑘≥𝑘0 of (29) such that

lim
𝑘→∞

𝜁𝑘

𝑘(𝑝−1)
= 0. (30)

Proof. Applying [1,Theorem 1] (see also [15,Theorem 3.3.4]),
we know that the nonoscillation of (22) implies the existence
of a solution {𝑤𝑘}𝑘≥𝑘0 of (26) satisfying 𝑤𝑘 + 𝑟𝑘 > 0, 𝑘 ≥ 𝑘0.
Considering [36, Lemma 1, (v) and Theorem 1], we obtain
lim 𝑘→∞𝑤𝑘 = 0. Since the sequence {𝑤𝑘} is decreasing (see
directly (26)), we have 𝑤𝑘 > 0 for all 𝑘 ≥ 𝑘0. Thus, there
exists a negative solution {𝜁𝑘}𝑘≥𝑘0 of (29). Finally, (27) gives

lim
𝑘→∞

𝜁𝑘

𝑘(𝑝−1)
= − lim
𝑘→∞

𝑤𝑘 = 0. (31)

Lemma 16. If there exists a negative solution {𝜁𝑘}𝑘≥𝑘0 of (29),
then (22) is nonoscillatory.

Proof. The statement of the lemma follows from [1,
Theorem 1].

Now we can formulate and prove the main result.

Theorem 17. Let 𝛾 ∈ R+ be given, and let {𝑟𝑘}𝑘∈N and {𝑠𝑘}𝑘∈N
be arbitrary positive asymptotically almost periodic sequences
such that

inf {𝑟𝑘; 𝑘 ∈ N} > 0, lim sup
𝑘→∞

𝑠𝑘 > 0. (32)

Let

Γ := 𝑞
−𝑝
[𝑀({𝑟

1−𝑞

𝑘
})]
1−𝑝

[𝑀 ({𝑠𝑘})]
−1
. (33)

Consider the equation

Δ [𝑟𝑘Φ(Δ𝑥𝑘)] +
𝛾𝑠𝑘

(𝑘 + 1)
(𝑝)
Φ(𝑥𝑘+1) = 0. (34)

If 𝛾 > Γ, then (34) is oscillatory. If 𝛾 < Γ, then (34) is non-
oscillatory.

Proof. We put (see Theorem 4)

𝑟
−
:= inf {𝑟𝑘; 𝑘 ∈ N} ,

𝑟
+
:= sup {𝑟𝑘; 𝑘 ∈ N} ,

𝑠
+
:= sup {𝑠𝑘; 𝑘 ∈ N} .

(35)

For an arbitrarily given number 𝛾 ̸= Γ, we will consider an
integer 𝛼 ≥ 2 such that

1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 >
𝑀({𝑠𝑘})

2
> 0, 𝑘 ∈ N, (36)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Γ−𝑞
−𝑝
[
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
]

1−𝑝

[
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖]

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<

󵄨󵄨󵄨󵄨Γ − 𝛾
󵄨󵄨󵄨󵄨

2
, 𝑘 ∈ N.

(37)

That is,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝛾−𝑞
−𝑝
[
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
]

1−𝑝

[
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖]

−1󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>

󵄨󵄨󵄨󵄨𝛾 − Γ
󵄨󵄨󵄨󵄨

2
, 𝑘 ∈ N.

(38)
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FromRemark 12 andCorollaries 10 and 13, we know that such
a number 𝛼 exists.

At first, we consider the oscillatory part of the theorem. By
contradiction, we suppose that 𝛾 > Γ is given and that (34)
is nonoscillatory. Lemma 15 says that there exists a negative
solution {𝜁𝑘}𝑘≥𝑘0 of the equation

Δ𝜁𝑘 =
1

𝑘 − 𝑝 + 2

× [ (𝑝 − 1) 𝜁𝑘 + 𝛾𝑠𝑘

+
(𝑘 + 1) (𝑝 − 1)

󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

[𝑘(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑘)+Φ

−1
(−𝜁𝑘/𝑘

(𝑝−1))]

] ,

(39)

where

Φ
−1
(𝑟𝑘) ≤ 𝛽𝑘 ≤ Φ

−1
(𝑟𝑘) + Φ

−1
(−

𝜁𝑘

𝑘(𝑝−1)
) , 𝑘 ≥ 𝑘0.

(40)

Note that (39) is the adapted Riccati equation associated with
(34) and that (30) holds. Particularly, from (30), we know

lim
𝑘→∞

Φ[Φ
−1
(𝑟𝑘) + Φ

−1
(−𝜁𝑘/𝑘

(𝑝−1)
)]

𝑟𝑘

= 1 (41)

and (see (40))

lim
𝑘→∞

𝛽
𝑘

Φ
−1
(𝑟𝑘)

= lim
𝑘→∞

𝛽
𝑘

𝑟
𝑞−1

𝑘

= 1. (42)

Using (consider, e.g., the Stirling formula)

lim
𝑘→∞

𝑘
𝑎

𝑘(𝑎)
= lim
𝑘→∞

𝑘
𝑎
Γ (𝑘 + 1 − 𝑎)

Γ (𝑘 + 1)
= 1, 𝑎 > 0, (43)

we also obtain

lim
𝑘→∞

𝑘 + 1

[𝑘(𝑝−1)]
𝑞−1

= lim
𝑘→∞

𝑘 + 1

[𝑘𝑝−1]
𝑞−1

= lim
𝑘→∞

𝑘 + 1

𝑘
= 1. (44)

Combining (39), (41), (42), and (44), we can find an integer
𝑘̃ ≥ 𝑘0 with the property that

Δ𝜁𝑘 ≥
1

𝑘 − 𝑝 + 2
[(𝑝 − 1) 𝜁𝑘 +

1

2

(𝑝 − 1) 𝑟
[𝑞−1][𝑝−2]

𝑘

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

𝑟𝑘

]

=
𝑝 − 1

𝑘 − 𝑝 + 2
[𝜁𝑘 +

1

2
𝑟
1−𝑞

𝑘

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞
]

≥
𝑝 − 1

𝑘 − 𝑝 + 2
[𝜁𝑘 +

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

2[𝑟
+
]
𝑞−1

]

(45)

and that

Δ𝜁𝑘 ≤
1

𝑘 − 𝑝 + 2
[𝛾𝑠
+
+ 2

(𝑝 − 1) 𝑟
[𝑞−1][𝑝−2]

𝑘

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

𝑟𝑘

]

=
1

𝑘 − 𝑝 + 2
[𝛾𝑠
+
+
2 (𝑝 − 1)

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

𝑟
𝑞−1

𝑘

] ≤
1

𝑘 − 𝑝 + 2

× [𝛾𝑠
+
+
2 (𝑝 − 1)

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

[𝑟
−
]
𝑞−1

] ,

(46)

whenever 𝑘 ≥ 𝑘̃. Let 𝜁𝑘 < −2
1/(𝑞−1)

𝑟
+ for some 𝑘 ≥ 𝑘̃. In this

case, we estimate

󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞
=
󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞−1
>
󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨 ⋅
󵄨󵄨󵄨󵄨󵄨
2
1/(𝑞−1)

𝑟
+󵄨󵄨󵄨󵄨󵄨

𝑞−1

=
󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨 ⋅ 2[𝑟
+
]
𝑞−1
,

(47)

and hence, by (45), we get Δ𝜁𝑘 > 0. Thus, there exists 𝐿 > 0
satisfying

𝜁𝑘 ∈ (−𝐿, 0) , 𝑘 ≥ 𝑘0. (48)

Therefore (see (45) and (46)), we have

󵄨󵄨󵄨󵄨Δ𝜁𝑘
󵄨󵄨󵄨󵄨 <

𝐾

𝑘 − 𝑝 + 2
, 𝑘 ≥ 𝑘̃, (49)

where

𝐾 := (𝑝 − 1) 𝐿 + 𝛾𝑠
+
+
2 (𝑝 − 1) 𝐿

𝑞

[𝑟
−
]
𝑞−1

. (50)

Particularly, (49) implies

󵄨󵄨󵄨󵄨󵄨
𝜁𝑘+𝑖 − 𝜁𝑘+𝑗

󵄨󵄨󵄨󵄨󵄨
<
(𝛼 − 1)𝐾

𝑘 − 𝑝 + 2
, 𝑖, 𝑗 ∈ {0, . . . , 𝛼 − 1} , 𝑘 ≥ 𝑘̃.

(51)

We define

𝜉𝑘 :=
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝜁𝑖, 𝑘 ≥ 𝑘0,

𝑋𝑘 := (𝑝 − 1)(
𝑝

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
)

−1/𝑞

,

𝑌𝑘 :=
󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨 (
𝑝

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
)

1/𝑞

, 𝑘 ≥ 𝑘0.

(52)

From (48), we can see

𝜉𝑘 ∈ (−𝐿, 0) , 𝑘 ≥ 𝑘0. (53)
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For 𝑘 ≥ 𝑘0, we compute (see (39))

Δ𝜉𝑘 =
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

Δ𝜁𝑖

=
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

1

𝑖 − 𝑝 + 2

× [ (𝑝 − 1) 𝜁𝑖 + 𝛾𝑠𝑖

+
(𝑖 + 1) (𝑝 − 1)

󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

]

≥
1

𝑘 + 𝛼 − 𝑝 + 1

× [(𝑝 − 1) 𝜉𝑘+
𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖

+
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

]

=
1

𝑘 + 𝛼 − 𝑝 + 1

×
[
[
[

[

(𝑝 − 1) 𝜉𝑘+
𝑋
𝑝

𝑘

𝑝
+
𝑌
𝑞

𝑘

𝑞
+
𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 −
𝑋
𝑝

𝑘

𝑝

+
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
𝑌
𝑞

𝑘

𝑞

]
]
]

]

(54)

if Δ𝜉𝑘 > 0, or

Δ𝜉𝑘 ≥
1

𝑘 − 𝑝 + 2

× [(𝑝 − 1) 𝜉𝑘 +
𝑋
𝑝

𝑘

𝑝
+
𝑌
𝑞

𝑘

𝑞
+
𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 −
𝑋
𝑝

𝑘

𝑝

+
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
𝑌
𝑞

𝑘

𝑞
]

(55)

if Δ𝜉𝑘 < 0.

Since

𝑋𝑘𝑌𝑘 =
󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨 (𝑝 − 1) = −𝜉𝑘 (𝑝 − 1) , 𝑘 ≥ 𝑘0, (56)

it holds

(𝑝 − 1) 𝜉𝑘 +
𝑋
𝑝

𝑘

𝑝
+
𝑌
𝑞

𝑘

𝑞
=
𝑋
𝑝

𝑘

𝑝
+
𝑌
𝑞

𝑘

𝑞
− 𝑋𝑘𝑌𝑘 ≥ 0, 𝑘 ≥ 𝑘0,

(57)

which follows from the Young inequality.
Using (36), (37), and (38), we have

𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 −
𝑋
𝑝

𝑘

𝑝
=
𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 −
(𝑝 − 1)

𝑝

𝑝
(
𝑝

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
)

−𝑝/𝑞

=
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖
[

[

𝛾 − (
𝑝 − 1

𝑝
)

𝑝

× (
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
)

−𝑝/𝑞

× (
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖)

−1

]

]

=
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖
[

[

𝛾 − 𝑞
−𝑝
(
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
)

1−𝑝

×(
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖)

−1

]

]

>
𝑀({𝑠𝑘})

2

𝛾 − Γ

2
, 𝑘 ≥ 𝑘0.

(58)

That is,

𝛾

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑠𝑖 −
𝑋
𝑝

𝑘

𝑝
>
𝑀({𝑠𝑘}) [𝛾 − Γ]

4
> 0, 𝑘 ≥ 𝑘0. (59)

It remains to estimate the following:

1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
𝑌
𝑞

𝑘

𝑞

=
1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]
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−

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

𝑞

𝑞

𝑝

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖

=
𝑝 − 1

𝛼

×

𝑘+𝛼−1

∑

𝑖=𝑘

(
󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞 (𝑖 + 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

𝑞
𝑟
1−𝑞

𝑖
), 𝑘 ≥ 𝑘0.

(60)

Applying (41), (42), and (44), we can express

1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
𝑌
𝑞

𝑘

𝑞

=
𝑝 − 1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(
󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞
[𝑟
1−𝑞

𝑖
+ ℎ𝑖]−

󵄨󵄨󵄨󵄨𝜉𝑘
󵄨󵄨󵄨󵄨

𝑞
𝑟
1−𝑞

𝑖
) , 𝑘 ≥ 𝑘0,

(61)

where the sequence of ℎ𝑖 has the property that lim 𝑖→∞ℎ𝑖 = 0.
From (48), it follows

lim
𝑖→∞

󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞
ℎ𝑖 = 0, (62)

and, from (51), we obtain

󵄨󵄨󵄨󵄨𝜁𝑖 − 𝜉𝑘
󵄨󵄨󵄨󵄨 <

(𝛼 − 1)𝐾

𝑘 − 𝑝 + 2
, 𝑘 ≥ 𝑘̃, 𝑖 ∈ {𝑘, . . . , 𝑘 + 𝛼 − 1} .

(63)

Since the function 𝑦 = |𝑥|𝑞 is continuously differentiable on
[−𝐿, 0], there exists𝑁 > 0 for which

󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨𝜉
󵄨󵄨󵄨󵄨

𝑞
−
󵄨󵄨󵄨󵄨𝜁
󵄨󵄨󵄨󵄨

𝑞󵄨󵄨󵄨󵄨󵄨
≤ 𝑁

󵄨󵄨󵄨󵄨𝜉 − 𝜁
󵄨󵄨󵄨󵄨 , 𝜉, 𝜁 ∈ [−𝐿, 0] . (64)

Now it suffices to consider (32), (48), (53), (61), (62), (63), and
(64) which imply the existence of an integer 𝑘̂ ≥ 𝑘̃ such that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−
𝑌
𝑞

𝑘

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑀 ({𝑠𝑘}) [𝛾 − Γ]

8
, 𝑘 ≥ 𝑘̂.

(65)

Altogether (see (54), (57), (59), and (65)), we have

Δ𝜉𝑘 >
0 +𝑀({𝑠𝑘}) [𝛾 − Γ] /4 −𝑀({𝑠𝑘}) [𝛾 − Γ] /8

𝑘 + 𝛼 − 𝑝 + 1

=
𝑀({𝑠𝑘}) [𝛾 − Γ]

8 (𝑘 + 𝛼 − 𝑝 + 1)
, 𝑘 ≥ 𝑘̂.

(66)

Summing (66) from 𝑘̂ to an integer 𝑙 ≥ 𝑘̂, we obtain

𝜉𝑙+1 > 𝜉𝑘̂ +
𝑀({𝑠𝑘}) [𝛾 − Γ]

8

𝑙

∑

𝑘=𝑘̂

1

𝑘 + 𝛼 − 𝑝 + 1
. (67)

Thus (see also (53)), it is valid that

lim inf
𝑙→∞

𝜉𝑙+1≥ − 𝐿+
𝑀({𝑠𝑘})[𝛾 − Γ]

8

∞

∑

𝑘=𝑘̂

1

𝑘+𝛼−𝑝+1
= ∞.

(68)

Particularly (consider (52)), 𝜁𝑘 has to be positive for infinitely
many 𝑘. This contradiction proves that (34) is oscillatory if
𝛾 > Γ.

Let 𝛾 < Γ, and let 𝑘(1) ∈ N be given. In this part of
the proof, our objective is to show that there exists a negative
solution {𝜁𝑘} of (39) for all 𝑘 ≥ 𝑘(1), where

𝜁𝑘(1) = −(
𝑞

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

. (69)

Evidently, it is true that

Δ𝜁𝑘 ≥
1

𝑘 − 𝑝 + 2
[(𝑝 − 1) 𝜁𝑘] ,

Δ𝜁𝑘

≤
1

𝑘 − 𝑝 + 2

× [𝛾𝑠
+
+

(𝑘 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑘
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑘
󵄨󵄨󵄨󵄨

𝑞

[𝑘(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑘)+Φ

−1
(−𝜁𝑘/𝑘

(𝑝−1))]

]

(70)

for all 𝑘 ≥ 𝑘(1) for which {𝜁𝑘} is negative.Thus (consider (41),
(42), and (44)), we can assume that 𝑘(1) is so large that

2𝜁𝑘(1) < 𝜁𝑘(1)+𝑖 < 0, 𝑖 ∈ {1, . . . , 𝛼} . (71)

In addition, as in the first part of the proof (see (49)), we can
estimate

󵄨󵄨󵄨󵄨Δ𝜁𝑘(1)+𝑖
󵄨󵄨󵄨󵄨 <

𝐴

𝑘 (1) − 𝑝 + 2
, 𝑖 ∈ {0, . . . , 𝛼 − 2} , (72)

for some 𝐴 > 0. From (72), it follows

󵄨󵄨󵄨󵄨󵄨
𝜁𝑘(1)+𝑖 − 𝜁𝑘(1)+𝑗

󵄨󵄨󵄨󵄨󵄨
<

𝐴 (𝛼 − 1)

𝑘 (1) − 𝑝 + 2
, 𝑖, 𝑗 ∈ {0, . . . , 𝛼 − 1} .

(73)

If we denote

𝜉𝑘(1) :=
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝜁𝑖, (74)

then

󵄨󵄨󵄨󵄨𝜁𝑘(1)+𝑖 − 𝜉𝑘(1)
󵄨󵄨󵄨󵄨 <

𝐴 (𝛼 − 1)

𝑘 (1) − 𝑝 + 2
, 𝑖 ∈ {0, . . . , 𝛼 − 1} . (75)
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Again (see (54)), we estimate

Δ𝜉𝑘(1)

≤
1

𝑘 (1) − 𝑝 + 2

× [(𝑝 − 1) 𝜉𝑘(1) +

𝑋
𝑝

𝑘(1)

𝑝
+

𝑌
𝑞

𝑘(1)

𝑞
+
𝛾

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖 −

𝑋
𝑝

𝑘(1)

𝑝

+
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−

𝑌
𝑞

𝑘(1)

𝑞
]

(76)

if Δ𝜉𝑘(1) > 0, or

Δ𝜉𝑘(1)

≤
1

𝑘 (1) + 𝛼 − 𝑝 + 1

× [(𝑝 − 1) 𝜉𝑘(1) +

𝑋
𝑝

𝑘(1)

𝑝

+

𝑌
𝑞

𝑘(1)

𝑞
+
𝛾

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖 −

𝑋
𝑝

𝑘(1)

𝑝

+
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−

𝑌
𝑞

𝑘(1)

𝑞
]

(77)

if Δ𝜉𝑘(1) < 0, where

𝑋𝑘(1) := (𝑝 − 1)(
𝑝

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑟
1−𝑞

𝑖
)

−1/𝑞

,

𝑌𝑘(1) :=
󵄨󵄨󵄨󵄨𝜉𝑘(1)

󵄨󵄨󵄨󵄨 (
𝑝

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑟
1−𝑞

𝑖
)

1/𝑞

.

(78)

If

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑟
1−𝑞

𝑖
=

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
,

𝜁𝑘(1) = 𝜁𝑘(1)+𝑗, 𝑗 ∈ {1, . . . , 𝛼 − 1} ,

(79)

then it is valid that

(𝑝 − 1) 𝜉𝑘(1) +

𝑋
𝑝

𝑘(1)

𝑝
+

𝑌
𝑞

𝑘(1)

𝑞

= (𝑝 − 1) 𝜉𝑘(1) +
(𝑝 − 1)

𝑝

𝑝
(
𝑝

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

−𝑝/𝑞

+

󵄨󵄨󵄨󵄨𝜉𝑘(1)
󵄨󵄨󵄨󵄨

𝑞

𝑞

𝑝

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
= − (𝑝 − 1)(

𝑞

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

+ (
𝑝−1

𝑝
)

𝑝

(
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

−𝑝/𝑞

+

((𝑞/𝛼)∑
𝛼

𝑖=1
𝑟
1−𝑞

𝑖
)
𝑞[1−𝑝]

𝑞

×
𝑝

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
= − (𝑝 − 1) 𝑞

1−𝑝
(
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

+ (
𝑝−1

𝑝
)

𝑝

(
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

+𝑞
−𝑝−1

𝑝(
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

.

(80)

That is,

(𝑝 − 1) 𝜉𝑘(1) +

𝑋
𝑝

𝑘(1)

𝑝
+

𝑌
𝑞

𝑘(1)

𝑞

= (
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

[− (𝑝 − 1) 𝑞
1−𝑝

+(
𝑝 − 1

𝑝
)

𝑝

+ 𝑞
−𝑝−1

𝑝]

= (
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

[−𝑝𝑞
1−𝑝

+ 𝑞
1−𝑝

+
1

𝑞𝑝
+ 𝑞
−𝑝−1

𝑝]

= (
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

𝑞
−𝑝
[−𝑝𝑞 + 𝑞 + 1 +

𝑝

𝑞
]

= (
1

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

𝑞
−𝑝
[−𝑝𝑞 + 𝑞 + 1 + 𝑝 − 1] = 0.

(81)

For any 𝜀 > 0, we can find 𝛼 ∈ N with the property that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘+𝛼−1

∑

𝑖=𝑘

𝑟
1−𝑞

𝑖
−

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜀, 𝑘 ∈ N. (82)

Thus, for a given number 𝛼, considering (73) and (79), we can
assume that 𝑘(1) is so large that

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

(𝑝 − 1) 𝜉𝑘(1) +

𝑋
𝑝

𝑘(1)

𝑝
+

𝑌
𝑞

𝑘(1)

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑀 ({𝑠𝑘}) [Γ − 𝛾]

16
. (83)
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It holds (see (36), (37), and (38))

𝛾

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖 −

𝑋
𝑝

𝑘(1)

𝑝

=
𝛾

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖 −
(𝑝 − 1)

𝑝

𝑝
(
𝑝

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑟
1−𝑞

𝑖
)

−𝑝/𝑞

=
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖
[

[

𝛾 − 𝑞
−𝑝
(
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑟
1−𝑞

𝑖
)

1−𝑝

× (
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖)

−1

]

]

<
𝑀({𝑠𝑘})

2

𝛾 − Γ

2
.

(84)

That is,

𝛾

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

𝑠𝑖 −

𝑋
𝑝

𝑘(1)

𝑝
<
𝑀({𝑠𝑘}) [𝛾 − Γ]

4
< 0. (85)

As in the first part of the proof (compare (48) with (71)
and (63) with (75)), we can show that

lim
𝑘(1)→∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖)+Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−

𝑌
𝑞

𝑘(1)

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 0.

(86)

Let 𝑘(1) be so large that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

(𝑖 + 1) (𝑝 − 1)
󵄨󵄨󵄨󵄨𝛽𝑖
󵄨󵄨󵄨󵄨

𝑝−2󵄨󵄨󵄨󵄨𝜁𝑖
󵄨󵄨󵄨󵄨

𝑞

[𝑖(𝑝−1)]
𝑞−1
Φ[Φ
−1
(𝑟𝑖) + Φ

−1
(−𝜁𝑖/𝑖

(𝑝−1))]

−

𝑌
𝑞

𝑘(1)

𝑞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝑀 ({𝑠𝑘}) [Γ − 𝛾]

16
.

(87)

Finally (consider (77), (83), (85), and (87)), we have

Δ𝜉𝑘(1) <
1

𝑘 (1) + 𝛼 − 𝑝 + 1

× (
𝑀({𝑠𝑘}) [Γ − 𝛾]

16
+
𝑀({𝑠𝑘}) [𝛾 − Γ]

4

+
𝑀({𝑠𝑘}) [Γ − 𝛾]

16
)

=
𝑀({𝑠𝑘}) [𝛾 − Γ]

8 (𝑘 (1) + 𝛼 − 𝑝 + 1)
< 0.

(88)

Hence,

Δ𝜉𝑘(1) =
1

𝛼

𝑘(1)+𝛼−1

∑

𝑖=𝑘(1)

Δ𝜁𝑖 =
𝜁𝑘(1)+𝛼 − 𝜁𝑘(1)

𝛼
< 0. (89)

That is,

𝜁𝑘(1)+𝛼 < 𝜁𝑘(1). (90)

Particularly, if

𝜁𝑘 = −(
𝑞

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

for some 𝑘 ≥ 𝑘 (1) , (91)

then (71) and (90) give

𝜁𝑘, 𝜁𝑘+1, . . . , 𝜁𝑘+𝛼−1 < 0, 𝜁𝑘+𝛼 < 𝜁𝑘. (92)

Since (73) remains true if 𝑘(1) is replaced by an arbitrary
integer 𝑘 > 𝑘(1), to complete the proof, it suffices to find a
number 𝜗 > 0 such that

𝜁𝑘 ∈ (−𝜗 − (
𝑞

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

,

−(
𝑞

𝛼

𝛼

∑

𝑖=1

𝑟
1−𝑞

𝑖
)

1−𝑝

) for some 𝑘 ≥ 𝑘 (1)

(93)

implies

1

𝛼

𝑘+𝛼−1

∑

𝑖=𝑘

Δ𝜁𝑖 < 0. (94)

Indeed, in this case, we have (92) and, consequently, we have
that 𝜁𝑘 < 0 for all 𝑘 > 𝑘(1). Then, Lemma 16 says that (34) is
nonoscillatory. Of course, such a number 𝜗 > 0 exists because
the concrete initial value is not applied to obtain (77), (85),
and (87) and because (83) can be proved for a sufficiently
small perturbation of the initial value (the left side of (83)
continuously depends on the initial value (69)).

Remark 18. The statement ofTheorem 17 remains true for 𝛾 ∈
R. It suffices to consider the nonoscillatory equation

Δ [𝑟
−
Φ(Δ𝑥𝑘)] + 0 ⋅ Φ (𝑥𝑘+1) = 0, (95)

where 𝑟− is defined in (35). We refer to [1, Theorem 2].

Remark 19. We conjecture that, for 𝛾 = Γ in the general
case, it is not possible to decide whether (34) is oscillatory
or nonoscillatory. Our conjecture is based on the existence of
positive almost periodic sequences {𝑓𝑘}𝑘∈Z, {𝑔𝑘}𝑘∈Z satisfying

1

𝑛

𝑛

∑

𝑘=1

𝑓𝑘 < 𝑀({𝑓𝑘}) ,

1

𝑛

𝑛

∑

𝑘=1

𝑔𝑘 > 𝑀({𝑔𝑘}) , 𝑛 ∈ N.

(96)

Such sequences can be constructed applying, for example,
[34, Theorem 3.5].
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Example 20. Let 𝑎 > 0, 𝑏 > 1/2, and 𝑐, 𝑑 ̸= 0. We can use
Theorem 17 for the following equation:

Δ[
𝑘
2

1 + 𝑘2 (cos [𝑎𝑘] sin [𝑎𝑘] + 𝑏)
Φ (Δ𝑥𝑘)]

+ 𝛾

𝑘
√𝑘−1+| sin [𝑐𝑘]| +| cos [𝑑𝑘]|

(𝑘 + 1)
(3/2)

Φ(𝑥𝑘+1)=0

(97)

with asymptotically almost periodic coefficients (consider
Definition 2, Theorem 3, and Corollaries 6 and 13). It holds
(𝑝 = 3/2, i.e., 𝑞 = 3)

𝑀({𝑟
−2

𝑘
}) = 𝑀({(cos [𝑎𝑘] sin [𝑎𝑘]+𝑏+ 1

𝑘2
)

2

})

=
1

8
+ 𝑏
2
,

𝑀 ({𝑠𝑘})=𝑀({
𝑘
√𝑘−1+| sin [𝑐𝑘]| +| cos [𝑑𝑘]| }) = 4

𝜋
.

(98)

Thus, the equation is oscillatory for

6𝛾√3 (8𝑏2 + 1) > √2𝜋 (99)

and nonoscillatory for

6𝛾√3 (8𝑏2 + 1) < √2𝜋. (100)

Theorem 17 gives a new result also for 𝑝 = 2 (i.e., for the
linear equations with asymptotically almost periodic coeffi-
cients). This situation is illustrated by the next example. Note
that, in the below given corollaries, we explicitly mention two
other new results which follow fromTheorem 17.

Example 21. For any positive continuous functions 𝑓 : [−2,

2] → R and 𝑔 : [−1, 1] → R, the equation

Δ[𝑓(sin (1−𝑘)+ (−1)
𝑘

√𝑘

)Δ𝑥𝑘]+𝛾
𝑘𝑔 (cos 𝑘) +1
(𝑘 + 1) 𝑘

2
𝑥𝑘+1=0

(101)

has the form of (34) for 𝑝 = 𝑞 = 2. Considering [29,
Example 3.4], we have

𝑀({𝑟
−1

𝑘
}) =

1

2𝜋
∫

𝜋

−𝜋

𝑑𝑡

𝑓 (sin 𝑡)
,

𝑀 ({𝑠𝑘}) =
1

2𝜋
∫

𝜋

−𝜋

𝑔 (cos 𝑡) 𝑑𝑡.
(102)

Hence, the oscillation constant is

Γ = [
1

𝜋2
∫

𝜋

−𝜋

𝑑𝑡

𝑓 (sin 𝑡)
∫

𝜋

−𝜋

𝑔 (cos 𝑡) 𝑑𝑡]
−1

. (103)

Corollary 22. Consider (34), where {𝑟𝑘}𝑘∈N and {𝑠𝑘}𝑘∈N are
positive periodic sequences with period 𝑛. Denote

Γ := 𝑞
−𝑝
[
1

𝑛

𝑛

∑

𝑖=1

𝑟
1−𝑞

𝑖
]

1−𝑝

[
1

𝑛

𝑛

∑

𝑖=1

𝑠𝑖]

−1

. (104)

Then, (34) is oscillatory for 𝛾 > Γ and nonoscillatory for 𝛾 < Γ.

Example 23. We apply Corollary 22 for the equation

Δ[

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (2𝑘 − 1) 𝜋
18

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

Φ (Δ𝑥𝑘)]

+
𝛾

(𝑘 + 1)
(𝑝)
(1 + cos 2𝑘𝜋

𝑚
)Φ (𝑥𝑘+1) = 0,

(105)

where𝑚 ≥ 3 is an odd integer. By the following computations:

𝑀({𝑟
1−𝑞

𝑘
}) =

1

9

9

∑

𝑖=1

𝑟
1−𝑞

𝑖
=
1

9

9

∑

𝑖=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

sin (2𝑖 − 1)𝜋
18

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1−𝑞

=
1

9
(2
𝑞
+ 2 sin1−𝑞 𝜋

18
+ 2 cos1−𝑞𝜋

9

+2 cos1−𝑞 2𝜋
9
+ 1) ,

𝑀 ({𝑠𝑘}) =
1

𝑚

𝑚

∑

𝑖=1

𝑠𝑖 =
1

𝑚

𝑚

∑

𝑖=1

(1 + cos 2𝑖𝜋
𝑚
) = 1,

(106)

we get the oscillation constant

Γ = 9
𝑝−1
𝑞
−𝑝
(2
𝑞
+ 2 sin1−𝑞 𝜋

18

+2 cos1−𝑞𝜋
9
+ 2 cos1−𝑞 2𝜋

9
+ 1)

1−𝑝

.

(107)

For the general nonzero sequence {𝑟𝑘}𝑘∈N in (34), we have
to use the full definition of the generalized zero. An interval
(𝑙, 𝑙 + 1], 𝑙 ∈ N, contains the generalized zero of a solution {𝑥𝑘}
of (34) if 𝑥𝑙 ̸= 0 and 𝑟𝑙𝑥𝑙𝑥𝑙+1 ≤ 0. This definition is necessary
for the correct formulation of Corollary 24.

Corollary 24. Consider (34), where {𝑟𝑘}𝑘∈N and {𝑠𝑘}𝑘∈N are
nonzero asymptotically almost periodic sequences satisfying

inf {󵄨󵄨󵄨󵄨𝑟𝑘
󵄨󵄨󵄨󵄨 ; 𝑘 ∈ N} > 0, lim sup

𝑘→∞

󵄨󵄨󵄨󵄨𝑠𝑘
󵄨󵄨󵄨󵄨 > 0. (108)

Let

Γ := 𝑞
−𝑝
[𝑀({

󵄨󵄨󵄨󵄨𝑟𝑘
󵄨󵄨󵄨󵄨

1−𝑞
})]
1−𝑝

[𝑀 ({
󵄨󵄨󵄨󵄨𝑠𝑘
󵄨󵄨󵄨󵄨 })]
−1
. (109)

(i) If 𝑟𝑘 > 0 for all 𝑘 and 𝛾 < Γ, then (34) is nonoscillatory.
(ii) If 𝑠𝑘 > 0 for all 𝑘 and 𝛾 > Γ, then (34) is oscillatory.

Proof. Since {|𝑓𝑘|}𝑘∈N is asymptotically almost periodic if
{𝑓𝑘}𝑘∈N is asymptotically almost periodic, it suffices to
use the half-linear Sturm type comparison theorem (see
[1, Theorem 2]) andTheorem 17.

Example 25. For an arbitrarily given 𝑎 ≥ 1, Corollary 24 says
that the equation

Δ[(
cos 𝑘
𝑘

+ 𝑎)Φ (Δ𝑥𝑘)] +
𝛾 sin 𝑘
(𝑘 + 1)

(𝑝)
Φ(𝑥𝑘+1) = 0 (110)
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is nonoscillatory if

𝛾 < 𝑞
−𝑝
[𝑎
1−𝑞
]
1−𝑝

[𝑀 ({| sin 𝑘| })]−1 = 𝑞−𝑝 𝑎𝜋
2

(111)

and that the equation

Δ[(−1)
𝑘
(
cos 𝑘
𝑘

+ 𝑎)Φ (Δ𝑥𝑘)] +
𝛾 | sin 𝑘|
(𝑘 + 1)

(𝑝)
Φ(𝑥𝑘+1) = 0

(112)

is oscillatory if

𝛾 > 𝑞
−𝑝
[𝑎
1−𝑞
]
1−𝑝

[𝑀 ({| sin 𝑘| })]−1 = 𝑞−𝑝 𝑎𝜋
2
. (113)
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