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In this paper, a non-Lyapunov novel approach is proposed to estimate the unknown parameters and orders together for
noncommensurate and hyper fractional chaotic systems based on cuckoo search oriented statistically by the differential evolution
(CSODE). Firstly, a novel Gaos’ mathematical model is proposed and analyzed in three submodels, not only for the unknown orders
and parameters’ identification but also for systems’ reconstruction of fractional chaos systems with time delays or not. Then the
problems of fractional-order chaos’ identification are converted into amultiplemodal nonnegative functions’minimization through
a proper translation, which takes fractional-orders and parameters as its particular independent variables. And the objective is to
find the best combinations of fractional-orders and systematic parameters of fractional order chaotic systems as special independent
variables such that the objective function is minimized. Simulations are done to estimate a series of noncommensurate and hyper
fractional chaotic systems with the new approaches based on CSODE, the cuckoo search, and Genetic Algorithm, respectively.The
experiments’ results show that the proposed identification mechanism based on CSODE for fractional orders and parameters is a
successful method for fractional-order chaotic systems, with the advantages of high precision and robustness.

1. Introduction

The applications of fractional differential equations began
to appeal to related scientists recently [1–27] in the fol-
lowing areas: bifurcation, hyperchaos, proper and improper
fractional-order chaos systems, and chaos synchronization
[1–33].

However, there are some systematic parameters and
orders that are unknown for the fractional-order chaos
systems in controlling and synchronization. It is difficult
to identify the parameters in the fractional-order chaotic
systems with unknown parameters. Hitherto, there have
been two main approaches in parameters’ identification for
fractional-order chaos systems.

(i) Lyapunov way: there have been few results on param-
eter estimation method of fractional-order chaotic
systems based on chaos synchronization [34] and
methods for parameter estimation of uncertain frac-
tional order complex networks [35]. However, the

design of controller and the updating law of parame-
ter identification are still a tough task with technique
and sensitively depend on the considered systems.

(ii) Non-Lyapunov way via artificial intelligence meth-
ods, for examples, differential evolution [7] and parti-
cle swarm optimization [9], in which the commensu-
rate fractional-order chaos systems and simplest case
with one unknown order for normal fractional-order
chaos systems are discussed: however, to the best of
our knowledge, little work in non-Lyapunov way has
been done to the parameters and orders estimation of
noncommensurate and hyper fractional-order chaos
systems. And there is no general mathematical model
that has been purposed for all these kinds of identifi-
cation.

We consider the following fractional-order chaos system
with time delays

𝛼
D
𝑞

𝑡
𝑌 (𝑡) = 𝑓 (𝑌 (𝑡) , 𝑌

0
(𝑡) , 𝜃, 𝜏) , (1)
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where 𝑌(𝑡) = (𝑦
1
(𝑡), 𝑦

2
(𝑡), . . . , 𝑦

𝑛
(𝑡))

𝑇

∈ R𝑛 denotes the state
vector. 𝜃 = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
)
𝑇 denotes the original parameters,

𝜏 = (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑛
) is the time delay, and 𝑞 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
)

(0 < 𝑞
𝑖
< 1, 𝑖 = 1, 2, . . . , 𝑛) is the fractional derivative orders.

Consider

𝑓
(𝑌(𝑡),𝑌0(𝑡),𝜃,𝜏)

= (𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
(𝑌(𝑡),𝑌0(𝑡),𝜃,𝜏)

. (2)

Normally the function 𝑓 is known. And the 𝜃, 𝑞, and
𝜏 are unknown; then Θ = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
, 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
, 𝜏
1
,

𝜏
2
, . . . , 𝜏

𝑛
) will be the parameters to be estimated.

Then a correspondent system is constructed as follows

𝛼
D
𝑞

𝑡
�̃� (𝑡) = 𝑓 (�̃� (𝑡) , 𝑌

0
(𝑡) , 𝜃, 𝜏) , (3)

where �̃�(𝑡), 𝜃, 𝑞, and 𝜏 are the correspondent variables to
those in (1), and function 𝑓 is the same. The two systems (1)
and (3) have the same initial condition 𝑌

0
(𝑡).

Then the objective is obtained as follows:

Θ
∗

= argmin
Θ

𝐹 = argmin
Θ

∑

𝑡


𝑌 (𝑡) − �̃� (𝑡)

2
. (4)

How could we identify the fractional system, when some
fractional chaotic differential equations 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
)

are unknown?That is,

(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
)
∗

= arg min
(𝑓1 ,𝑓2,...,𝑓𝑛)

𝐹. (5)

Now the problem of parameters estimation (4) becomes
another much more complicated question, fractional-order
chaos reconstruction problem [36], to find the forms
of fractional-order equations as in (5). In [36] a novel
non-Lyapunov reconstruction method based on a novel
united mathematical model was proposed to reconstruct the
unknown equations (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
).

When it comes to the system (1)
𝛼
D
𝑞

𝑡
𝑌(𝑡) =

𝑓(𝑌(𝑡), 𝑌
0
(𝑡), 𝜃) with neither 𝑞 nor 𝜃 are known, the

united model is not effective. For the united mathematical
model [36], to be identified is only (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) instead of

𝑞. That is,
𝛼
D
𝑞

𝑡
�̃�(𝑡) of (3) are not included. Actually, if the 𝑞

are taken into consideration in united model (5), then the
basic parameters’ setting to be reconstructed in [36] will be
basic set {×, ÷, +, −} with extra {=,D

𝑞

𝑡
} and so forth and the

input variables {𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
} with {𝑌} extra and, and so

forth. Although for the candidates “programs” in [36] the
maximum depth of tree is 6, considering that the maximum
number of nodes per tree is infinite, there will be infinite
illegal candidates on will be generated. Then, the one hand,
the most time-consuming thing for novel united model (5)
is to kill these illegal individuals from the legal individuals.
However, these defaults are not solved in [36]. On the other
hand, as 𝑞 ∈ D

𝑞

𝑡
in unknown, it is really difficult to generate

an individual with {×, ÷, +, −, =,D
𝑞

𝑡
}, in neither illegal nor

legal cases. And up till now, there is no existing way to resolve
these defaults. And we can conclude from simulations [36]
that the proposed method is much more efficient for the
systems when coefficients 𝑞 in D

𝑞

𝑡
are integer orders than

improper fractional orders.

Therefore, to estimate the 𝑞 of (3) with unknown sys-
tematic parameters 𝜃 is still a question to be solved for
parameters and orders estimation of noncommensurate and
hyperfractional-order chaos systems.

And cuckoo search (CS) is a relatively new and robust
optimization algorithm [37, 38], inspired by the obligate
brood parasitism of some cuckoo species by laying their
eggs in the nests of other host birds (of other species).
The searching performance is mainly based on the Lévy
flights mathematically [37–39], which essentially provide a
randomwalkwhile their random steps are drawn from a Lévy
distribution for large steps [37–39].However, inCS evolution,
the Lévy flights in each main iteration are used twice. It
has two results: the CS searching performance becomes a
little strong, but the redundant evaluations for the objective
function are generated too. Therefore, some more efforts are
needed to improve the performance of CS.

To the best of authors’ knowledge, there is no method
in non-Lyapunov way for noncommensurate and hyper
fractional-order chaotic systems’ parameters and orders esti-
mation so far. The objective of this work is to present a novel
simple but effective approach to estimate the noncommen-
surate and hyper fractional-order chaotic systems in a non-
Lyapunov way. And the illustrative reconstruction simula-
tions in different chaos systems are discussed, respectively.

The rest is organized as follows. In Section 2, a general
mathematical model not only for fractional chaos parameters
identification but also for reconstruction in non-Lyapunov
way is newly proposed and analyzed in three submodels
A, B, and C. And a simple review was given on non-
Lyapunov parameters estimation methods for fractional-
order andnormal chaos systems. In Section 3, a novelmethod
with proposed unitedmodel based on cuckoo search oriented
statistically by differential evolution (CSODE) is proposed.
And simulations are done to a series of different noncom-
mensurate and hyper fractional-order chaotic systems by a
novel method based on CSODE, single cuckoo search, and
Genetic Algorithm, respectively, in Section 4. Conclusions
are summarized briefly in Section 5.

2. Gao’s Mathematical Model for Fractional
Chaos Reconstruction and Orders
Estimation in Non-Lyapunov Way

In this section, a general mathematical model for fractional
chaos parameters identification in non-Lyapunov way is
proposed. A detail explanation for the general mathematical
model will be given in the following subsections in three
aspects, submodel A, B, and C.

2.1. Gao’s Mathematical Model. Now we consider the general
forms of fractional-order chaos system (1). To make the
system (1) more clear, we take its equivalent form as the
following system:

𝛼
D
𝑞1

𝑡
𝑦
1
(𝑡) = 𝑓

1
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏)) ,
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𝛼
D
𝑞2

𝑡
𝑦
2
(𝑡) = 𝑓

2
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏))

...

𝛼
D
𝑞𝑛

𝑡
𝑦
𝑛
(𝑡) = 𝑓

𝑛
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏)) ,

𝐿 = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) .

(6)

And a correspondent system (7) is constructed as follow:

𝛼
D
𝑞1

𝑡
𝑦
1
(𝑡) = 𝑓

1
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏)) ,

𝛼
D
𝑞2

𝑡
𝑦
2
(𝑡) = 𝑓

2
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏))

...

𝛼
D
𝑞𝑛

𝑡
𝑦
𝑛
(𝑡) = 𝑓

𝑛
(𝑡, 𝑦

1
(𝑡) , 𝑦

1
(𝑡 − 𝜏) , 𝑦

2
(𝑡) ,

𝑦
2
(𝑡 − 𝜏) , . . . , 𝑦

𝑛
(𝑡) , 𝑦

𝑛
(𝑡 − 𝜏)) ,

�̃� = (𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
) .

(7)

To have simple forms, we take 𝛼 = 0.
Then novel objective function (fitness) (8) in this paper

comes into being from (20) and (21) as follows:

𝐹 =

𝑇⋅ℎ

∑

𝑡=0⋅ℎ


�̃� − 𝐿

2
, (8)

where𝑇 is the number of sample points formethods resolving
the fractional systems and ℎ is the time step.

Now a novel Gao mathematical model for fractional
chaos reconstruction comes into being as Figure 1 shows,
where functions 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
), 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
),

fractional orders 𝑞 = (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
), 𝑞 = (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
), time

delays 𝜏 = (𝜏
1
, 𝜏
2
, . . . , 𝜏

𝑛
), 𝜏 = (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
), and systematic

parameters 𝜃 = (𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
), 𝜃 = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
),

respectively.
A detail explanation for the general mathematical model

will be given in the following subsections in three aspects,
sub-models A, B, and C.

Andobjective function (8) to be optimized can also be any
kind of (9) to be minimized by artificial intelligence methods
as follows:

𝐹 =

𝑁

∑

𝑖=1


𝐿
𝑖
− �̃�

𝑖

2
,

𝐺 =
1

𝑁

𝑁

∑

𝑖=1


𝐿
𝑖
− �̃�

𝑖



2

,

𝐻 =

𝑁

∑

𝑖=1


𝐿
𝑖
− �̃�

𝑖



2

,

𝑊 =
1

𝑁

𝑁

∑

𝑖=1


𝐿
𝑖
− �̃�

𝑖

2
.

(9)

2.2. Mathematical Submodel A. It should be noticed here
that the independent variables in function (8) in the gen-
eral model in Figure 1 are not always the parameters and
fractional orders. They can be the special variables, for
instance, functions 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
), fractional orders

𝑞 = (𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
), and time delays 𝜏 = (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
).

And for the submodel A, that is,

(𝑓, 𝑞, 𝜏)
∗

= arg min
(
̃
𝑓,𝑞,𝜏)

𝐹, (10)

it can also be written as follows:

((𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
), (𝑞

1
, 𝑞
2
, . . . , 𝑞

𝑛
), (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
))
∗

= arg min
((
̃
𝑓1 ,
̃
𝑓2 ,...,

̃
𝑓𝑛),(𝑞1 ,𝑞2,...,𝑞𝑛),(𝜏1,𝜏2,...,𝜏𝑛))

𝐹.
(11)

There exist several definitions of fractional derivatives.
Among these, the Grünwald-Letnikov (G-L), the Riemann-
Liouville (R-L), and the Caputo fractional derivatives are
the commonly used [40–45]. And G-L, R-L, and Caputo
fractional derivatives are equivalent under some conditions
[46].

The continuous integrodifferential operator [47, 48] is
used, and we consider the continuous function 𝑓(𝑡). The G-L
fractional derivatives are defined as follows:

𝛼
D
𝑞

𝑡
𝑓 (𝑡) = lim

ℎ→0

1

ℎ𝑞

[(𝑡−𝛼)/ℎ]

∑

𝑗=0

(−1)
𝑗

(
𝑞

𝑗
)𝑓 (𝑡 − 𝑗ℎ) , (12)

where [𝑥] means the integer part of 𝑥, 𝛼, and 𝑡 which are the
bounds of operation for

𝛼
D
𝑞

𝑡
𝑓(𝑡), 𝑞 ∈ R.

We take ideas of a numerical solution method [47, 48]
obtained by relationship (12) derived from the G-L definition
to resolve system. That is,

(𝑘−𝐿𝑚/ℎ)
D
𝑞

𝑡𝑘

𝑓 (𝑡) ≈
1

ℎ𝑞

𝑘

∑

𝑗=0

(−1)
𝑗

(
𝑞

𝑗
)𝑓 (𝑡

𝑘−𝑗
) , (13)

where 𝐿
𝑚

is the memory length, 𝑡
𝑘

= 𝑘ℎ, ℎ is the time
step of calculation, and (−1)

𝑗

(
𝑞

𝑗
) are binomial coefficients

𝑐
(𝑞)

𝑗
(𝑗 = 0, 1, . . .,). When, for numerical computation, the

following are used:

𝑐
(𝑞)

0
= 1, 𝑐

(𝑞)

𝑗
= (1 −

1 + 𝑞

𝑗
) 𝑐

(𝑞)

𝑗−1
, (14)

then in general, for the simplest case (15) of (6) as following.

0
D
𝑞

𝑡
𝑓 (𝑦 (𝑡)) = 𝑓 (𝑡, 𝑦 (𝑡) , 𝑦 (𝑡 − 𝜏)) . (15)
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𝛼D
q
t Y(t) = f(Y(t) ), Y0(t), 𝜃, 𝜏

L = (Y(0), . . ., Y(T))

𝛼D
q
t Ỹ(t) = f̃(Ỹ(t), Y0(t), �̃�, �̃�)

L̃ = (Ỹ(0), . . ., Ỹ(T))

Y0(t)

Reconstruction

Identification

q̃, �̃� definite

q̃, �̃� unknown

f̃ unknown

q̃, �̃�, �̃� unknown, f̃ definite

(A) (f̃, q̃, �̃�)∗ = arg min F
(f̃,q̃,�̃�)

(B) (f̃)∗ = arg min F
(f̃)

(C) (�̃�, q̃, �̃�)∗ = arg min F
(�̃�,q̃,�̃�)

F = L̃ − L 2

T·h

∑
t=0·h

⏐⏐⏐⏐
⏐⏐⏐⏐

⏐⏐⏐⏐
⏐⏐⏐⏐

Figure 1: Gao’s mathematical model for fractional chaos reconstruction.

Let 𝑦
𝑘𝜏

= 𝑦(𝑡
𝑘
− 𝜏(𝑡

𝑘
)). It can have the approximate value

as (16), when it used for calculating

𝑦
𝑘 𝜏

= 𝑦
𝑘+1+[𝜏/ℎ]

𝜏/ℎ − [𝜏/ℎ]

ℎ

+ 𝑦
𝑘+[𝜏/ℎ]

1 + [𝜏/ℎ] − 𝜏/ℎ

ℎ
.

(16)

And let 𝑦
𝑘
= 𝑦(𝑡

𝑘
); then (15) can be expressed as

ℎ
−𝑞

𝑘

∑

𝑗=0

𝑐
(𝑞)

𝑗
𝑦 (𝑡

𝑘−𝑗
)

= 𝑓 (𝑡
𝑘
, 𝑦 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
− 𝜏 (𝑡

𝑘
))) ,

𝑦 (𝑡
𝑘
) = 𝑓 (𝑡

𝑘
, 𝑦 (𝑡

𝑘
) , 𝑦 (𝑡

𝑘
− 𝜏 (𝑡

𝑘
))) ℎ

𝑞

−

𝑘

∑

𝑗=V

𝑐
(𝑞)

𝑗
𝑦 (𝑡

𝑘−𝑗
) ,

𝑦
𝑘
= 𝑓 (𝑡

𝑘
, 𝑦
𝑘
, 𝑦
𝑘𝜏
) ℎ

𝑞

−

𝑘

∑

𝑗=V

𝑐
(𝑞)

𝑗
𝑦
𝑘−𝑗

,

(17)

where V in the above is defined as

V =

{{{

{{{

{

𝑘 −
𝐿
𝑚

ℎ
, 𝑘 >

𝐿
𝑚

ℎ
,

1, 𝑘 <
𝐿
𝑚

ℎ

(18)

or V = 1 for all 𝑘.
Equation (17) is an implicit nonlinear equation respect to

𝑦
𝑘
. Now we can construct an iteration algorithm to solve 𝑦

𝑘

as following (19).

𝑦
(𝑙+1)

𝑘
= 𝑓 (𝑡

𝑘
, 𝑦
(𝑙)

𝑘
, 𝑦
(𝑙)

𝑘𝜏
) ℎ

𝑞

−

𝑘

∑

𝑗=V

𝑐
(𝑞)

𝑗
𝑦
𝑘−𝑗

, (19)

where 𝑙 is the iteration number. When |𝑦
(𝑙+1)

𝑘
− 𝑦

(𝑙)

𝑘
| < 𝛿

(normally the given error 𝛿 < 10
−6), we consider 𝑦

𝑘
= 𝑦

(𝑙+1)

𝑘

to be the solution of the simplest equation (15). And if the
derivative of 𝑓 exists |𝑓| ≤ 𝑀 (𝑀 is constant), and ℎ

𝑞

𝑀 < 1,
then iteration (19) converges to a constant as long as the
calculus step ℎ is smaller enough.

With the ideas from iteration of (19), the systems (6) and
(7) are solved as follows:

𝑥
𝑖

(𝑙+1)

𝑘

= 𝑓
𝑖
(𝑡
𝑘−1

, 𝑡
𝑘
, 𝑥
1

(𝑙)

𝑘
, 𝑥
1

(𝑙)

𝑘,𝜏
, . . . , 𝑥

𝑖−1

(𝑙)

𝑘
, 𝑥
𝑖−1

(𝑙)

𝑘,𝜏
,

𝑥
𝑖

(𝑙)

𝑘−1
, 𝑥
𝑖

(𝑙)

𝑘−1,𝜏
, . . . , 𝑥

𝑛

(𝑙)

𝑘−1
, 𝑥
𝑛

(𝑙)

𝑘−1,𝜏
) ℎ

𝑞𝑖

−

𝑘

∑

𝑗=V

𝑐
(𝑞)

𝑗
𝑥
𝑖 𝑘−𝑗

,

(20)

𝑥
𝑖

(𝑙+1)

𝑘

= 𝑓
𝑖
(𝑡
𝑘−1

, 𝑡
𝑘
, 𝑥
1

(𝑙)

𝑘
, 𝑥
1

(𝑙)

𝑘,𝜏
, . . . , 𝑥

𝑖−1

(𝑙)

𝑘
, 𝑥
𝑖−1

(𝑙)

𝑘,𝜏
,

𝑥
𝑖

(𝑙)

𝑘−1
, 𝑥
𝑖

(𝑙)

𝑘−1,𝜏
, . . . , 𝑥

𝑛

(𝑙)

𝑘−1
, 𝑥
𝑛

(𝑙)

𝑘−1,𝜏
) ℎ

𝑞𝑖

−

𝑘

∑

𝑗=V

𝑐
(𝑞)

𝑗
𝑥
𝑖 𝑘−𝑗

.

(21)

And if 𝜏 = (0, 0, . . . , 0), then the system (6) can be solved
as [36]

𝑥
𝑖

(𝑙+1)

𝑘

= 𝑓
𝑖
(𝑥
1

(𝑙)

𝑘
, . . . , 𝑥

𝑖−1

(𝑙)

𝑘
, 𝑥
𝑖

(𝑙)

𝑘−1
, . . . , 𝑥

𝑛

(𝑙)

𝑘−1
) ℎ

𝑞𝑖

−

𝑘

∑

𝑗=V

𝑐
(𝑞𝑖)

𝑗
𝑥
𝑖 𝑘−𝑗

.

(22)

To the best of our knowledge, there is no work that has
been done to reconstruct the fractional chaos systems under
condition that both 𝑓, 𝑞 and 𝜏 are unknown in submodel A
as (10) neither for time-delays free norwith time-delays chaos
systems.
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2.3. Mathematical Submodel B. In this sub-model, 𝑓 are
unknown, but 𝜏 and 𝑞 are definite. Then to be estimated is
only the fractional differential equations 𝑓; that is,

(𝑓)
∗

= arg min
(
̃
𝑓)

𝐹. (23)

It is should be noticed that there are few methods for
reconstruction of fractional-order chaos systems [36] so far.

However, there are a few results for normal chaos sys-
tems, as the special cases of fractional chaos systems. For
reconstruction of𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
)with the non-Lyapunov

methods, they are mainly from symbolic regression through
genetic programming (GP) [49–51], and some are from
evolutionary algorithms [52–62].

Considering mathematical sub-model A, we have to say
that it is really difficult to use the ideas in mathematical
sub-model B. Let the input variables be taken as 𝑥, 𝑦, and
𝑧 and let the basic operators set used be {+, −, ×, ÷,D

𝑝

𝑡
, =

}, where fractional-order 𝑝 ∈ [0, 1] is uncertain. Now we
consider the easiest cases that the fractional order differential
equation D

𝑞1

𝑡
𝑥 = 𝑓

1
(𝑥, 𝑦, 𝑧) is unknown. Then we will see

the individuals as following with the ideas similar tomethods
for the normal chaos of sub-model B. Figures 2(a) and 2(b)
are the normal and correct candidate individuals only for
the right part 𝑓

1
of 𝑑𝑥/𝑑𝑡 = 𝑓

1
(𝑥, 𝑦, 𝑧) of the normal chaos

systems.
However, when it comes to fractional-order chaos system,

the whole fractional-order differential equations should be
taken into accounts; that is, D𝑞1

𝑡
𝑥 = 𝑓

1
(𝑥, 𝑦, 𝑧) with 𝑞 =

𝑝 ∈ [0, 1] uncertain and 𝑓
1
unknown. Figure 2(c) shows

a correct candidate. And when the evolutions (crossover,
mutation, and selection) go on, there are some wrong and
illegal candidates generated as Figures 2(d), 2(e), and 2(f)
show. Figure 2(d) is a wrong candidate with D

𝑝

𝑡
(𝑥 − 𝑦).

Figure 2(e) is a wrong candidate withD𝑝1

𝑡
(𝑥−𝑦) andD𝑝2

𝑡
(𝑦).

Here it should be noticed that random 𝑝
1
, 𝑝
2

∈ [0, 1].
Figure 2(f) is a wrong candidate with not only D

𝑝1

𝑡
(𝑥 − 𝑦),

D
𝑝2

𝑡
(𝑧), and D

𝑝3

𝑡
(𝑧) but also extra {=}. Here it should be

noticed that random 𝑝
1
, 𝑝
2
, 𝑝
3
∈ [0, 1].

So long as the evolutions (crossover, mutation, and
selection) go on, these wrong candidate inevitably exists,
although, in the genetic programming, the tree depth is set to
be limited with unlimited leaves. And these kinds of wrong
individuals will become heavy burden for both the genetic
evolution and resolving of the fractional-order differential
equations.

Thus it is not suitable to use the methods based on GP
only to reconstruct the fractional-order chaos system; neither
fractional order 𝑞 nor equations 𝑓

𝑖
are unknown. However, if

it is only considering the unknown equations 𝑓
𝑖
with definite

certain fractional order 𝑞, these methods will be impressive
and efficient as in [36].

2.4. Mathematical Submodel C. In this sub-model C,
(𝑞
1

̸= 𝑞
2

̸= ⋅ ⋅ ⋅ ̸= 𝑞
𝑛
), systematic parameters and time delays

(𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
), 𝜏 = (𝜏

1
, 𝜏
2
, . . . , 𝜏

𝑛
) ∈ (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) are

unknown for noncommensurate and hyperfractional-order
chaos system.

There are some estimation methods that have been
purposed to identify the unknown parameters and orders for
commensurate fractional-order chaotic systems. However, to
the best of our knowledge, no such reconstruction methods
have been done for noncommensurate and hyper fractional-
order chaos system; it is necessary to resolve the following
equation in non-Lyapunov way:

(𝑞, 𝜃, 𝜏)
∗

= arg min
(𝑞,
̃
𝜃,𝜏)

𝐹. (24)

And there exist basic hypotheses in traditional non-
Lyapunov estimation methods for fractional-order systems
[7, 9, 28]. That is, the parameters and fractional orders are
partially known or the known data series coincide with
definite forms 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) of fractional chaotic

differential equations except for some uncertain parameters
and fractional orders Θ = (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
, 𝑞
1
, 𝑞
2
, . . . , 𝑞

𝑛
).

This is the basic difference between submodel A, B,
and C. And for the case when some chaotic differential
equations 𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) are unknown, there are some

chaos system reconstruction methods. Then the cases [63–
75] can be thought of as special cases of chaos reconstruc-
tion, when the exact forms of chaotic differential equations
𝑓 = (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) are available, but some parameters are

unknown.

2.4.1. Parameters Estimation for Fractional-Order Chaos Sys-
tems. We take the fractional-order Lorénz system (25) [3,
8, 24] as an example, which is generalized from the first
canonical chaotic attractor found in 1963, Lorénz system [76]:

𝛼
D
𝑞1

𝑡
𝑥 = 𝜎 ⋅ (𝑦 − 𝑥) ,

𝛼
D
𝑞2

𝑡
𝑦 = 𝛾 ⋅ 𝑥 − 𝑥 ⋅ 𝑧 − 𝑦,

𝛼
D
𝑞3

𝑡
𝑧 = 𝑥 ⋅ 𝑦 − 𝑏 ⋅ 𝑧,

𝐿 = (𝑥, 𝑦, 𝑧) ,

(25)

where 𝑞
1
, 𝑞

2
, and 𝑞

3
are the fractional orders. When

(𝑞
1
, 𝑞
2
, 𝑞
3
) = (0.993, 0.993, 0.993), 𝜎 = 10, 𝛾 = 28, 𝑏 = 8/3,

and 𝛼 = 0, intimal point (0.1, 0.1, 0.1) system (25) is chaotic.
Generally when the dimension

∑ = 𝑞
1
+ 𝑞

2
+ 𝑞

3
> 2.91 (26)

for fractional system (25) is chaotic [3, 8, 24], the form of
function (10) can also be as follows:

𝑝
2

= 𝐹 (𝜎, 𝛾, 𝑏, 𝑞
1
, 𝑞
2
, 𝑞
3
) =

𝑇⋅ℎ

∑

𝑡=0⋅ℎ


�̃� − 𝐿



2

. (27)

It is noticed that objective function (27) can be any forms
of correspond equations (9).

Then the problems of estimation of parameters for chaotic
system are transformed into those of nonlinear function
optimization (27). And the smaller the 𝑝

2 is, the better are
combinations of parameter (𝜎, 𝛾, 𝑏, 𝑞

1
, 𝑞
2
, 𝑞
3
). The indepen-

dent variables of these functions are 𝜃 = (𝜎, 𝛾, 𝑏, 𝑞
1
, 𝑞
2
, 𝑞
3
).
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sin

+

×

x y z

(a) sin 𝑥 + 𝑦𝑧

sin

+×

×

x

x

y

y

zz−

−

ln

(b) sin (𝑥 − 𝑦) ⋅ ln 𝑧 − (𝑦 + 𝑥𝑧)

×

x y z

=

𝒟
p
t

(c) D
𝑝

𝑡
𝑥 = 𝑦𝑧

+

×

xy

y

z

=

𝒟
p
t

−

x

(d) D
𝑝

𝑡
(𝑥 − 𝑦) = 𝑦 + 𝑥𝑧

+

×

x

x

y

y

z

−

=

𝒟
p1
t

𝒟
p2
t

(e) D
𝑝1

𝑡
(𝑥 − 𝑦) = 𝑦 +

𝑧D
𝑝2

𝑡
𝑥

×

x

y

y

y

z

z

=

𝒟
p2
t

𝒟
p3
t

÷

=

𝒟
p1
t

−

(f) Illegal candidates

Figure 2: Some examples of the tree structures in GP evolutions.

And considering that the fractional system is very com-
plicated, to simplify the problems, it is reported unknown
𝑞 = 𝑞

1
= 𝑞

2
= 𝑞

3
, 𝜎, 𝛾, 𝑏 or case of 𝜎, 𝛾, 𝑏 are known

and only one 𝑞
𝑖
are unknown for the similar fractional-order

chaos systems, such as fractional order Lü system [16, 77],
fractional-order Chen system [27, 78], and fractional Lorénz
system [3, 8, 24], discussed in [7, 9]. This is the basic idea for
the recently proposed methods for fractional chaos system
[7, 9].

However, the case 𝑞
1

̸= 𝑞
2

̸= 𝑞
3
is not included in the

above non-Lyapunov ideas or not fully discussed either for
noncommensurate fractional chaos systems.

2.5. The Main Differences between Submodels A, B, and C.
Equation (10) is the crucial turning point that changing from
the parameters estimation into functions reconstruction and
orders estimation, in other words, both fractional-order
estimation and fractional chaos systems’ reconstruction.

It can be concluded that the parameters’ estimation of
fractional-order chaos system [7, 9] is a special case of
fractional-order chaos reconstruction here as (10). In their
researches, the forms of the fractional-order differential
equations (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) are known, but some parameters

(𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
) of these equations are unknown, and only one

fractional order and some of these systematic parameters
(𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑛
) are estimated [7, 9].

And further, the parameters estimation cases that all
(𝑓
1
, 𝑓
2
, . . . , 𝑓

𝑛
) are known but parameters (𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
) of

these equations are unknown and the reconstruction case that
some of (𝑓

1
, 𝑓
2
, . . . , 𝑓

𝑛
) are unknown, in Section 2.3 for the

normal chaos system, are the special cases of fractional-order
chaos systems’ reconstruction (10).

However, it should be emphasized here that, for recon-
struction the novel general mathematical model (10) for
fractional chaos parameters identification in non-Lyapunov
way, with uncertain different fractional order 𝑞; that is,
𝑞
1

̸= 𝑞
2

̸= ⋅ ⋅ ⋅ ̸= 𝑞
𝑛
∈ {×, ÷, +, −,D

𝑞1

𝑡
,D

𝑞2

𝑡
, . . . ,D

𝑞𝑛

𝑡
}; it is really
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difficulty to generate a proper candidate from this basic set
as shown in Figure 2. Then, it is not easy to reconstruct
the fractional-order differential equations and identify the
fractional orders together. And only the simplest case that
with definite 𝑞 = 𝑞

1
= 𝑞

2
= ⋅ ⋅ ⋅ = 𝑞

𝑛
is discussed [36].

3. Cuckoo Search Oriented Statistically by
Differential Evolution

3.1. Cuckoo Search. Cuckoo search (CS) is an optimization
algorithm [37, 38], inspired by the obligate brood parasitism
of some cuckoo species by laying their eggs in the nests of
other host birds (of other species). And some host birds can
come into direct conflict with the intruding cuckoos.

CS is based on three idealized rules.
(i) Only one egg is laid and is dumped into a randomly

chosen nest by each cuckoo at time 𝑡.
(ii) The best nests with high quality of eggs (candidate

solutions) will be copied to the next generation
directly.

(iii) The number of available host nests is fixed, and an
alien egg will be discovered by a host bird with
probability 𝑝

𝑎
∈ [0, 1]. If so, the host can either throw

the egg away or abandon the nest so as to build a
completely new nest in a new location.

A Lévy flight is performed for cuckoo 𝑖 when a new
candidate 𝑥(𝑡+1) is generated [37–39]:

𝑥
(𝑡+1)

𝑖
= 𝑥

(𝑡)

𝑖
+ 𝑎 ⊕ Lévy (𝜆) , (28)

where 𝑎 > 0 is the step size which should be related to
the scales of the problem of interest. Normally, 𝑎 = 𝑂(1).
The product ⊕ means entrywise multiplications. Lévy flights
essentially provide a random walk while their random steps
are drawn from a Lévy distribution for large steps

Lévy ∼ 𝑢 = 𝑡
−𝜆

(1 < 𝜆 ≤ 3) , (29)

which has an infinite variance with an infinite mean, and
essentially form a random walk process obeying a power-law
step-length distribution with a heavy tail [37–39].

Based on the above rules and ideas, the basic steps of
the CS can be summarised as shown in pseudocode of
Algorithm 1.

It should be noticed that, in each iteration of Algorithm 1,
there are two rounds of evaluation of the fitness: one is after
getting a cuckoo by Lévy flights and the other is after abandon
the worse nests with probability 𝑝

𝑎
and building the new

nest at the new locations. It is also showed in the original
MATLAB code in [38].

This might be the reason that CS is efficient. Because CS
uses Lévy flights twice and evaluates the candidates twice
in one generation. However, there is one evaluation for the
whole population in normal swarm intelligent methods. If
we consider the number of evaluating the fitness function by
these two evaluations, they might not be economic.

Thus, we can make some modifications here to accelerate
the CS as Algorithm 1 by decreasing the evaluation number
for the fitness.

3.2. Differential Evolution Algorithm. Differential evolution
(DE) algorithm was proposed by Storn et al. [79–82]. DE
utilizes M 𝑛–dimensional vectors, 𝑋

𝑖
= (𝑥

𝑖1
, . . . , 𝑥

𝑖𝑛
) ∈

𝑆, 𝑖 = 1, . . . ,𝑀, as a population for each iteration, called
a generation, of the algorithm. For each vector 𝑋

(𝐺)

𝑖
=

(𝑋
(𝐺)

𝑖 1
, 𝑋

(𝐺)

𝑖 2
, . . . , 𝑋

(𝐺)

𝑖 𝑛
), 𝑖 = 1, 2, . . . ,𝑀, there are three main

genetic operators acting [79–82].
To apply the mutation operator, firstly choose randomly

four mutually different individuals in the current population
𝑋
(𝐺)

𝑟1

, 𝑋
(𝐺)

𝑟2

, 𝑋
(𝐺)

𝑟3

, 𝑋
(𝐺)

𝑟4

(𝑟
1

̸= 𝑟
2

̸= 𝑟
3

̸= 𝑟
4

̸= 𝑖) to compose a dif-
ferential vector 𝐷

(𝐺)

= [𝑋
(𝐺)

𝑟1

− 𝑋
(𝐺)

𝑟2

] + [𝑋
(𝐺)

𝑟3

− 𝑋
(𝐺)

𝑟4

]; then
combines it with the current best individual 𝑋(𝐺)

best to get a
perturbed vector 𝑉 = (𝑉

1
, 𝑉
2
, . . . , 𝑉

𝑛
) [79, 83] as follows:

𝑉 = 𝑋
(𝐺)

best + CF × 𝐷
(𝐺)

, (30)

where CF > 0 is a user-defined real parameter, called
mutation constant, which controls the amplification of the
difference between two individuals to avoid search stagna-
tion.

Following the crossover phase, the crossover operator is
applied on 𝑋

(𝐺)

𝑖
. Then a trial vector 𝑈 = (𝑈

1
, 𝑈

2
, . . . , 𝑈

𝑛
) is

generated by

𝑈
𝑚

= {
𝑉
𝑚
, if (rand (0, 1) < CR) or (𝑚 = 𝑘) ,

𝑋
(𝐺)

𝑖𝑚
, if (rand (0, 1) ≥ CR) and (𝑚 ̸= 𝑘) ,

(31)

in the current population [79], where 𝑚 = 1, 2, . . . , 𝑛, the
index 𝑘 ∈ {1, 2, . . . , 𝑛} is randomly chosen, and CR is a user-
defined crossover constant [79, 83] in the range [0, 1]. In other
words, the trial vector consists of some of the components
of the mutant vector and at least one of the components of a
randomly selected individual of the population.

Then it comes to the replacement phase. To maintain the
population size, we have to compare the fitness of𝑈 and𝑋

(𝐺)

𝑖

and then choose the better:

𝑋
(𝐺+1)

𝑖
= {

𝑈, if𝐹 (𝑈) < 𝐹 (𝑋
(𝐺)

𝑖
) ,

𝑋
(𝐺)

𝑖
, otherwise.

(32)

3.3. Cuckoo Search Oriented Statistically by Differential Evo-
lution. Considering the redundant evaluation for the fitness
function of CS and the efficiency of DE, we can propose
a novel cuckoo search oriented statistically by differential
evolution as shown in Algorithm 2.

In each iteration of Algorithm 2, Lévy flights (28) are used
once for each location. And differential evolution operation
is used with a probability 𝑝De less than 0.2. In this way, the
evaluations for the fitness function are reduced nearly by 80%
compared to original Algorithm 1.

And 𝑝De in Algorithm 2 CSODE should not be too big.
Otherwise, it will cause Algorithm 2 to be much more like
a DE algorithm rather than a cuckoo searcher algorithm. It
will be illustrated in the section of simulations. Actually, our
original idea is to let CS be oriented not controlled by DE.
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(1) Basic parameters’ setting Objective function 𝑓(𝑥), 𝑥 = (𝑥
1
, . . . , 𝑥

𝑑
),

initial population of 𝑛 host nests 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛), boundaries for each

dimension 𝑥
𝑖
= (𝑥

𝑖,1
, . . . , 𝑥

𝑖,𝑑
) and so forth.

(2) While Termination condition is not satisfied do
(3) Get a cuckoo (𝑖, 𝑖 = 1, 2, . . . , 𝑛) randomly by Lévy flights (28).
(4) Evaluate its fitness 𝐹

𝑖
;

(5) If (𝐹
𝑖
> 𝐹

𝑗
)

(6) Replace 𝑗 by the new solution
(7) End
(8) Abandon a fraction (𝑝

𝑎
) of worse nests.

(9) Build new ones at new locations via Lévy flights (28) (𝑖, 𝑖 = 1, 2, . . . , 𝑛).
(10) Keep the best solutions (or nests with quality solutions).
(11) Rank the solutions and find the current best.
(12) end while
(13) Output Global optimum 𝑄

𝑔

Algorithm 1: The basic steps of the cuckoo search.

(1) Basic parameters’ setting Objective function 𝑓(𝑥), 𝑥 = (𝑥
1
, . . . , 𝑥

𝑑
),

initial population of 𝑛 host nests 𝑥
𝑖
(𝑖 = 1, 2, . . . , 𝑛), boundaries for each

dimension 𝑥
𝑖
= (𝑥

𝑖,1
, . . . , 𝑥

𝑖,𝑑
) and so forth.

(2) While Termination condition is not satisfied do
(3) If 𝑝De < 0.2, generating candidate cuckoo population (𝑖, 𝑖 = 1, 2, . . . , 𝑛)

randomly from current population by (31).
(4) Updating the current cuckoo swarm and the candidate swarm with (32).
(5) Abandon a fraction (𝑝

𝑎
) of worse nests.

(6) Build new ones at new locations via Lévy flights (28).
(7) Keep the best solutions (or nests with quality solutions).
(8) Rank the solutions and find the current best.
(9) end while
(10)Output Global optimum 𝑄

𝑔

Algorithm 2: Cuckoo search oriented statistically by differential evolution (CSODE).

4. A Novel Unknown Parameters and
Orders Identification Method Based on
CSODE for Noncommensurate
Fractional-Order Chaos Systems

The task of this section is to find a simple but effective
approach for unknown 𝑞 and systematic parameters in
(24) for noncommensurate fractional-order chaos based on
CSODE in non-Lyapunov way.

4.1. A Novel Unknown Parameters and Orders Identifica-
tion Method. Now we can propose a novel approach for
hyper, proper, and improper fractional chaos systems. The
pseudocode of the proposed reconstruction is given in
Algorithm 3.

4.2. Noncommensurate and Hyperfractional-Order Chaos Sys-
tems. To test Algorithm 3, some different well-known and
widely used noncommensurate and hyper fractional order
chaos systems are choose as follows. To have a comparative
result, these systems are taken from [36].

Example 1. Here we discuss the noncommensurate fractional
Lorénz system [8, 36].

Example 2. Fractional-order Arneodo’s system [36, 47, 84].

Example 3. Fractional-order Duffing’s system [47].

Example 4. Fractional-order Genesio-Tesi’s systems [47, 85].

Example 5. Fractional-order financial systems [36, 47, 85].

Example 6. Fractional-order Lü system [16, 47].

Example 7. Improper fractional-order Chen system [27, 47,
78].

Example 8. Fractional-order Rössler system [12, 47].

Example 9. Fractional-order Chua’s oscillator [86].

Example 10. Hyperfractional-order Lorénz system [87].

Example 11. Hyperfractional-order Lü system [88].
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(1) Basic parameters’ setting for Algorithm 2.
(2) Initialize Generate the initial population.
(3) While Termination condition is not satisfied do
(4) Algorithm 2 with fitness with (24).
(5) Boundary constraints For each 𝑥

𝑖𝑘
∈ 𝑋

𝑖
, 𝑘 = 1, 2, . . . , 𝐷, if 𝑥

𝑖1
is

beyond the boundary, it is replaced by a random number in the boundary.
(6) end while
(7) Output Global optimum 𝑥Best

Algorithm 3: A novel unknown parameters and orders identification method based on differential evolution algorithms for noncommen-
surate and hyperfractional-order chaos systems.

Table 1: Detail parameters setting for different systems.

F-O systems Unknown Lower boundary Upper boundary Step NOSPa

Example 1 (𝜎, 𝛾, 𝑏, 𝑞
1
, 𝑞
2
, 𝑞
3
) 5, 20, 0.1, 0.1, 0.1, 0.1 15, 30, 10, 1, 1, 1 0.01 100

Example 2 (𝛽
1
, 𝛽

2
, 𝛽

3
, 𝛽

4
, 𝑞
1
, 𝑞
2
, 𝑞
3
) −6, 2, 0.1, −1.5, 0.1, 0.1, 0.1 −5, 5, 1, −0.5, 1, 1, 1 0.005 200

Example 3 (𝑎, 𝑏, 𝑐, 𝑞
1
, 𝑞
2
) 0.1, 0.1, 0.1, 0.1, 0.5 1, 1, 2, 1, 1.5 0.0005 500

Example 4 (𝛽
1
, 𝛽

2
, 𝛽

3
, 𝛽

4
, 𝑞
1
, 𝑞
2
, 𝑞
3
) 1, 1, 0.1, 0.1, 0.5, 0.5, 0.1 2, 2, 1, 1.5, 1.5, 1.5, 1 0.005 200

Example 5 (𝑎, 𝑏, 𝑐, 𝑞
1
, 𝑞
2
, 𝑞
3
) 0.5, 0.01, 0.5, 0.5, 0.1, 0.1 1.5, 1, 1.5, 1.5, 1, 1 0.005 200

Example 6 (𝑎, 𝑏, 𝑐, 𝑞
1
, 𝑞
2
, 𝑞
3
) 30, 0.1, 15, 0.1, 0.1, 0.1 40, 10, 25, 1, 1, 1 0.01 100

Example 7 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
) 30, 0.1, 20, −10, 0.5, 1, 1 40, 10, 30, −0.1, 2, 2, 2 0.01 100

Example 8 (𝑎, 𝑏, 𝑐, 𝑞
1
, 𝑞
2
, 𝑞
3
) 0.1, 0.1, 5, 0.1, 0.1, 0.1 1, 1, 15, 1, 1, 1 0.01 100

Example 9 (𝛼, 𝛽, 𝛾, 𝜁, 𝑎, 𝑏, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 5, 10, 0.1, 0.1, 0.3, 0.1, 0.1, 0.1, 0.1, 0.1 10, 20, 1, 2, 0.3, 1, 1, 1, 1, 1 0.01 100

Example 10 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 5, 0.1, 20, −2, 0.1, 0.1, 0.1, 0.1 15, 5, 30, −0.1, 1, 1, 1, 1 0.01 100

Example 11 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 30, 0.1, 15, 0.1, 0.1, 0.1, 0.1, 0.1 40, 5, 25, 5, 1, 1, 1, 1 0.005 200

Example 12 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 5, 0.5, 1, 0.1, 0.1, 0.1, 0.1, 0.1 15, 1.5, 10, 1, 1, 1, 1, 1 0.005 100

Example 13 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 30, 0.1, 10, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1 40, 5, 20, 10, 1, 1, 1, 1, 1 0.005 200

Example 14 (𝑎, 𝑏, 𝑐, 𝑑, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 0.1, 0.1, 0.1, 0.01, 0.1, 0.1, 0.1, 0.1 1, 5, 1, 1, 1, 1, 1, 1 0.005 200

Example 15 (𝑎, 𝑏, 𝑐, 𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) 5, 38, 45, 0.5, 0.5, 0.5, 0.5 10, 45, 50, 1, 1, 1, 1 0.005 200

aNumber of sample points for resolving the fractional chaos systems.

Example 12. Hyperfractional-order Liu system [89].

Example 13. Hyperfractional-order Chen system [90].

Example 14. Hyperfractional-order Rössler system [12].

Example 15. A four-wing fractional-order system [91, 92]
both incommensurate and hyperchaotic

D
𝑞1

𝑡
𝑥
1
= 𝑎𝑥

1
− 𝑥

2
𝑥
3
+ 𝑥

4
,

D
𝑞2

𝑡
𝑥
2
= −𝑏𝑥

2
+ 𝑥

1
𝑥
3
,

D
𝑞3

𝑡
𝑥
3
= 𝑥

1
𝑥
2
− 𝑐𝑥

3
+ 𝑥

1
𝑥
4
,

D
𝑞4

𝑡
𝑥
4
= −𝑥

2
.

(33)

When (𝑎, 𝑏, 𝑐) = (8, 40, 49), (𝑞
1
, 𝑞
2
, 𝑞
3
, 𝑞
4
) = (1, 0.95, 0.9,

0.85), and initial point is (1, −2, 3, 1) [91], system (33) is
chaotic.

4.3. Simulations. For systems to be identified, the parameters
of the proposed method are set as follows. The parameters of
the simulations are fixed: the size of the population was set
equal to 𝑀 = 40, generation is set to 500, and the default

values are CF = 1, CR = 0.85, and 𝑝DE = 0.2; Table 1 gives
the detail setting for each system.

Table 2 shows the simulation results of the above
fractional-order chaotic systems. And some simulations are
done by single cuckoo search (CS) methods. In these cases,
all the other parameters for the algorithms are the same as
for CSODE. The simulation results are listed in Table 3.

And comparisons of CSODE with evolutionary algo-
rithms such as Genetic Algorithms are done. Here we choose
theGA toolbox fromMATLAB 2013a;most of the parameters
are chosen as default in Matlab, except that population size
is 80, generation number is 600, exiting the GA’s evolution
with average fitness value changes less than 10

−16, and
“Vectorized” is “on,” “UseParallel” is “always.” And simulation
results are showed in Table 4.

The following figures give an illustration of how the self
growing evolution process works by CSODE (Algorithm 3).
In which, Figures 3, 4, 5, 6, 7, 8, 9, 10, and 11 show the
simulation evolution results of the above fractional order
chaotic systems with optimization process of objective func-
tion’s evolution and the parameters and orders uncertain of
the above fractional order chaotic systems.
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Table 2: Simulation results for different fractional-order chaos systems by CSODE.

F-O system StD Mean Min. Max. Success ratea NEOFb

Example 1 2.2025𝑒 − 04 6.6862𝑒 − 04 3.1179𝑒 − 06 5.5594𝑒 − 03 100% 24013
Example 2 4.7346𝑒 − 06 1.5061𝑒 − 05 3.2217𝑒 − 07 1.4355𝑒 − 04 100% 24073
Example 3 5.8073𝑒 − 09 1.4890𝑒 − 08 1.3035𝑒 − 10 1.3548𝑒 − 07 100% 24016
Example 4 1.3724𝑒 − 04 5.1929𝑒 − 04 7.6119𝑒 − 07 3.8262𝑒 − 03 100% 24073
Example 5 2.7967𝑒 − 08 2.9039𝑒 − 08 1.5084𝑒 − 09 1.4728𝑒 − 07 100% 24013
Example 6 2.7950𝑒 − 04 6.5471𝑒 − 04 6.8653𝑒 − 06 5.9367𝑒 − 03 100% 24038
Example 7 6.5650𝑒 − 03 8.3188𝑒 − 03 1.6981𝑒 − 04 4.3289𝑒 − 02 83% 24074
Example 8 1.8666𝑒 − 08 2.1368𝑒 − 08 1.2494𝑒 − 09 1.2324𝑒 − 07 100% 24013
Example 9 1.4857𝑒 − 04 1.4529𝑒 − 04 1.9011𝑒 − 05 1.0265𝑒 − 03 100% 24073
Example 10 5.1741𝑒 − 03 4.4624𝑒 − 03 5.0835𝑒 − 04 2.4994𝑒 − 02 87% 24041
Example 11 1.2904𝑒 − 02 1.2573𝑒 − 02 5.8260𝑒 − 04 5.5329𝑒 − 02 100%c 24041
Example 12 6.2490𝑒 − 06 4.1206𝑒 − 06 3.3623𝑒 − 07 2.3320𝑒 − 05 100% 24101
Example 13 5.4440𝑒 − 02 4.5710𝑒 − 02 6.0972𝑒 − 03 2.7476𝑒 − 01 87%c 24022
Example 14 2.0859𝑒 − 04 1.5394𝑒 − 04 3.1938𝑒 − 05 7.9808𝑒 − 04 100% 24041
Example 15 4.5612𝑒 − 01 1.8007𝑒 + 00 3.1952𝑒 − 03 1.6640𝑒 + 01 56%c 24024
aSuccess means that the solution is less than 1𝑒 − 2 in 100 independent simulations.
bNo. of average evaluation for objective function (NEOF).
cSuccess means that the solution is less than 1𝑒 − 1 in 100 independent simulations.

Table 3: Simulation for fractional-order systems by single cuckoo search.

System StD Mean Min. Max. Success ratea NEOFb

Example 1 3.8566𝑒 − 01 6.8548𝑒 − 01 1.1083𝑒 − 01 2.2250 0% 40040
Example 2 5.2993𝑒 − 04 1.1322𝑒 − 03 2.9726𝑒 − 04 2.7731𝑒 − 03 100% 40040
Example 3 2.2560𝑒 − 04 3.8504𝑒 − 04 7.2187𝑒 − 05 1.4730𝑒 − 03 100% 40040
Example 4 4.0392𝑒 − 03 1.8645𝑒 − 03 1.0365𝑒 − 03 1.0422𝑒 − 02 100% 40040
Example 6 9.2611𝑒 − 01 1.8303 6.0910𝑒 − 01 6.4697 0% 40040
Example 9 8.1825𝑒 − 02 4.0495𝑒 − 02 1.5058𝑒 − 02 2.3472𝑒 − 01 0% 40040
Example 10 9.5917 4.4177 3.1812 2.5456𝑒 + 01 0% 40040
Example 11 3.8130 7.1730 2.5631 2.7080 0% 40040
Example 13 8.8389 3.5136 2.6274 2.4436𝑒 + 01 0% 40040
Example 15 9.5876𝑒 − 02 1.4075𝑒 − 01 3.3331𝑒 − 02 5.7142𝑒 − 01 43% 40040
aSuccess means that the solution is less than 1𝑒 − 1 in 100 independent simulations.
bNumber of evaluation for objective function.

Table 4: Simulation for fractional-order systems by Genetic Algorithm.

System StD Mean Min. Max. Success ratea NEOFb

Example 1 8.8774 7.6047 1.4454 17.78 0% 48080
Example 2 0.098989 0.076223 0.0057602 0.1894 37% 48080
Example 5 0.0074472 0.042908 0.035629 0.050513 100% 48080
Example 6 0.52621 5.6488 5.0984 6.1469 0% 48080
Example 8 0.025535 0.036555 0.007422 0.055056 40% 48080
Example 10 5.5344 36.469 30.181 40.602 0% 48080
Example 11 14.492 17.303 5.2875 33.397 0% 48080
Example 13 4.8245 10.34 4.773 13.299 0% 48080
Example 15 6.3815 721.09 713.72 724.77 0% 34294
aSuccess means that the solution is less than 1𝑒 − 1 in 100 independent simulations.
bNo. of evaluation for objective function.
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Figure 3: Evolution process for fractional-order Lorénz system.
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Figure 4: Evolution process for fractional-order Arneodo system.
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Table 5: Simulation results for system (33).

System (33) StD Mean Min. Max. Success rate NEOFb

Case A 2.3271𝑒 + 02 2.2944𝑒 + 02 3.4062𝑒 − 02 5.2168𝑒 + 02 31%a 24000
Case Ac

3.5361𝑒 + 02 4.3992𝑒 + 02 2.9705𝑒 − 04 7.2477𝑒 + 02 39%a 24040
Case B 3.3699𝑒 − 02 1.6530𝑒 − 01 1.5989𝑒 − 05 8.3946𝑒 − 01 96%d 23800
Case C 6.2779𝑒 − 03 2.4339𝑒 − 02 1.4415𝑒 − 05 1.7882𝑒 − 01 98%d 39360
Case D 7.5365𝑒 − 01 2.3014𝑒 + 00 1.1463𝑒 − 02 1.6874𝑒 + 01 41%d 48320
aSuccess means that the solution is less than 1 in 100 independent simulations.
bNumber of evaluation for objective function.
cBy single DE with 600 generations.
dSuccess means that the solution is less than 1𝑒 − 1 in 100 independent simulations.
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Figure 5: Evolution process for fractional-order financial system.

From the simulations results of the above fractional-order
chaos system, it can be concluded that the proposed method
is efficient. And from above figures, it can be concluded
that the estimated systems are self-growing under the genetic
operations of the proposed methods.

To test the performance of the proposed method
(Algorithm 3), some more simulations are done to the four-
wing incommensurate hyperfractional-order chaotic system
(33) in the following cases A, B, C, and D. In these cases,
each with only one condition is changed according to the
original setting for system (33). The other parameters for the
algorithms are the same as those for CSODE.The simulation
results are listed in Table 5.

(i) Case A: enhancing the defined intervals of the
unknown parameters and orders to [0, 10]×[30, 45]×

[40, 50] × [0.1, 1] × [0.1, 1] × [0.1, 1] × [0.1, 1].
(ii) Case B: reducing the number of samples for comput-

ing system (33) from 200 to 100.

(iii) Case C: increasing the iteration numbers of
Algorithm 3 from 500 to 800.

(iv) Case D: changing the population size of Algorithm 3
from 40 to 80.

Figure 12 shows the correspondent simulation results for
system (33).

From results of Tables 2, 3, and 5 and Figure 12, we
can conclude that minimizing the number of samples for
computing the system (33) as case B, enhancing the iteration
numbers as case C, and changing the population size of
Algorithm 3 as case D, will make Algorithm 3 much efficient
and achieve a much more higher precision. However if the
defined intervals of the unknown parameters of system (33)
are enhanced, then the resultswill go to the oppositeway.That
is, the success rate is from 90% to 20% as case A.

If the number of evaluation for objective function is
considered, it is that minimizing the number of samples for
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Figure 6: Evolution process for fractional-order Lü system.
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Figure 7: Evolution process for fractional-order improper Chen system.
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Figure 8: Evolution process for hyper fractional-order Lü system.
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Figure 9: Evolution process for hyper fractional-order Liu system.
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Figure 10: Evolution process for hyper fractional-order Rössler system.

0 100 200 300 400 500

Best CSODE
Mean CSODE

F

1010

108

106

104

102

100

10−2

10−4

Generations

(a)

0 100 200 300 400 500

485 490 495 500

|a − 8|

|b − 40|

|c − 49|
|q1 − 1|

|q2 − 0.95|

|q3 − 0.9|

|q4 − 0.85|

F

101

100

10−1

10−2

10−3

10−4

10−5

10−5

10−6

Generations

(b)

Figure 11: Evolution process for fractional-order four-wing system (33).



16 Abstract and Applied Analysis

0 100 200 300 400 500 600 700 800

430 440 450

1010

105

100

10−5

100

10−2

10−4

Best CSODE
Mean CSODE
Best case CS

Best case A
Mean case A

Mean case CS

Best case DE

Mean case DE
Best case B
Mean case B
Best case C
Mean case C
Best case D
Mean case D

Generations

F

Process of one simulation

(a)

0 20 40 60 80 100

103

102

101

100

10−1

10−2

10−3

10−4

10−5

Best F CSODE
Best F CS
Best F case A
Best F case A by DE

Best F case B
Best F case C
Best F case D

Simulations

F

F for all simulationsResults of

(b)

Figure 12: Simulation results for system (33).

computing the system (33) as case B is the best way to achieve
higher efficiency and precision.

And according to Tables 2 and 3, Algorithm 3 based on
CSODE is much better than single cuckoo search.

5. Conclusions

The novel Gao mathematical model in Section 2 is not only
for fractional chaos parameters identification but also for
reconstruction in non-Lyapunov way with three submodels
A, B, and C.

The put method based on CSODE consists of numerical
optimization problem with unknown fractional-order differ-
ential equations to identify the chaotic systems. Simulation
results demonstrate the effectiveness and efficiency of the
proposed methods with the Gao mathematical model in
Section 2. This is a novel non-Lyapunov way for fractional
order chaos’ unknown parameters and orders. The proposed
methods solve the question that the unknown fractional-
order 𝑞 are not resolved in [36].

Here we have to say that this work is only about the
estimation of unknown parameters and orders with the
objective function (24) for noncommensurate and hyper
fractional-order chaos systems in non-Lyapunov way. It can
be concluded that CSODE in Algorithm 3 can be changed

to other artificial intelligence methods easily. And from
Tables 2, 3, 4, and 5, we can conclude that Algorithm 3 with
CSODE is better than CS and GA. And using the system (33),
CSODE is better than DE for the bigger scale of the unknown
parameters and orders.

In the future, there are three interesting problems to be
studied.

(i) Neither the fractional-orders nor some fractional
order equations are unknown. That is, the objective
function is chosen as (10) in the novel mathematical
model in Section 2. A simple way for this might
be the approaches combining the fractional orders
and fractional-order equations together that might be
both the estimation methods as artificial intelligent
methods and the reconstruction methods as in [36]
together in some degree.

(ii) Time delays and systematic parameters are unknown
for fractional time-delay chaos systems.The objective
functionwill be selected as the objective function (24)
for the time-delay fractional chaotic systems as in
Gao’s submodel C, which have special characteristics.

(iii) Cases with noises. Normally, the white noise will be
added to the Gao three sub-models. The similar ideas
discussed in Section 2 will be used.
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In conclusion, it has to be stated that Algorithm 3
for fractional-order chaos systems’ identification in a non-
Lyapunov way is a promising direction.
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