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We introduce a new form of Laplace decomposition algorithm (LDA). By this form a new iterative method was achieved in which
there is no need to calculate Adomian polynomials, which require so much computational time for higher-order approximations.
We have implemented this method for the solutions of different types of nonlinear pantograph equations to support the proposed
analysis.

1. Introduction

Since 2001, Laplace decomposition algorithm (LDA) has been
one of the reliable mathematical methods for obtaining exact
or numerical approximation solutions for a wide range of
nonlinear problems.

The Laplace decomposition algorithm was developed by
Khuri in [2] to solve a class of nonlinear differential equations.
The basic idea in Laplace decomposition algorithm, which
is a combined form of the Laplace transform method with
the Adomian decomposition method, was developed to
solve nonlinear problems. The disadvantage of the Laplace
decomposition algorithm is that the solution procedure for
calculation of Adomian polynomials is complex and difficult
and takes a lot of computational time for higher-order
approximations as pointed out by many researchers [3–5].

The Laplace decomposition algorithm plays an important
role in modern scientific research for solving various kinds
of nonlinear models; for example, Laplace decomposition
algorithm was used in [6] to solve a model for HIV infection
of CD4+T cells; LDA was employed in [7] to solve Abel’s
second kind singular integral equations. In [8] it was used to
solve boundary Layer equation.

Even though there has been some developments in the
LDA [8–11], the use of Adomian polynomials has not been
abandoned.

The main purpose of this paper is to introduce a new
iterative method based on Laplace decomposition algorithm
procedure without the need to compute Adomian polynomi-
als and thus reduce the size of calculations needed.

The scheme is tested for some classes of pantograph equa-
tions, and the results demonstrate reliability and efficiency of
the proposed method.

2. Basic Idea of LDA and the New Technique

To illustrate the basic concept of Laplace decomposition algo-
rithm, we consider the following general nonlinear model:

𝐿
(𝑚)
𝑢 = 𝑁𝑢 + 𝑅𝑢 + 𝑔 (𝑡) , (1)

where 𝐿(𝑚) is the highest order derivative, 𝑅 and 𝑁 are
linear and nonlinear operators, respectively, and 𝑔(𝑡) is an
inhomogeneous term.

Applying the Laplace transform (denoted throughout this
paper by L) to both sides of (1) and using given conditions,
we obtain

L [𝑢 (𝑡)] =H (𝑠) +G (𝑠) + 𝑠
−𝑚L [𝑁𝑢] + 𝑠

−𝑚L [𝑅𝑢] ,

(2)
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Figure 1: The error functions 𝐸𝑛(𝑡𝑖) for Example 1: (a) present method and (b) standard LDA.

where

H (𝑠) =

𝑚−1

∑

𝑟=0

𝑠
−(𝑟+1)

𝑢
(𝑟)
(0) , G (𝑠) = 𝑠

−𝑚
L [𝑔 (𝑡)] .

(3)

The Laplace decomposition algorithm defines the un-
known function 𝑢(𝑡) by an infinite series as

𝑢 (𝑡) =

∞

∑

𝑛=0

𝑢𝑛 (𝑡) , (4)

where the components 𝑢𝑛(𝑡) will be determined recurrently.
Substituting this infinite series into (2) and using the linearity
of Laplace transform lead to

∞

∑

𝑛=0

L [𝑢𝑛 (𝑡)] =H (𝑠) +G (𝑠)

+ 𝑠
−𝑚
∞

∑

𝑛=0

L [𝑁𝑢𝑛] + 𝑠
−𝑚
∞

∑

𝑛=0

L [𝑅𝑢𝑛] .

(5)

Also the nonlinear functions 𝑁𝑢𝑛 are defined by infinite
series as follows:

𝑁𝑢𝑛 =

∞

∑

𝑛=0

𝐴𝑛, (6)

where𝐴𝑛 are the Adomian polynomials [12], depending only
on 𝑢0, 𝑢1, . . . , 𝑢𝑛, and defined by

𝐴𝑛 =
1

𝑛!

𝑑
𝑛

𝑑𝜆𝑛
[𝑁(

𝑛

∑

𝑖=0

𝜆
𝑖
𝑢𝑖)]

𝜆=0

, 𝑛 = 0, 1, 2, . . . . (7)

Substituting (6) into (5), we get

∞

∑

𝑛=0

L [𝑢𝑛 (𝑡)] =H (𝑠) +G (𝑠) + 𝑠
−𝑚
∞

∑

𝑛=0

L [𝐴𝑛]

+ 𝑠
−𝑚
∞

∑

𝑛=0

L [𝑅𝑢𝑛] .

(8)

The Laplace decomposition algorithm presents the recur-
rence relation as

𝑢0 (𝑡) = L
−1
[H (𝑠) +G (𝑠)] ,

𝑢𝑛+1 (𝑡) = L
−1
𝑠
−𝑚

L [𝐴𝑛]

+L
−1
𝑠
−𝑚

L [𝑅𝑢𝑛] , 𝑛 = 0, 1, 2, . . . .

(9)

Applying the inverse Laplace transform to (8) leads to

∞

∑

𝑛=0

[𝑢𝑛 (𝑡)] =L
−1
[H (𝑠) +G (𝑠)] + (L

−1
𝑠
−𝑚

L)

×

∞

∑

𝑛=0

𝐴𝑛 + (L
−1
𝑠
−𝑚

L)

∞

∑

𝑛=0

𝑅𝑢𝑛.

(10)

Equation (10) can be written as

𝑢0 (𝑡) + 𝑢1 (𝑡) + 𝑢2 (𝑡) + ⋅ ⋅ ⋅ + 𝑢𝑛 (𝑡) + ⋅ ⋅ ⋅

=L
−1
[H (𝑠) +G (𝑠)]

+ (L
−1
𝑠
−𝑚

L) [𝐴0 + 𝐴1 + 𝐴2 + ⋅ ⋅ ⋅]

+ (L
−1
𝑠
−𝑚

L) [𝑅 (𝑢0 + 𝑢1 + 𝑢2 + ⋅ ⋅ ⋅)] .

(11)
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Figure 2: The error functions 𝐸𝑛(𝑡𝑖) for Example 2: (a) present method and (b) standard LDA.

By taking V𝑛 = ∑
𝑛

𝑖=0 𝑢𝑖 and (11), the following procedure
can be constructed:

V0 =L
−1
[H (𝑠) +G (𝑠)]

V𝑛+1 = V0 + (L
−1
𝑠
−𝑚

L)

𝑛

∑

𝑖=0

[𝐴 𝑖]

+ (L
−1
𝑠
−𝑚

L) (𝑅 (V𝑛)) , 𝑛 = 0, 1, 2, . . . .

(12)

Consequently, the exact solution may be obtained by

𝑢 (𝑡) = lim
𝑛→∞

V𝑛 = lim
𝑛→∞

𝑛

∑

𝑖=0

𝑢𝑖. (13)

For the analytic nonlinear operator𝑁, we can write

lim
𝑛→∞

𝑁(

𝑛

∑

𝑖=0

𝑢𝑖) = lim
𝑛→∞

𝑛

∑

𝑖=0

𝐴 𝑖. (14)

By considering, (12) and (14) can be reconstructed as

V̂0 =L
−1
[H (𝑠) +G (𝑠)]

V̂𝑛+1 = V̂0 + (L
−1
𝑠
−𝑚

L) (𝑁 (V̂𝑛))

+ (L
−1
𝑠
−𝑚

L) (𝑅 (V̂𝑛)) , 𝑛 = 0, 1, 2, . . . .

(15)

Equation (15) is a new iteration method based on LDA.
The advantage of this scheme is that there is no need to
calculate Adomian polynomials.

3. Test Problems

In this section we will apply our scheme to different types of
pantograph equations.

Example 1 (see [13]). Consider the following nonlinear pan-
tograph differential equation:

𝑢
󸀠
(𝑡) =

1

4
𝑢 (𝑡) + 𝑢 (

𝑡

2
) (1 − 𝑢 (

𝑡

2
)) ,

𝑢 (0) = 1.

(16)

The exact solution of this problem𝑢(𝑡) = 1/2+1/2 cos(√2𝑡/4)
+√2/2 sin(√2𝑡/4).

Based on the iteration formula (15), we get

V0 = 1,

V𝑛+1 = V0 + (L
−1
𝑠
−1
L) (

1

4V𝑛 (𝑡)
)

+ (L
−1
𝑠
−1
L) (V𝑛 (

𝑡

2
) (1 − V𝑛 (

𝑡

2
))) .

(17)

Thus, we get

V1 = 1 +
𝑡

4
,

V2 = 1 +
𝑡

4
−
𝑡
2

32
−

𝑡
3

192
,
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Table 1: Comparison of the absolute errors for Example 1.

𝑡 Exact solution Standard LDA Present method
𝑛 = 5 𝑛 = 5

0.2 1.048708864495296 8.803𝐸 − 11 1.900𝐸 − 13

0.6 1.137669652809217 6.594𝐸 − 8 4.123𝐸 − 10

0.8 1.177476957990361 3.753𝐸 − 7 3.077𝐸 − 9

1.0 1.213898289556670 1.450𝐸 − 6 1.461𝐸 − 8

2.0 1.339484983470599 9.834𝐸 − 5 1.838𝐸 − 6

4.0 1.276427846019296 6.905𝐸 − 3 2.299𝐸 − 4

6.0 8.410651664398781𝐸 − 1 8.393𝐸 − 2 3.960𝐸 − 3

8.0 2.421580540539403𝐸 − 1 4.911𝐸 − 1 3.122𝐸 − 2

10 2.331110590497953𝐸 − 1 1.910 1.643𝐸 − 1

Table 2: Comparison of the absolute errors for Example 2.

𝑡 Exact solution DTM [1] Standard LDA Present method
𝑁 = 9 𝑛 = 3 𝑛 = 3

0.2 1.986693307950612𝐸 − 1 5.2735𝐸 − 16 7.3960𝐸 − 18 6.3679𝐸 − 18

0.6 5.646424733950354𝐸 − 1 9.0678𝐸 − 11 3.8301𝐸 − 13 2.2537𝐸 − 13

0.8 7.173560908995228𝐸 − 1 2.1431𝐸 − 9 8.2825𝐸 − 12 6.0382𝐸 − 12

1.0 8.414709848078965𝐸 − 1 2.4892𝐸 − 8 8.4781𝐸 − 11 1.0616𝐸 − 11

2.0 9.092974268256817𝐸 − 1 5.0015𝐸 − 5 1.5123𝐸 − 8 2.4971𝐸 − 7

4.0 −7.568024953079282𝐸 − 1 9.5074𝐸 − 2 1.2344𝐸 − 3 5.5720𝐸 − 4

6.0 −2.794154981989259𝐸 − 1 7.3079 1.8828𝐸 − 1 5.2101𝐸 − 2

8.0 9.893582466233818𝐸 − 1 148.51 3.6889 1.2615

V3 = 1 +
𝑡

4
−
𝑡
2

32
−

𝑡
3

192
+

𝑡
4

3072

+
𝑡
5

49152
−

𝑡
6

589824
−

𝑡
7

16515072
,

V4 = 1 +
𝑡

4
−
𝑡
2

32
−

𝑡
3

192
+

𝑡
4

3072
+

𝑡
5

30720

− 1.801𝐸
−6
𝑡
6
− 9.461𝐸

−8
𝑡
7
+ 3.548𝐸

−9
𝑡
8
+ small term.

(18)

Knowing that the exact solution of this exampleis given
in [13],

𝑢 (𝑡) =
1

2
+
1

2
cos(

√2

4
𝑡) +

√2

2
sin(

√2

4
𝑡)

= 1 +
𝑡

4
−
𝑡
2

32
−

𝑡
3

192
+

𝑡
4

3072
+

𝑡
5

30720
− 1.356𝐸

−6
𝑡
6

− 9.688𝐸
−8
𝑡
7
+ 3.028𝐸

−9
𝑡
8
+ ⋅ ⋅ ⋅ .

(19)

We see that the approximation solutions obtained by the
present method have good agreement with the exact solution
of this problem.

In Table 1 the absolute errors of the present method and
standard LDA for 𝑛 = 5 are compared.

Figure 1 compares the numerical errors 𝐸𝑛(𝑡𝑖) = |𝑢(𝑡𝑖) −

𝑢𝑛(𝑡𝑖)| for 𝑛 = 1, 2, 3, and 4 obtained by (a) the present

method and (b) the standard LDA. This plot indicates that
the series solution obtained by the present method converges
faster than the standard LDA.

Example 2. Consider the following nonlinear pantograph
integrodifferential equation (PIDE):

𝑢
󸀠󸀠
(𝑡) =

3

5
𝑢 (

5

6
𝑡) − 3𝑢 (

1

6
𝑡) − 𝑡

+ ∫

𝑡

0

[𝑢 (
1

2
𝑥) 𝑢 (

1

3
𝑥) + 2𝑢

2
(
1

2
𝑥)] 𝑑𝑥,

𝑢 (0) = 0, 𝑢
󸀠
(0) = 1.

(20)

For this example we write iteration formula (15) as

V̂0 = 𝑡 −
𝑡
3

6
, V̂𝑛+1

= V0 + (L
−1
𝑠
−2
L)

× (
3

5V𝑛 (5𝑡/6)
− 3V𝑛 (

𝑡

6
)) + (L

−1
𝑠
−2
L)

×∫

𝑡

0

[V𝑛 (
𝑥

2
) V𝑛 (

𝑥

3
)+2V
2

𝑛 (
𝑥

2
)] 𝑑𝑥, 𝑛=0, 1, 2, . . . ,

(21)
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Table 3: Comparison of the absolute errors for Example 3.

𝑡 Exact solution DTM [1] Standard LDA Present method
𝑁 = 4 𝑛 = 4 𝑛 = 4

0.2 2.442805516320340𝐸 − 1 1.388𝐸 − 5 2.6127𝐸 − 6 2.6093𝐸 − 6

0.4 5.967298790565082𝐸 − 1 4.632𝐸 − 4 1.5387𝐸 − 4 1.5303𝐸 − 4

0.6 1.093271280234305 3.671𝐸 − 3 1.6166𝐸 − 3 1.5961𝐸 − 3

0.8 1.780432742793974 1.617𝐸 − 2 8.4028𝐸 − 3 8.2072𝐸 − 3

1.0 2.718281828459046 5.162𝐸 − 2 2.9756𝐸 − 2 2.8645𝐸 − 2

2.0 14.77811219786130 2.111 1.4168 1.1919
3.0 60.25661076956300 21.25 14.341 9.6958

Table 4: The absolute errors for Example 4.

𝑡
Exact solution Present method
𝑢1 = 𝑒

−𝑡 cos(𝑡) 𝐸V11 𝐸V12 𝐸V13

0.2 8.024106𝐸 − 1 1.144𝐸 − 2 4.432𝐸 − 4 1.900𝐸 − 5

0.4 6.174056𝐸 − 1 4.990𝐸 − 2 4.274𝐸 − 3 3.656𝐸 − 4

0.6 4.529538𝐸 − 1 4.185𝐸 − 1 1.643𝐸 − 2 2.119𝐸 − 3

0.8 3.130505𝐸 − 1 2.171𝐸 − 1 4.274𝐸 − 2 7.420𝐸 − 3

1.0 1.987661𝐸 − 1 3.437𝐸 − 1 8.925𝐸 − 2 1.960𝐸 − 2

𝑢2 = sin(𝑡) 𝐸V21 𝐸V22 𝐸V23

0.2 1.986693𝐸 − 1 2.273𝐸 − 2 5.174𝐸 − 4 1.670𝐸 − 5

0.4 3.894183𝐸 − 1 1.024𝐸 − 1 5.840𝐸 − 3 1.790𝐸 − 4

0.6 5.646425𝐸 − 1 2.575𝐸 − 1 2.630𝐸 − 2 3.282𝐸 − 4

0.8 7.173561𝐸 − 1 5.082𝐸 − 1 8.022𝐸 − 2 1.276𝐸 − 3

1.0 8.414710𝐸 − 1 8.768𝐸 − 1 1.965𝐸 − 1 1.015𝐸 − 2

Table 5: The CPU time analysis of the present method and the
standard LDA for obtaining the first three components of Examples
1–4.

Solution method The required CPU time [in seconds]
Example 1 Example 2 Example 3 Example 4

Present method 1.1716 2.0121 1.5608 3.0301
Standard LDA 1.1872 2.4046 1.9201 3.3431

and the first 𝑛 terms are

V1 = 𝑡 −
1

3!
𝑡
3
+
1

5!
𝑡
5
−

67

272160
𝑡
7
+

31

15676416
𝑡
9
,

V2 = 𝑡 −
1

3!
𝑡
3
+
1

5!
𝑡
5
−
1

7!
𝑡
7
+

67163

25395793920
𝑡
9
+ ⋅ ⋅ ⋅ ,

V3 = 𝑡 −
1

3!
𝑡
3
+
1

5!
𝑡
5
−
1

7!
𝑡
7
+
1

9
𝑡
9
−

230719

8620058050560
𝑡
11
+ ⋅ ⋅ ⋅

...

V𝑛 = 𝑡 −
1

3!
𝑡
3
+
1

5!
𝑡
5
−
1

7!
𝑡
7
+
1

9
𝑡
9
− ⋅ ⋅ ⋅ +

(−1)
𝑛

(2𝑛 + 1)!
𝑡
(2𝑛+1)

,

(22)

which gives the exact solution by 𝑢(𝑡) = lim𝑛→∞V𝑛 = sin(𝑡).
In Table 2 we compare the absolute errors of the present

method for 𝑛 = 3 and the standard LDA for 𝑛 = 3 and

the differential transform method described in [1] with nine
terms.

Figure 2 displays the numerical errors obtained by the
present method and the standard LDA.

Example 3. Consider the following nonlinear PIDE:

𝑢
󸀠
(𝑡) + (

1

2
𝑡 − 2) 𝑢 (𝑡) − 2∫

𝑡

0

𝑢
2
(
1

2
𝑥) 𝑑𝑥 = 1,

𝑢 (0) = 0,

(23)

which has the exact solution 𝑢(𝑡) = 𝑡𝑒𝑡. The iteration form of
(15) for this example is

V̂0 = 𝑡,

V̂𝑛+1 = V0 − (L
−1
𝑠
−1
L) (

𝑡

2
− 2) V𝑛 + 2 (L

−1
𝑠
−1
L)

× (∫

𝑡

0

V
2

𝑛 (
𝑥

2
) 𝑑𝑥) , 𝑛 = 0, 1, 2, . . . .

(24)

We obtain the following successive approximations:

V1 = 𝑡 + 𝑡
2
−
𝑡
3

6
+
𝑡
4

24
,

V2 = 𝑡 + 𝑡
2
+
𝑡
3

2
−
𝑡
4

6
+
7𝑡
5

120
+ 𝑂 (6) ,
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Figure 3: The error functions 𝐸𝑛(𝑡𝑖) for Example 3: (a) present method and (b) standard LDA.

V3 = 𝑡 + 𝑡
2
+
𝑡
3

2
+
𝑡
4

6
−
11𝑡
5

120
+
𝑡
6

24
+ 𝑂 (7) ,

V4 = 𝑡 + 𝑡
2
+
𝑡
3

2
+
𝑡
4

6
+
𝑡
5

24
−
13𝑡
6

360
+
103𝑡
7

5040
+ 𝑂 (8) .

(25)

Note that the exact solution of this example is

𝑢 (𝑡) = 𝑡𝑒
𝑡
= 𝑡 + 𝑡

2
+
𝑡
3

2
+
𝑡
4

6
+
𝑡
5

24
+

𝑡
6

120
+

𝑡
7

720
+ ⋅ ⋅ ⋅ .

(26)

In Table 3 we compare the absolute errors of the present
method for 𝑛 = 4 and the standard LDA for 𝑛 = 4 and
the differential transform method described in [1] with four
terms.

Figure 3 displays the numerical errors obtained by the
present method and the standard LDA.

Example 4. Consider a system ofmultipantograph equations:

𝑢
󸀠

1 (𝑡) = −𝑢1 (𝑡) − 𝑒
−𝑡 cos( 𝑡

2
) 𝑢2 (

𝑡

2
)

− 2𝑒
−(3/4)𝑡 cos( 𝑡

2
) sin( 𝑡

4
) 𝑢1 (

𝑡

4
) ,

𝑢
󸀠

2 (𝑡) = 𝑒
𝑡
𝑢
2

1 (
𝑡

2
) − 𝑢
2

2 (
𝑡

2
) ,

𝑢1 (0) = 1, 𝑢2 (0) = 0.

(27)

We can adapt (15) to solve this system as follows:

V10 (𝑡) = 1,

V20 (𝑡) = 0,

V1(𝑗+1) = V10 − (L
−1
𝑠
−1
L)

× (V1𝑗 (𝑡) + 𝑒
−𝑡 cos( 𝑡

2
) V2𝑗 (

𝑡

2
)

+2𝑒
−3𝑡/4 cos( 𝑡

2
) sin( 𝑡

4
) V1𝑗 (

𝑡

4
)) ,

V2(𝑗+1) = V20 + (L
−1
𝑠
−1
L)

× (𝑒
𝑡
V
2

1𝑗 (
𝑡

2
) − V
2

2𝑗 (
𝑡

2
)) , 𝑗 = 0, 1, 2, . . . .

(28)

Table 4 gives the absolute errors 𝐸V𝑖𝑗 = |𝑢𝑖 − V𝑖𝑗|, 𝑖 =
1, 2, 𝑗 = 1, 2, 3 of the present method. The table clearly
indicates that when we increase the truncation limit 𝑛, we
have less error.

Table 5 summarizes the CPU times needed to obtain the
first three components of the series solutions pertaining to the
four above-mentioned examples by the present method and
the standard LDA. The CPU time analysis was conducted on
a personal computer with a 3.77GHz processor and 4GB of
RAM using MATLAB 7.10.

4. Conclusion

In this work, we have presented a new iterationmethod based
on the Laplace decomposition algorithm.
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The advantage of the new method is that it does not
require Adomian polynomials and thus reduces the calcula-
tion size.

The new iterative method has been employed to solve
different classes of nonlinear pantograph equations, in which
the results obtained are in close agreement with the exact
solutions.

The convergence of this method is the subject of ongoing
research.
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