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We consider the question of how to take 𝑋 such that the nonlinear matrix expression 𝑋 − 𝑋𝐴𝑋 attains its maximal and minimal
possible ranks.

1. Introduction

Throughout this paper 𝐶𝑚×𝑛 denotes the set of all 𝑚 × 𝑛
matrices over the complex field 𝐶. 𝐼

𝑘
denotes the identity

matrix of order 𝑘 and 𝑂
𝑚×𝑛

is the 𝑚 × 𝑛 matrix of all zero
entries (if no confusion occurs, we will drop the subscript).
For a matrix 𝐴 ∈ 𝐶𝑚×𝑛, 𝐴∗ and 𝑟(𝐴) denote the conjugate
transpose and the rank of the matrix 𝐴, respectively. (𝐴, 𝐵)
denotes a row block matrix consisting of 𝐴 ∈ 𝐶

𝑚×𝑛 and
𝐵 ∈ 𝐶

𝑚×𝑘.
Let 𝐴 ∈ 𝐶𝑚×𝑛; a generalized inverse 𝑋 of 𝐴 is a matrix

which satisfies some of the following four Penrose equations
[1]:

𝐴𝑋𝐴 = 𝐴, 𝑋𝐴𝑋 = 𝑋,

(𝐴𝑋)
∗

= 𝐴𝑋, (𝑋𝐴)
∗

= 𝑋𝐴.

(1)

For a subset {𝑖, 𝑗, . . . , 𝑘} of the set {1, 2, 3, 4}, the set of 𝑛 × 𝑚
matrices satisfying the equations (𝑖), (𝑗), . . . , (𝑘) from (1) is
denoted by 𝐴{𝑖, 𝑗, . . . , 𝑘}. A matrix in 𝐴{𝑖, 𝑗, . . . , 𝑘} is called
an {𝑖, 𝑗, . . . , 𝑘}-inverse of 𝐴 and is denoted by 𝐴(𝑖,𝑗,...,𝑘). For
example, an 𝑛 × 𝑚 matrix 𝑋 of the set 𝐴{2} is called a
{2}-inverse of 𝐴 and is denoted by 𝑋 = 𝐴

(2). The unique
{1, 2, 3, 4}-inverse of 𝐴 is denoted by 𝐴†, which is called the
Moore-Penrose inverse of 𝐴. For convenience, the symbols
𝐸
𝐴
and 𝐹

𝐴
stand for the two orthogonal projectors 𝐸

𝐴
=

𝐼
𝑚
−𝐴𝐴
† and 𝐹

𝐴
= 𝐼
𝑛
−𝐴
†

𝐴. We refer the reader to [2–4] for
basic results on generalized inverses.

Inmatrix theory and applications, there exists a nonlinear
matrix expression that involves variable entries:

𝑃 (𝑋) = 𝑋 − 𝑋𝐴𝑋, (2)

where𝐴 ∈ 𝐶𝑚×𝑚 is a given complexmatrix and𝑋 ∈ 𝐶𝑚×𝑚 is a
variablematrix.These nonlinearmatrix expressions varywith
respect to the choice of𝑋. One of the fundamental problems
for (2) is to determine the maximal and minimal possible
ranks of the matrix expression 𝑃(𝑋) when𝑋 is running over
𝐶
𝑚×𝑚. Since the rank of matrix is an integer between 0 and

the minimum of row and column numbers of the matrix [5],
then the maximal andminimal ranks of 𝑃(𝑋) can be attained
for some𝑋.

The investigation of extremal ranks of matrix expressions
has many direct motivations in matrix analysis. For example,
a matrix expression 𝐷 − 𝐴𝑋𝐵 of order 𝑛 is nonsingular if
and only if the maximal rank of 𝐷 − 𝐴𝑋𝐵 with respect to
𝑋 is 𝑛; two consistent matrix equations 𝑋

1
= 𝑋
1
𝐴𝑋
1
and

𝑋
2
= 𝑋
2
𝐵𝑋
2
have a common solution if and only if the

minimal rank of the difference 𝑋
1
− 𝑋
2
of their solutions is

zero; a nonlinear matrix equation 𝑋 = 𝑋𝐴𝑋 is consistent
if and only if the minimal rank of 𝑋 − 𝑋𝐴𝑋 with respect
to 𝑋 is zero. From the definition of the {2}-inverse of a
matrix, we know that the solution 𝑋 of the nonlinear matrix
equation 𝑋 = 𝑋𝐴𝑋 is a {2}-inverse of matrix 𝐴; that is,
using the minimal rank of 𝑋 − 𝑋𝐴𝑋, we can find out the
general expression of the {2}-inverses of a matrix 𝐴, which
is a matrix such that the nonlinear matrix expression 𝑋 −
𝑋𝐴𝑋 attains its minimal rank. In general, for any two matrix
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expressions 𝑃(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
) and 𝑄(𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
) of the

same size, there are 𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
and 𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
such

that 𝑃(𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
) = 𝑄(𝑌

1
, 𝑌
2
, . . . , 𝑌

𝑛
) if and only if

min
𝑋
1
,𝑋
2
,...,𝑋
𝑚
; 𝑌
1
,𝑌
2
,...,𝑌
𝑛

𝑟 (𝑃 (𝑋
1
, 𝑋
2
, . . . , 𝑋

𝑚
)

−𝑄 (𝑌
1
, 𝑌
2
, . . . , 𝑌

𝑛
)) = 0.

(3)

These examples imply that the extremal ranks of matrix
expressions have close links with many topics in matrix
analysis and applications. Various statements on maximal
and minimal ranks of matrix expressions are quite easy to
understand for the people who know linear algebra. But the
question now is how to give simple or closed forms for the
extremal ranks of a matrix expression with respect to its
variantmatrices.The study onmaximal andminimal ranks of
matrix expression started in late 1980s. If want to know more
about this question the reader can see [6–18].

The work in this paper includes two parts. First, in
Section 2, wewill consider how to choose amatrix𝑋 ∈ 𝐶𝑚×𝑚,
such that 𝑋 − 𝑋𝐴𝑋 has the maximal possible rank. Second,
in Section 3, we will determine theminimal rank of𝑋−𝑋𝐴𝑋
and present a general expression of the {2}-inverses of matrix
𝐴 ∈ 𝐶

𝑚×𝑚.
In order to find the extremal ranks of the nonlinearmatrix

expression 𝑋 − 𝑋𝐴𝑋, we need the following lemmas, which
will be used in this paper.

Lemma 1 (see [19]). Let 𝑃(𝑋
1
, 𝑋
2
) = 𝐴 − 𝐵

1
𝑋
1
𝐶
1
− 𝐵
2
𝑋
2
𝐶
2
,

where 𝐴 ∈ 𝐶𝑚×𝑛, 𝐵
1
∈ 𝐶
𝑚×𝑝
1 , 𝐵
2
∈ 𝐶
𝑚×𝑝
2 , 𝐶
1
∈ 𝐶
𝑞
1
×𝑛, and

𝐶
2
∈ 𝐶
𝑞
2
×𝑛 are given matrices. Then for any variable matrices

𝑋
1
∈ 𝐶
𝑝
1
×𝑞
1 and 𝑋

2
∈ 𝐶
𝑝
2
×𝑞
2 , one has

max
𝑋
1
,𝑋
2

𝑟 (𝑃 (𝑋
1
, 𝑋
2
)) = min

{

{

{

𝑟 (𝐴, 𝐵
1
, 𝐵
2
) , 𝑟(

𝐴

𝐶
1

𝐶
2

) ,

𝑟 (
𝐴 𝐵
1

𝐶
2
𝑂
) , 𝑟 (

𝐴 𝐵
2

𝐶
1
𝑂
)

}

}

}

,

(4)

min
𝑋
1
,𝑋
2

𝑟 (𝑃 (𝑋
1
, 𝑋
2
)) = 𝑟(

𝐴

𝐶
1

𝐶
2

) + 𝑟 (𝐴, 𝐵
1
, 𝐵
2
)

+max {𝑆
1
, 𝑆
2
} ,

(5)

where

𝑆
1
= 𝑟(

𝐴 𝐵
1

𝐶
2
𝑂
) − 𝑟(

𝐴 𝐵
1
𝐵
2

𝐶
2
𝑂 𝑂

) − 𝑟(

𝐴 𝐵
1

𝐶
1
𝑂

𝐶
2
𝑂

) ,

𝑆
2
= 𝑟(

𝐴 𝐵
2

𝐶
1
𝑂
) − 𝑟(

𝐴 𝐵
1
𝐵
2

𝐶
1
𝑂 𝑂

) − 𝑟(

𝐴 𝐵
2

𝐶
1
𝑂

𝐶
2
𝑂

) .

(6)

Lemma2 (see [20]). Let𝐴−𝐵𝑋𝐶 be a linearmatrix expression
over the complex field 𝐶, where 𝐴 ∈ 𝐶𝑚×𝑛, 𝐵 ∈ 𝐶𝑚×𝑘, and

𝐶 ∈ 𝐶
𝑙×𝑛 are given; 𝑋 ∈ 𝐶

𝑘×𝑙 is a variant matrix. Then the
maximal rank of 𝐴 − 𝐵𝑋𝐶 with respect to𝑋 is

max
𝑋

𝑟 (𝐴 − 𝐵𝑋𝐶) = min{𝑟 (𝐴, 𝐵) , 𝑟 (𝐴
𝐶
)} , (7)

the general expression of 𝑋 satisfying (7) is

𝑋 = (𝐸
𝐴
2

𝐵)
†

𝐸
𝐴
2

𝐴𝐹
𝐴
1

(𝐶𝐹
𝐴
1

)
†

+ 𝑈, (8)

where𝐴
1
= 𝐸
𝐵
𝐴 = (𝐼

𝑚
−𝐵𝐵
†

)𝐴, 𝐴
2
= 𝐴𝐹
𝐶
= 𝐴(𝐼

𝑛
−𝐶
†

𝐶)𝐴,
𝐸
𝐴
2

= 𝐼
𝑚
− 𝐴
2
𝐴
†

2
, and 𝐹

𝐴
1

= 𝐼
𝑛
− 𝐴
†

1
𝐴
1
, and the matrix

𝑈 ∈ 𝐶
𝑘×𝑙 is chosen such that

𝑟 (𝐸
𝐴
2

𝐵𝑈𝐶𝐹
𝐴
1

) = min {𝑟 (𝐸
𝐴
2

𝐵) , 𝑟 (𝐶𝐹
𝐴
1

)} . (9)

Lemma 3 (see [21]). Let 𝐴 ∈ 𝐶𝑚×𝑛 and 𝐵 ∈ 𝐶𝑚×𝑘. Then

(𝐴, 𝐵)
†

= (
(𝐼
𝑛
+ 𝑇𝑇
∗

)
−1

(𝐴
†

− 𝐴
†

𝐵𝐶
†

)

𝑇
∗

(𝐼
𝑛
+ 𝑇𝑇
∗

)
−1

(𝐴
†

− 𝐴
†

𝐵𝐶
†

) + 𝐶
†
) , (10)

where 𝐶 = (𝐼
𝑚
− 𝐴𝐴

†

)𝐵, 𝑇 = 𝐴†𝐵(𝐼
𝑘
− 𝐶
†

𝐶), and (𝐼
𝑛
+

𝑇𝑇
∗

)
−1

= 𝐼
𝑛
− 𝑇(𝐼
𝑘
+ 𝑇
∗

𝑇)
−1

𝑇
∗.

Lemma 4 (see [22]). Let 𝐴 ∈ 𝐶𝑚×𝑛, 𝐵 ∈ 𝐶𝑚×𝑘, and 𝐶 ∈ 𝐶𝑙×𝑛.
Then

𝑟 (𝐴, 𝐵) = 𝑟 (𝐴) + 𝑟 (𝐸
𝐴
𝐵) = 𝑟 (𝐵) + 𝑟 (𝐸

𝐵
𝐴) ,

𝑟 (
𝐴

𝐶
) = 𝑟 (𝐴) + 𝑟 (𝐶𝐹

𝐴
) = 𝑟 (𝐶) + 𝑟 (𝐴𝐹

𝐶
) ,

𝑟 (𝐴 + 𝐵) ≤ 𝑟 (𝐴) + 𝑟 (𝐵) ,

(11)

where 𝐸
𝐴
= 𝐼
𝑚
− 𝐴𝐴

†, 𝐸
𝐵
= 𝐼
𝑚
− 𝐵𝐵
†, 𝐹
𝐴
= 𝐼
𝑛
− 𝐴
†

𝐴 and
𝐹
𝐶
= 𝐼
𝑛
− 𝐶
†

𝐶.

2. The Maximal Rank of 𝑋−𝑋𝐴𝑋 with respect
to 𝑋

Let 𝐴 ∈ 𝐶
𝑚×𝑚 be a given matrix; in this section, we will

present the maximal rank of the nonlinear matrix expression
𝑋−𝑋𝐴𝑋, with respect to the variable matrix𝑋 ∈ 𝐶𝑚×𝑚. The
relative results are included in the following three lemmas.

Lemma 5. Let 𝐴 ∈ 𝐶𝑚×𝑚, and 𝐼 = 𝐼
𝑚
denotes the identity

matrix of order𝑚. Then

(
𝐼 𝐼

𝑂 𝐴
)

†

= (
(𝐼 + 𝐹

𝐴
)
−1

−𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†
) . (12)

Proof. By Lemma 3 with𝑀 = (
𝐼

𝑂
) and𝑁 = ( 𝐼

𝐴
), we have

(
𝐼 𝐼

𝑂 𝐴
)

†

= (𝑀,𝑁)
†

= (
(𝐼 + 𝑇𝑇

∗

)
−1

(𝑀
†

−𝑀
†

𝑁𝐾
†

)

𝑇
∗

(𝐼 + 𝑇𝑇
∗

)
−1

(𝑀
†

−𝑀
†

𝑁𝐾
†

+ 𝐾
†

)
) ,

(13)
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where

𝑀
†

= (𝐼, 𝑂) , 𝐾 = (𝐼 −𝑀𝑀
†

)𝑁 = (
𝑂

𝐴
) ,

𝐾
†

= (𝑂,𝐴
†

) ,

(14)

𝑀
†

−𝑀
†

𝑁𝐾
†

= (𝐼, 𝐴
†

) ,

𝑇 = 𝑀
†

𝑁(𝐼 − 𝐾
†

𝐾) = 𝐹
𝐴
= 𝐼 − 𝐴

†

𝐴.

(15)

Combining (13), (14) with (15), we have

(
𝐼 𝐼

𝑂 𝐴
)

†

= (
(𝐼 + 𝐹

𝐴
)
−1

−(𝐼 + 𝐹
𝐴
)
−1

𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

−𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†

+ 𝐴
†
)

= (
(𝐼 + 𝐹

𝐴
)
−1

−𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†
) .

(16)

The second equality holds as

(𝐼 + 𝐹
𝐴
)
−1

= 𝐼 − 𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐹
𝐴
,

𝐹
𝐴
𝐴
†

= (𝐼 − 𝐴
†

𝐴)𝐴
†

= 𝑂.

(17)

Lemma 6. Let 𝐴 ∈ 𝐶𝑚×𝑚, and 𝐼 = 𝐼
𝑚
denotes the identity

matrix of order𝑚. Then

max
𝑈

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

𝐼 𝐼

𝑂 𝐴
)𝑈(

𝑂 −𝐴

−𝐼 𝑂
)) = 𝑚 + 𝑟 (𝐴) .

(18)

The general expression of 𝑈 satisfying (18) is

𝑈 = (
𝐴
†

+ 𝑉
1
𝑉
2

−𝐴
†

+ 𝑉
3
𝑉
4

) , (19)

where 𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
∈ 𝐶
𝑚×𝑚 are chosen such that

𝑟 ((
𝐼 𝐼

𝑂 𝐴
)(
𝑉
1
𝑉
2

𝑉
3
𝑉
4

)(
𝑂 −𝐴

−𝐼 𝑂
)) = 𝑚 + 𝑟 (𝐴) . (20)

Proof. By Lemma 2 with 𝑃 = ( 𝑂 𝑂
𝑂 𝐴
), 𝑄 = ( 𝐼 𝐼

𝑂 𝐴
), and 𝑊 =

(
𝑂 −𝐴

−𝐼 𝑂
), we have

max
𝑈

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

𝐼 𝐼

𝑂 𝐴
)𝑈(

𝑂 −𝐴

−𝐼 𝑂
))

= max
𝑈

𝑟 (𝑃 − 𝑄𝑈𝑊)

= min{𝑟 (𝑃, 𝑄) , 𝑟 ( 𝑃
𝑊
)}

= min
{{{

{{{

{

𝑟(
𝑂 𝑂 𝐼 𝐼

𝑂 𝐴 𝑂 𝐴
) , 𝑟(

𝑂 𝑂

𝑂 𝐴

𝑂 −𝐴

−𝐼 𝑂

)

}}}

}}}

}

= 𝑚 + 𝑟 (𝐴) .

(21)

From Lemmas 2 and 5, we have the general expression of 𝑈
satisfying (21) as

𝑈 = (𝐸
𝐴
2

𝑄)
†

𝐸
𝐴
2

𝑃𝐹
𝐴
1

(𝑊𝐹
𝐴
1

)
†

+ 𝑉, (22)

where

𝑉 = (
𝑉
1
𝑉
2

𝑉
3
𝑉
4

) , 𝑄
†

= (
(𝐼 + 𝐹

𝐴
)
−1

−𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†
) ,

𝑊
†

= (
𝑂 −𝐼

−𝐴
†

𝑂
) ,

𝐴
1
= 𝐸
𝑄
𝑃 = (𝐼 − 𝑄𝑄

†

) 𝑃

= (𝐼 − (
𝐼 𝐼

𝑂 𝐴
)(

(𝐼 + 𝐹
𝐴
)
−1

−𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†
))(

𝑂 𝑂

𝑂 𝐴
)

= (
𝑂 𝑂

𝑂 𝐸
𝐴

)(
𝑂 𝑂

𝑂 𝐴
) = 𝑂,

(23)

𝐴
2
= 𝑃𝐹
𝑊
= 𝑃 (𝐼 −𝑊

†

𝑊)

= (
𝑂 𝑂

𝑂 𝐴
)(𝐼 − (

𝑂 −𝐼

−𝐴
†

𝑂
)(
𝑂 −𝐴

−𝐼 𝑂
))

= (
𝑂 𝑂

𝑂 𝐴
)(
𝑂 𝑂

𝑂 𝐹
𝐴

) = 𝑂.

(24)

Combining (22), (23) with (24), we have𝐸
𝐴
2

= 𝐼, 𝐹
𝐴
1

= 𝐼 and

𝑈 = 𝑄
†

𝑃𝑊
†

+ 𝑉

= (
(𝐼 + 𝐹

𝐴
)
−1

−𝐴
†

𝐹
𝐴
(𝐼 + 𝐹

𝐴
)
−1

𝐴
†
)(
𝑂 𝑂

𝑂 𝐴
)(

𝑂 −𝐼

−𝐴
†

𝑂
)

+ (
𝑉
1
𝑉
2

𝑉
3
𝑉
4

)

= (
𝐴
†

+ 𝑉
1
𝑉
2

−𝐴
†

+ 𝑉
3
𝑉
4

) ,

(25)

where 𝑉
1
, 𝑉
2
, 𝑉
3
, 𝑉
4
∈ 𝐶
𝑚×𝑚 are chosen such that

𝑟 (𝐸
𝐴
2

𝑄(
𝑉
1
𝑉
2

𝑉
3
𝑉
4

)𝑊𝐹
𝐴
1

)

= 𝑟((
𝐼 𝐼

𝑂 𝐴
)(
𝑉
1
𝑉
2

𝑉
3
𝑉
4

)(
𝑂 −𝐴

−𝐼 𝑂
))

= min {𝑟 (𝐸
𝐴
2

𝑄) , 𝑟 (𝑊𝐹
𝐴
1

)}

= min {𝑟 (𝑄) , 𝑟 (𝑊)}

= 𝑚 + 𝑟 (𝐴) .

(26)

Lemma 7. Let 𝐴 ∈ 𝐶𝑚×𝑚. Then there exist some matrices 𝑉 ∈
𝐶
𝑚×𝑚, such that

max
𝑉

𝑟 [(𝐴
†

+ 𝑉) − (𝐴
†

+ 𝑉)𝐴 (𝐴
†

+ 𝑉)] = 𝑚. (27)
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Proof. Applying Lemma 4, we have

𝑟 [(𝐴
†

+ 𝑉) − (𝐴
†

+ 𝑉)𝐴 (𝐴
†

+ 𝑉)]

= 𝑟 (𝐴
†

− 𝐴
†

𝐴𝐴
†

+ 𝑉 − 𝑉𝐴
†

𝐴 − 𝐴
†

𝐴𝑉 − 𝑉𝐴𝑉)

≤ 𝑟 (𝐴
†

− 𝐴
†

𝐴𝐴
†

) + 𝑟 (𝑉 − 𝑉𝐴
†

𝐴 − 𝐴
†

𝐴𝑉 − 𝑉𝐴𝑉)

= 0 + 𝑟 (𝑉 − 𝑉𝐴
†

𝐴 − 𝐴
†

𝐴𝑉 − 𝑉𝐴𝑉)

= 𝑟(
𝑉 − 𝑉𝐴𝐴

†

− 𝐴
†

𝐴𝑉 𝑉𝐴

𝐴𝑉 𝐴
) − 𝑟 (𝐴)

= 𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

𝑂
)𝑉 (𝐼 − 𝐴𝐴

†

, 𝐴)

−(
𝐴
†

𝐴

−𝐴
)𝑉 (𝐼, 𝑂)) − 𝑟 (𝐴) .

(28)

From (27) and (28), we have

max
𝑉

𝑟 [(𝐴
†

+ 𝑉) − (𝐴
†

+ 𝑉)𝐴 (𝐴
†

+ 𝑉)]

= max
𝑉

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

𝑂
)𝑉 (𝐼 − 𝐴𝐴

†

, 𝐴)

−(
𝐴
†

𝐴

−𝐴
)𝑉 (𝐼, 𝑂)) − 𝑟 (𝐴) .

(29)

By Lemma 1, we have

max
𝑉

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

𝑂
)𝑉 (𝐼 − 𝐴𝐴

†

, 𝐴)

−(
𝐴
†

𝐴

−𝐴
)𝑉 (𝐼, 𝑂))

= min
{{{

{{{

{

𝑟(
𝑂 𝑂 −𝐼 𝐴

†

𝐴

𝑂 𝐴 𝑂 𝐴
) , 𝑟(

𝑂 𝑂

𝑂 𝐴

𝐼 − 𝐴𝐴
†

𝐴

𝐼 𝑂

) ,

𝑟(

𝑂 𝑂 −𝐼

𝑂 𝐴 𝑂

𝐼 𝑂 𝑂

) , 𝑟(

𝑂 𝑂 𝐴
†

𝐴

𝑂 𝐴 −𝐴

𝐼 − 𝐴𝐴
†

𝐴 𝑂

)

}}}

}}}

}

= min {𝑚 + 𝑟 (𝐴) ,𝑚 + 𝑟 (𝐴) , 2𝑚 + 𝑟 (𝐴) ,𝑚 + 𝑟 (𝐴)}

= 𝑚 + 𝑟 (𝐴) .

(30)

Combining (29) with (30), we get the result (27).

According to Lemmas 5, 6, and 7, we immediately obtain
the following theorem.

Theorem 8. Let 𝐴 ∈ 𝐶𝑚×𝑚 be a given matrix, and 𝑋 ∈ 𝐶𝑚×𝑚
is a variant matrix. Then

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋) = 𝑚. (31)

In consequence,

(1) there always exists 𝑋 ∈ 𝐶𝑚×𝑚, such that 𝑋 − 𝑋𝐴𝑋 is
nonsingular;

(2) the matrices𝑋 satisfying (31) are given by𝑋 = 𝐴† + 𝑉
and 𝑉 ∈ 𝐶𝑚×𝑚 is the same as in (27).

Proof. First describe a special congruence transformation for
a block matrix, which reduces the calculation of the maximal
rank of𝑋 − 𝑋𝐴𝑋:

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋)

= max
𝑋

(
𝑋 𝑋𝐴

𝐴𝑋 𝐴
) − 𝑟 (𝐴)

= max
𝑋

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

−𝐴
)𝑋 (𝐼, 𝑂) − (

𝐼

𝑂
)𝑋(

𝑂

−𝐴
))

− 𝑟 (𝐴) .

(32)

By Lemma 1, we have

max
𝑋

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

−𝐴
)𝑋 (𝐼, 𝑂) − (

𝐼

𝑂
)𝑋(

𝑂

−𝐴
))

= min
{{{

{{{

{

𝑟(
𝑂 𝑂 −𝐼 𝐼

𝑂 𝐴 −𝐴 𝑂
) , 𝑟(

𝑂 𝑂

𝑂 𝐴

𝐼 𝑂

𝑂 −𝐴

) ,

𝑟(

𝑂 𝑂 −𝐼

𝑂 𝐴 −𝐴

𝑂 −𝐴 𝑂

) , 𝑟(

𝑂 𝑂 𝐼

𝑂 𝐴 𝑂

𝐼 𝑂 𝑂

)

}}}

}}}

}

= min {𝑚 + 𝑟 (𝐴) ,𝑚 + 𝑟 (𝐴) ,𝑚 + 𝑟 (𝐴) , 2𝑚 + 𝑟 (𝐴)}

= 𝑚 + 𝑟 (𝐴) .

(33)

Combining (32) with (33), we have

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋) = 𝑚. (34)

On the other hand, from another special congruence
transformation for a block matrix, we have

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋)

= max
𝑋

(
𝑋 𝑋𝐴

𝐴𝑋 𝐴
) − 𝑟 (𝐴)

= max
𝑋

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

𝐼 𝐼

𝑂 𝐴
)(
𝑋 𝑂

𝑂 𝑋
)(
𝑂 −𝐴

−𝐼 𝑂
))

− 𝑟 (𝐴) .

(35)
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Combining formula (35) with Lemma 6, we have

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋)

= max
𝑋

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

𝐼 𝐼

𝑂 𝐴
)(
𝑋 𝑂

𝑂 𝑋
)(
𝑂 −𝐴

−𝐼 𝑂
)) − 𝑟 (𝐴)

= min
{{{

{{{

{

𝑟(
𝑂 𝑂 𝐼 𝐼

𝑂 𝐴 𝑂 𝐴
) , 𝑟(

𝑂 𝑂

𝑂 𝐴

𝑂 −𝐴

−𝐼 𝑂

)

}}}

}}}

}

− 𝑟 (𝐴)

= 𝑚 + 𝑟 (𝐴) − 𝑟 (𝐴)

= 𝑚.

(36)

That is, theres always exist 𝑋 ∈ 𝐶𝑚×𝑚, such that 𝑋 − 𝑋𝐴𝑋 is
nonsingular.

From the results in Lemmas 6 and 7, we obtain that there
always exist𝑋 = 𝐴† + 𝑉, such that

max
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋) = max
𝑉

𝑟 [(𝐴
†

+ 𝑉)

− (𝐴
†

+ 𝑉)𝐴 (𝐴
†

+ 𝑉)] = 𝑚.

(37)

3. The Minimal Rank of 𝑋−𝑋𝐴𝑋
with respect to 𝑋

In this section, we will present the minimal rank of the
nonlinear matrix expression 𝑋 − 𝑋𝐴𝑋. Moreover, we will
consider how to choose a matrix 𝑋, such that 𝑋 − 𝑋𝐴𝑋 has
the minimal possible rank.

Theorem 9. Let 𝐴 ∈ 𝐶𝑚×𝑚 be a given matrix, and 𝑋 ∈ 𝐶𝑚×𝑚
is a variant matrix. Then

min
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋) = 0. (38)

In consequence, there exists𝑋 ∈ 𝐶𝑚×𝑚, such that the nonlinear
matrix equation𝑋 = 𝑋𝐴𝑋 is consistent.

Proof. By formula (5) in Lemma 1, we have

min
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋)

= min
𝑋

(
𝑋 𝑋𝐴

𝐴𝑋 𝐴
) − 𝑟 (𝐴)

= max
𝑋

𝑟 ((
𝑂 𝑂

𝑂 𝐴
) − (

−𝐼

−𝐴
)𝑋 (𝐼, 𝑂) − (

𝐼

𝑂
)𝑋(

𝑂

−𝐴
))

− 𝑟 (𝐴)

= 𝑟(

𝑂 𝑂

𝑂 𝐴

𝑂 −𝐴

−𝐼 𝑂

) + 𝑟(
𝑂 𝑂 𝐼 𝐼

𝑂 𝐴 𝑂 𝐴
)

+max {𝑆
1
, 𝑆
2
} − 𝑟 (𝐴)

= 2𝑚 + 𝑟 (𝐴) +max {𝑆
1
, 𝑆
2
} ,

(39)

where

𝑆
1
= 𝑟(

𝑂 𝑂 𝐼

𝑂 𝐴 𝑂

−𝐼 𝑂 𝑂

) − 𝑟(

𝑂 𝑂 𝐼 𝐼

𝑂 𝐴 𝑂 𝐴

−𝐼 𝑂 𝑂 𝑂

)

− 𝑟(

𝑂 𝑂 𝐼

𝑂 𝐴 𝑂

𝑂 −𝐴 𝑂

−𝐼 𝑂 𝑂

) = −2𝑚 − 𝑟 (𝐴) ,

(40)

𝑆
2
= 𝑟(

𝑂 𝑂 𝐼

𝑂 𝐴 𝐴

𝑂 −𝐴 𝑂

) − 𝑟(

𝑂 𝑂 𝐼 𝐼

𝑂 𝐴 𝑂 𝐴

𝑂 −𝐴 𝑂 𝑂

)

− 𝑟(

𝑂 𝑂 𝐼

𝑂 𝐴 𝐴

𝑂 −𝐴 𝑂

−𝐼 𝑂 𝑂

) = −2𝑚 − 𝑟 (𝐴) .

(41)

Combining (39), (40) with (41), we have

min
𝑋

𝑟 (𝑋 − 𝑋𝐴𝑋) = 0. (42)

Corollary 10. Let 𝐴 ∈ 𝐶
𝑚×𝑚 be a given matrix. Then the

matrix 𝑋 ∈ 𝐶𝑚×𝑚 satisfying the matrix equation 𝑋 = 𝑋𝐴𝑋 is
given by

𝑋 = (𝐴
†

+ 𝐹
𝐴
𝑉)𝐴 (𝐴

†

+𝑊𝐸
𝐴
) , (43)

where 𝑉,𝑊 ∈ 𝐶
𝑚×𝑚 are two variant matrices.

Proof. Putting𝑋 = (𝐴† + 𝐹
𝐴
𝑉)𝐴(𝐴

†

+𝑊𝐸
𝐴
) into𝑋 − 𝑋𝐴𝑋

yields

𝑋 − 𝑋𝐴𝑋

= (𝐴
†

+ 𝐹
𝐴
𝑉)𝐴 (𝐴

†

+𝑊𝐸
𝐴
)

− (𝐴
†

+ 𝐹
𝐴
𝑉)𝐴𝐴

†

𝐴(𝐴
†

+ 𝐹
𝐴
𝑉)𝐴 (𝐴

†

+𝑊𝐸
𝐴
)

= (𝐴
†

+ 𝐹
𝐴
𝑉)𝐴 (𝐴

†

+𝑊𝐸
𝐴
)

− (𝐴
†

+ 𝐹
𝐴
𝑉)𝐴𝐴

†

𝐴(𝐴
†

+𝑊𝐸
𝐴
)

= 𝑂.

(44)
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