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The asymptotic phase property and reduction principle for stability of a trivial solution is generalized to the case of the noninvertible
impulsive differential equations in Banach spaces whose linear parts split into two parts and satisfy the condition of separation.

1. Introduction

The reduction principle in the theory of stability for sys-
tems of autonomous differential equations for the first time
was proved by Pliss [1]. For systems of nonautonomous
differential equations it was extended by Aulbach [2]; see
also Potzsche [3]. The analogy of the reduction principle
for differential equations in Banach spaces was proved by
Lykova [4] and for nonautonomous difference equations in
Banach spaces by Reinfelds and Janglajew [5]. Several works
[6, 7] are devoted to different modifications and applications
of the reduction principle. In this paper, we generalize the
reduction principle to the case of the noninvertible impulsive
differential equations in Banach spaces whose linear part split
into two parts and satisfy the condition of separation.

2. The Statement of the Problem

Let X and Y be Banach spaces. By £(X) and £(Y) we mean
the Banach spaces of bounded linear operators. Consider the
following system of impulsive differential equations:

Z—’; =AMt)x+ f(t,x,y),
d
d—f =B)y+g(tx.y),

Axlyey = x(7;+0) = x (7, - 0)

= Cix (1, - 0) + p; (x (1, - 0), y (1, - 0)),
Ayliy, = y (7, +0) = y (5, - 0)

=D,y (1;-0) +q; (x(z; - 0), y (5, - 0)),
€]

where

(i) the mappings A: R — f(X)and B: R — 2(Y) are
locally integrable in the Bochner sense;

(ii) the mappings f: RxXxY — Xandg: R xXx
Y — Y are locally integrable in the Bochner sense
with respect to t for fixed x and y, and in addition
they satisfy the uniform Lipschitz conditions

|f(t,x,y) - f(t,x',y')' < e(|x —x'| + 'y—y'|), o

2
|9(t6x7) =g (6.2, 5')| < e =]+ [y = ])s

(iii) for i € Z, C; € R(X), and D; € 2(Y), the mappings
pi: XxY — Xandg; : XxY — Y satisty the
uniform Lipschitz conditions

b (e y) = 0 ()| < e (| = x| + [y = ¥|)
|a: (5. y) —a; (5", y")| < e (|x = | + |y = ¥'|)s

(iv) the mappings x — x + C;x are homeomorphisms;



(v) the moments 7; of impulse form a strictly increasing
sequence

KT, KT STy < Ty < Ty < o,y (4)

where the limit point may be only co.
Without loss of generality we assume that the system (1)
has the equilibrium points x = 0, y = 0,
f(t0,0)=0,
Pi (t) 0) 0) = 0)

g(t,0,0) =0,

©)
g; (,0,0) = 0.

Using the suitable bump function it is possible for the
analysis of local stability of the trivial solution to reduce to
investigation of the global stability of the trivial solution if
the nonlinear terms of (1) are uniform Lipschitz with respect
to time and with a sufficient small constant in a fixed radius
tubular neighbourhood of the trivial solution.

For simplicity, we assume that the linear part of (1)
is decoupled in two separate parts. In many cases, this
can be reached via the so-called kinematic similarity trans-
formation [8, 9]. More generally via kinematic similarity
transformation, the linear system can be reduced to the
same almost reducible system [10], a system with a diagonal
part and a small nondiagonal part. However, the kinematic
transformation can grow unboundedly as the nondiagonal
part tends to zero.

Definition 1 (see [11,12]). By the solution to an impulsive sys-
tem one means a piecewise absolutely continuous mapping
with discontinuities of the first kind at the points t = 7; which
for almost all ¢ satisfies system (1) and for ¢ = 7; satisfies the
conditions of a “jump”

Note that condition (v) together with the Lipschitz prop-
erty with respect to x and y of the right-hand side ensures
that there is a unique solution.

Let O(,s,x,¥) = (x(,8,%, ), (8%, ) & [s,+00) —
X x Y be the solution of system (1), where ®(s + 0, s, x, y) =
(x(s + 0,5,x,9), y(s + 0,5,x,¥)) = (x,5). At the break
points 7; the values for all solutions are taken at 7; + 0
unless otherwise indicated. For short, we will use the notation
O(t) = (x(t), y(1)).

Let X(¢,s) and Y (¢, s) be the evolutionary operators of the
impulsive linear differential equations

dx
E =A (t) X, (6)

Axl—y = x(7;+0) = x(7; - 0) = Cix (7; - 0),
and, respectively,

dy _
i B(t) y, o

Ayl = y(1;+0) - y(;-0) = D;y (7; - 0).
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We assume that the operators X(t, s) and Y (¢, s) satisfy the
condition of separation [7]:

¥ = max (supj Y (s,0)| | X (£, )| dt

+ SLSIPZ Y (s, 7)| [X (7: = 0,5)].

T;<s

+00 (8)
sup J | X (s, t)] Y (£, 5)| dt

N

+sup Y |X (s, 7,)| |Y (7, - 0, s)|> < +00,

s<T;

where v is the constant of separation.

To prove the theorems and lemmas, we use integrals
which include evolutionary operators in their integrands.
That is why it is more useful to estimate not the evolutionary
operators but the corresponding integrals. Doing so, on
the one hand, the conditions of theorems and lemmas are
released from unnecessary technical limitations and, on the
other hand, we obtain the conditions that are close to the
necessary conditions.

If A(t) = A, B(t) = B,C; = 0,and D; = 0, then
Y = J:OO le™||e®'|dt. Consequently, the integral converges
if the spectrum of the mapping B is located to the left of the
spectrum of the mapping A and the spectra are separated by
a vertical line in the complex plane.

Let PC(R x X,Y) be a set of mappingsu : R xX —
Y that are continuous for (t,x) € [7;,7;,,) x X and have
discontinuities of the first kind for t = ;.

The set

M = {uePC(RxX,Y)lu(s,O)zo,

(5.%) €)
u(s,x
sup Ju(s 0] < +oo}
sx#0 |l
is a Banach space with the norm
N |u (s, )]
llull = sup ——=—,
sxt0 x|
(10)

M (k) = {ue M| ul <k

'u(s, x) — u(s, x’)| < k'x - x'|}

are a closed subsets of M.
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3. Auxiliary Lemma

Lemma 2. Let u,u’ € MM(k) and ev(k + 1) < 1. Then the
following estimations are valid:

J_ Y (5,0l 1z @) dt + Y |Y (s,7,)] |z (z; - 0)]

T<S

v |x|
T1-ev(k+1)

J Y (s, 1) |z ) -7 (t)] dt
+ Z [Y (s, 7)) 'z (r;-0)-2'

T;<s

(11)
(t; - 0)|

y
S—
1-ev(k+1)

(o= o)+ o e b=,

where z : R — X is the solution of the impulsive differential
equations

% =A)z+ f(t,z,u(t,z)),
Azl = Ciz (1;-0) + p; (2 (1, = 0) ,u(7; - 0,2 (7; - 0)))
(12)
satisfying the initial condition z(s) = x.
We remark that X(z; - 0,7,) = (id, + C,)”" and |X(z; -

0, 7;)| < ». It follows that (12) has a unique backward solution
ife(k+1)y < 1.

Proof. The solution of the impulsive system (12) for t < s is

z(t) = X(t,s)x+ JtX(t,T)f(T,Z(T),M(T,Z(T)))d‘[

- Z X(t7;) pi(z(r; = 0),u(r; - 0,2 (5; - 0))).

t<T;<s
(13)

Taking into account that f and p; satisfy the uniform
Lipschitz conditions and u properties, the solution z(t) can
be estimated by

lz ()] < [X (£ 9)] |x]

+e(k+1) (J;S | X (t,7)| |z (7)| dT

t>Ti)||Z(Ti_O)|)'

(14)

+ 2 1x(

t<T;<s

Multiplying the solution z(t) by |Y(s, )| and integrating
from —oo to s, we obtain

N

| weonzedsw| 1w

-0

(s, )| | X (t, )| dt

T

e(k+1)supj Y

—00

(., )] |X (t,7)| dt

x (f Y (s,7)| |z ()| dT + Z [Y (s, 7)| |z (7; - 0)|>

T;<s

(15)

Multiplying z(z; — 0) by |Y (s, 7;)| and summing for all i
with respect to 7; < s, we obtain

1Y (s 7))l [z (7 - 0)]

T;<s

< x| Z [Y (s, )| |X (z; - 0,5)]

T;<s

+e(k+ l)supz [Y (r,7,)| | X (7; - 0, 7)|

T,<T

X <f Y (s,7)| |z (v)| dT + Z |Y s, T)| |Z(T —0)|>

(16)

Summing up we get that

L Y (5, 7)l |z (@)l dr+ Y |Y (5,7;)] |2 (7, - 0)|

T;<S

<vi|x|+ev(k+1)

><<JS |Y(5,T)||z(T)|dT+Z|Y s, 7;)| |z T—O)|>

17)
From the last inequality, we get that
N
j Y (5, 7)1z (@)l dr+ Y |Y (5,7;)] |2 (7, - 0)|
- (18)

v |x|
T 1-ve(k+1)
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Now we estimate the difference |z(¢) — z' ()| taking into % (Js 1Y (s,7)| 'Z (1) - . (T)‘ dr
consideration the properties of f, p;, and u: —c0 '

2@ -2 ) + Y1V ()l fe (7= 0) =2 (- o>|)

<|X(t,9)] |x - x" +e(k+1) +e “u - u’” supz Y (r.7)| |X (z; - 0, 7)]
" (J X @0l | () -2 (] dr <[ weonz@iar
+ Z |X(t,‘rl-)||z(‘rl-—0)—z’ (Ti—O)'> (19) + Z |Y(S’Ti)||z(Ti_O)|>'
t<7;<s T;<S
(21
+¢e “M - “ <J; X (t, )|z (1) dt Summing up, we get that
J Y (s, 7)l |z (7) - 2’ (1)] d=
+ Z |X(t’Ti)||Z(Ti_0)|>‘ -~
t<r<s + z Y (s, 7;)] |z (1;-0) -2 (1, - 0)|
Multiplying the difference |z(¢) - PA0] by |Y(s,t)| and <y (|x B x'| telk+1)
integrating from —oo to s, we obtain -
. , X(J ¥ (s Dl|z (1) - 2 (7)] dr
| weoio-2 o = )

s +Z|Y(s,ri)||z(ri—0)—z' (Ti—0)|)>

< lx—x'|J IY (s,8)] |X (£, 5)| dt

T +£V|
Y (7, )X (¢, 7)| dt

!
u—u

+e(k+1)sup S
s T '[ X(J_ IY(S,T)||Z(T)|dT
([ renifo -2 o)ar Y1 (sl = >l>
+ Y S, T;)| |2 Ti_O .
+z|Y<s,r,->||z<f,._o>_zf(,,._o),>

Applying the first result of Lemma 2, we get

+€ ”u - u'” sup J Y (z,0)| | X (t,T)| dt J_OO Y (s, 7)] |Z (1) -2 (T)| dr
s + 2 Y (s.7)||e (1 - 0) = 2' (7, - 0)|
X (J Y (s, 7)| |z (7)| dT + Z Y (s,7;)| |2 (7; - 0)|> . T<s
(20) sv<|x—x'|+e(k+1)
Multiplying the difference |z(z,—0)—z'(7,~0)| by |Y (s, 7;)| (J’S o
and summing for all i with respect to 7; < s, we obtain X —o ¥ (.7l |Z M-z (T)| de

S (sl fe (-0 2 (- 0) 3 e -0) - 0] )

7,25 T;<s

< e X 1Y (s )l 1X (5 - 0.5) T R P!
TiSS
(23)
+e(k+1)su Y (7r,7)||X (7, - 0,7
( : TpT,ngl @ alllx ) From the last inequality we easily obtain (11). O
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4. Existence of a Lipschitz Invariant Manifold
Theorem 3. If 4ev < 1, then there exists a unique piecewise

continuous mapping u € (k) satisfying the following
properties:

(1) u(t, x(t, s, x,u(s, x))) = y(t, s, x,u(s, x)) fort > s;
(ii) |u(s, x) — u(s, x")| < k|x - x'|;
(iii) u(t, 0) = 0.

Proof. Consider in M (k) the functional equation

u (s, x)
= j_ Y(s,7)g(1,z(1),u(r,z(1)))dr (24)
+ ZY (s:7)q; (z(5; - 0),u(r; - 0,z (7; - 0))),

where z : R — Xis the solution of the impulsive differential
equation system (12) satisfying the initial condition z(s) = x.

Consider the operator & : M(k) — MWi(k) defined by
the formula

Zu (s, x)
= J_ Y(s,7)g (1,2 (1), u(t,2(1)))dr (25)
+ 2 Y (57) g (2 (7~ 0),u(r; - 0,2(1; - 0))).

If 4ev < 1, then

k=en) " (1-2ev— VI -4ev) = % <1 (26)
satisfies the equality
k=ev(k+1)(1-ev(k+1)". (27)
Then
|Zu (s, x)|
<e(k+1)

([ Y (s,7)| |z ()| dT + Z [Y (s, 7)| |z (7; - 0)|>

T;<S

ev(k+1) x|

SToaken P

(28)

It follows that || Zul| < k.

Taking into account that g and g; satisfy the uniform
Lipschitz conditions, we get that

'ffu (s, x) — Lu (s,x')'

<ek+1)

x (JOO Y (s, 7)l |z (1) - 2’ ()| dr

) [V (sn)||e(r-0) -2 (1 - 0)|>

T;<s

+¢ “u - u'” (Jjoo Y (s,7)| |z (v)| dT (29)

e o>|)

T;<s

(e et ()

T T
1-ev(k+1)

= k'x—x'| + k| x| "u—u'".
We have that Zu € Mi(k) and &£ is a contraction in
M (k), and therefore there is only one solution satistying the

functional equation Zu = u.
In addition for t > s

u(t,z(t))
= Jt Y(t,7)g(r,z(1),u(r,z (1)) dr

+ Y (67) g (z(1;,-0),u(r; - 0,2(r; - 0)))

T;<t

=Y (t,s)u(s,x)+ JtY(t, 7)g (1,2 (1), u(r,2z (1)) dr

N

+ Z Y (t.7)q; (2 (7, - 0),u(7; - 0,2 (7, - 0))).

s<T;<t
(30)
Therefore for uniqueness of solutions we get for ¢t > s
z(t) = x(t,s, x,u(s,x)),
(3D
u(t,z(t) =yt s xu(sx)).
The theorem is proven. O



5. Behaviour of Solutions in the
Neighbourhood of an Invariant Manifold

Theorem 4. Let 4ev < 1. Then the following estimation is
valid:

[ oty @) - ux @) d

+ 2 X ()l ly(m-0) —u(z - 0x

s<T;

(7= 0))] (32)

- v|y—u(s,x)|
T l-evk+1)’

The inequality characterizes the integral distance between
an arbitrary solution and an invariant manifold.

Proof. For an arbitrary map & R — Y, piecewise
continuous from the right with points of discontinuity t = 7;
of the first type, we have the following relation:

t

O =@+ Jim < | €0+8)-

N

E(r))dr. (33)

Set &(r)
u (t, x (t))

=Y (t,r)u(r, x(r)). Then for t > s we obtain

=Y (ts)u(s, x)
+ 11m —Jt(Y(t,r+8)u(r+8,x(r+6))
06 Js

=Y (t,r)u(r,x(r))dr

=Y (t,s)u(s, x)

85— +0

t
+ 11m éj Y (t,7 +0)

XW(r+6,x(r+9))
—y(r+8,r,x(r),u(r,x(r)))dr

+ limoé Lt (Y(t,r+0)y
x (r+8,r,x(r),u(r,x(r)))
=Y (t,r)u(r,x(r)))dr.
(34)
Let us note that

y(r+8,r,x,)
=Y(@r+d,r)n

r+6
+J Y(r+6,7)g(r,® (1,1, x, y,))dr (35)

r

+ Z Y (r+8,7)q; (P (5 - 0,7, %1, 3,)).

r<T;<r+6
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The third countable can be simplified:
1 (t r+6
Jm <[ ([ veng@momnxm umammar

>

r<T;<r+0

Y(t7)q
x(O(1;—0,r,x(r),u (T,X(T’))))> dr

= J.t Y(,1r)g@r,x(r),u(r,x(r)dr

-0),u(r -

0,x(7; = 0))).

(36)

+ Z Y (t.7;) q; (x (7,

S<T;<t

Next we obtain

y () —u(t,x (1)

=Y (t,s) (y —u(s,x)
+J Y (t,7) (g (r,x(r), y (1))
—g(r,x(r),u(r,x(r))))dr

+ lim —J Y (t, 7 +6)
~>+6

(37)
X (y(r+68,r,x(r),u(r,x(r))

—u(r+6,x(r+9)))dr

+ Z Y (¢, 1)
x (q; (x(7;=0), y(r; - 0))
-q; (x (7, - 0),u(z; - 0,x(z; - 0)))).

Now we consider

x(r+8,r,x,y)-x(r+8rx,u(r,x))

r+6
= J X(r+6,7)(f (.0 (1,7, %1, 3,))

—f (7@ (.1, x,u(r x,)))) dr

X(r+8,17)(p: (O (5 - 0,1, x5, 1))

+ ) X

r<T;<r+d8

0,7, u(r,x,)))) -

(38)

-p; (@ (7; -
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Thus,
1 t
lim ~ J Y (t,r+8)(y(r+8,r,x(r),u(r,x(r)
§—>+00 s
—-u(r+6,x(r+9)))dr
. 1
=K

X Jt [Y (t,7 + 9)|

N

X |x (r+68,7,x(r),u(r,x(r)))

—x(r+8,r,x(r),y(r))|dr

t
xj [Y (t,7 + 9)|

r+0
X (J X (r+8,7)|

r

x|f (r, @ (r,7,x(r), y (1))
- f (@@ (T, rx () u(rx(r))|dr

+ Z |X (r+6,7;)|

r<T;<r+0

| p; (@ (7 = 0,7, x (), y (1))

—pi (@ (1, = 0,7, x (r),u(r,x(r))))|) dr
t
=k(L ¥ (&)

X|f (r,x(r), y(r) = f(r,x(r),u(r,x ()| dr
+ Z Y (t,7)]

s<T;<t

pi(x(7;-0),y(7;-0))

X

—pi(x(ri—O),u(Ti—O,x(Ti—O)))D.

(39)

We introduce the expression #(t) = | y(t) — u(t, x(t))|. For
t > s, we obtain the estimation

n) < |Y(ts)n(s)
+e(k+1)

x(J [Y (t,7)|n (r)dr + Z |Y(t,T,-)|;1(Ti—0)>.

s<T;<t
(40)

Multiplying by X(s, t), integrating, and summing analogously
as in auxiliary Lemma 2, we obtain the inequality

| iy @ - ux @) d

N

+ Z X (s, 7)| |y (7 = 0) —u(7; - 0, x (z; - 0))] (41)

S<T;

- v|y—u(s,x)|
T l-ev(k+1)’

6. Asymptotic Phase Type Property

Theorem 5. Let 4ev < 1. Then for every solution (x(-), y(*)) :
[s,+00) — X x Y of the impulsive system (1) there is a such
solution {(-) : [s,+00) — X of the impulsive system (12) that
forallt > s the following estimation is fulfilled:

[C@®)—x®)] <k |y®) —ut,x @), (42)
where
k _ &V
1 o der (43)

Proof. The set of mappings

0. - |« (s, %, )]
1 =1k € PC(RxXxY,X) | supr———— < +00
sxy |y —u (s, x)|

(44)
is a Banach space with the norm
k(s x,
el = sup =2 (45)
$,X,Y |y - Uu (S, x)|
respectively.
Consider the functional equation in I,
(s, y)
- xeoUmom
- fnx () +x (1,0 (1)),
u(t,x (1) +x (1,9 (1))))) dr
+ ZX (s,75)
x (p; (@ (7, - 0))
- pi(x(r,-0) +x (5, - 0, (7; - 0)),
u(r,—0,x(1; - 0)
+% (7, = 0, (7, - 0))))).
(46)



Consider the operator & : I, — M, defined by formula

Zx (s, x,9)

+00

:J X (57)(f (1, (1))

- fx (1) +x (1, (1)),

u(t,x (1) +x (1,0 (1)) dr

+ ZX(S,Tl-)

x (p; (©(7; - 0))
= p; (x(5; = 0) +x (7, = 0, (7, - 0)),
u(r;-0,x(1;-0) +x

((r; =0, (7, - 0))))).

(47)
We have the following estimation:

'ffx (s,x,y) - L (s, %, )’)'

<e(k+1)

% I X (s, 7)|
X .K (1, D (1)) - x' (1, @ (T))| dr

+e(k+1) Z |X (s, 7;)]

5<T;
x| (1, - 0,® (1; - 0))

' (1, 0,0 (, - 0))| (48)

<e(k+ l)"K—K’“

XJ |X(s,T)||y(T)—u(T,x(T))|dT

N

+e(k+1) "K—K'“ Z 1X (s, ;)|

S<T;

x |y(Ti_0)_u(Ti_0’x(Ti_O))l

,“ v|y—u(s,x)|

gs(k+1)"’€_ 1-ev(k+1)

= k“K—K’" |y—u(s,x)|.
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Besides

|Zx (s, x, y)| + e ((k + 1) ||| + 1)

+00
XJ
N

+e((k+1) x| +1)

1X (5,7l |y (2) —u(z,x (7)|dr

X Z |X(S’Ti)| |}’(Ti ~0) —u(r; - 0,x(7; - 0))| (49)
ev((k+1) ||| +1)
= 1-ev(k+1) | —u(s,x)|
k
= (kllxll + m) ly —u(s,x)|.
If
Il <k = — = 2, (50)

1-k2 1— 4ev

then || L« ||< k;. We have that & is a contraction and £k €
IN,. It follows that there is only one solution satisfying the
functional equation Z« = . In addition for t > s

(£, D (1))

- [ xeonmom
- fox () +x (1,0 (1)),

u(t, x (1) +x (1, ©(1))))) dt

+ ZX (t. )

x (pi (@ (7; - 0))
= pi(x (7, =0) +x(7; - 0, @ (7; - 0)) ,
u(7; = 0,x(7; = 0) +x (7, - 0, (7; - 0)))))

=X(t,s)k(s,xy)

- JtX(t,T)

s

x(f (1,0 (1))
- f(r,x(
u(r,x (1) + k(7,0 (1)) dr

(%) (P (@ (7, - 0))

)+ (1, D (1)),

- )X

$<T<t
- pi(x(r;=0)+x (7, - 0,® (1, - 0)),
u(r; - 0,x(1; - 0)

(7, - 0,® (7, - 0)))))
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=—x®)+Xs)(x+x(s,x 7))

+ th(t, T)
x f(1,x (1) +x (1, D (1)),
u(r,x (1) +x (7, ® (1)) dr

+ Z X (t.7) p;

X (x(r;=0) +x (7, - 0,® (7, - 0)),
u(t, - 0,x(7; - 0) + (1, - 0,® (7, - 0)))) .
(51)
Let
() =xt)+x(t @), (52)

where {(s) = x + x(s, x, ¥). It follows that {(¢) is a solution of
(12) and

£ (®) - x ()]
OOy -ux )]
V1 —4ev
This completes the proof of the theorem. O

7. Stability of the Impulsive Equations

We assume in addition that

+

(6]
y:supj |Y(t,s)|dt+supz|Y(Ti—0,s)| < +00.
N N

s T;>8

(54)

Note that in case B(t) = B and D, = 0 we have y =

[ 1"t

Theorem 6. Let 4ev < 1 and 2ep < 1 + V1 —4ev. Then the
following estimation is valid:

j ly (1) = u (t,x (1))] dt

N

+ z |y (= 0) —u(7; - 0,x (7; - 0))| (55)

S<T;

- pt]y—u(s,x)]
T l-euk+1)’
Proof. Since
k+1_1—\/1—4sv_ 2
2¢ev 1+ V1—4dev (56)
2ep < 1+ V1 —4ev,
we get
2ep
l-euk+1)=1- > 0. (57)

1+ /1—4ep

From Theorem 4 of behaviour of solutions, we get
inequality (40). Then doing the integration and summing up,
inequality (55) is obtained. 0

Definition 7. A trivial solution of impulsive equation (1) is
integral stable if for all &, > 0 there exists a § > 0 such that for
all |x| < §and |y| < § and t > s one has

t+1 t+1

J |x (1) dt < ¢, J |y(T)|dT<81. (58)
t t

Definition 8. A trivial solution of impulsive equation (1) is
asymptotically integral stable if it is integral stable and if there
exists a § > 0 such that for all |x| < § and |y| < § one has

t+1

t+1
tEIPooJ; |x (7)| dt = 0, tEIPooL |y (r)|dz = 0.
(59)

Theorem 9. Let 4ve < 1 and 2ep < 1 + V1 —4ev. The
trivial solution of impulsive equation (1) is integral stable,
asymptotically integral stable, or integral unstable if and only if
the trivial solution of impulsive equation (12) is integral stable,
asymptotically integral stable, or integral unstable.

Proof. Suppose that the trivial solution of the system (12) is
integral stable. Then for every ¢, > 0, there is a §; > 0 such
that for all |((s)| < §, and t > s we have

t+1 e
J [¢(x)|dr < 2. (60)
¢ 2
Let [x| < § and |y| < § where
1- k+1
8 <min 2 HEFD 5L (61)
2u(ky +1)

Then for t > s we get

t+1
Jt ¢ (2) - x (1)| dr

t+1
<k J; ly (0) —u(r,x (1))|dr

< pky (k+1) 8<£1

T l-eu(k+1) 2

>

t+1
[ y@-u@imar
(62)
t+1
< L |y(1) - u(T,x(T))| dr

t+1
+ J; |u(r,x (1) —u(r,{ ()| dr

t+1
< (1 +kk,) L ly (1) —u(r,x (1))|dr

g ‘u(l+kk1)(k+1)8< &

1-eu(k+1) 27
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Therefore

t+1
Jt |x ()| dT
t+1
< J |x (1) —C(T)| dr
t
t+1
+ J |((T)| dr <,
t

JHI ly ()| dr (63)
t
t+1
sL Iy (1) - u (0, ()| d

+fHWuxwm

k+1
<%<81'

Suppose that the trivial solution of the system (12) is
asymptotically integral stable. Then

lim Jm ¢ (7)|dT = 0. (64)

t— +00 t

It follows that
t+1
lim J |x ()| dt
t—+00 J;

< lim JHI |x (r)-¢ (T)l dr (65)

t—+00 J;

t+1
+ lim J ¢ (1)|dr =0,

t—+00 Jp

t+1
lim J |y(‘r)| dr

t—+00 J;

< lim Jm ly (@) - u(r,x (1)|dr (66)

t—+00 J;

t+1
+ lim J |u(r,x (1)) dr =0,
t

t— +00
taking into account that
|u (8, x ()] < kx (£)]. (67)

If the trivial solution of (12) is integral unstable, then the
trivial solution of (1) is integral unstable.

If the trivial solution of (1) is integral stable or asymptot-
ically integral stable, then the trivial solution of (12) is also
integral stable or asymptotically integral stable.

Let the trivial solution of (1) be integral unstable; then
the trivial solution of (12) is integral unstable. Otherwise as
before it follows that the trivial solution of (1) is integral
stable. We get a contraction. The theorem is proven. O
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Theorem 10. Assume that the estimates

u(p) = sgpj

N

+

Y (¢, )| £ dt

+sup Y [Y (7, 0,5)] P57 < oo, (68)
N

T>s
Y (t,5)] "0 <M (B) Vt=s

are satisfied for some 5 > 0. If 4ev < 1 and 2eu(B) < 1 +
V1 — 4ev, then
ly (6) = u(t,x )|
(69)
<a(p) e P |)’ -u(s, x)| fort >s.

Proof. From Theorem 4 of behaviour of solutions, we get
inequality (40). Multiplying by e’ and doing the integra-
tion and summing up, the inequality

Jm Py () — u(t, x (t))| dt

+ Zeﬁ”"*s) |y (= 0) —u (7, - 0,x(7; - 0))] (70)

S<T;

L HB)y-ulsx)
T l-eu(B)(k+1)

is obtained.
Then from inequality (40) for t > s we get the estimation

|y () —ut,x (1)
< M (B)e Pt ly —u(s,x)|

+e(k+1)M(B)e P

X <J+OO P ly (r) —u(r,x (r))| dr

s<T;

ep(B) (k+1)
1—eu(B)(k+1)

= a(B)e Pt ly —u(s,x)|.

sMwwW”{1+ )rw@wn
(71)
O
Theorem 11. Let 4ve < 1, 2ep < 1+ V1 — 4ev,
ly@®) —ut,x@®)|<aly-u(sx)| ift>s (72)
Jim (y(8) —u(tx (1)) =0. (73)

The trivial solution of impulsive equation (1) is stable, asymp-
totically stable, or unstable if and only if the trivial solution
of impulsive equation (12) is stable, asymptotically stable, or
unstable.
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Proof. Suppose that the trivial solution of the system (12) is
stable. Then for every &, > 0, thereisa §; > 0 such that for all
|{(s)| < 8, and t > s we have [{(?)] < & /2.

Let |x| < § and |y| < § where

8 < min { ! 61} . (74)

20 (ky + 1) (k+1)
Then for t > s we get
¢ () = x (t)]
<k |y (@) —u(tx (@)

<ok, (k+1)8 < ‘%1

ly () —u(t,¢ @)
<|y @) —u(t,x @)
+ut,x (1) - ut.S @)
< (1+kk) |y () - u(t,x ()|

(75)

<a(l+kk)(k+1)8 < %

Therefore
lx ()] < |x @) = @) + ¢ (1)] < &5
@Ol <ly@-u@lO|+u@CE] (76

1
JErDe
2
Suppose that the trivial solution of the system (12) is
asymptotically stable. Then
lim {(t) = 0. (77)

t—+00
It follows that

Jim x () = lim (x(6)=C @)+ lim {(@©) =0,
Jim y(6) = lim (y(6) —u(tx (1)) (78)
+ tElPoou (t,x(t)) = 0.

If the trivial solution of (12) is unstable, then the trivial
solution of (1) is unstable.

If the trivial solution of (1) is stable or asymptotically
stable, then the trivial solution of (12) is also stable or
asymptotically stable.

Let the trivial solution of (1) be unstable; then the trivial
solution of (12) is unstable. Otherwise as before it follows that
the trivial solution of (1) is stable. We get a contraction. The
theorem is proven. O

Remark 12. Let n(t) = |y(t) — u(t,x(t))| be uniformly
continuous on t € [s,+00) and let improper integral

'[:OO n(t)dt converge. Then lim, _, ,  #(t) = 0 [13, page 32].

1

Remark 13. If we replace assumption (54) by the stronger one

+00
Y = I sup |Y (t +s,5)| dt
0 s

(79)
+ Zsup|Y(s+ T; —O,s)| < +00,

;>0

then for + > s it is possible to prove that |Y(t,s)] <
Kexp(-A(t — s)), where K > 1 and A > 0. Further, ife > 0
is sufficiently small, then using Gronwall’s lemma for all £ > s
the following estimation is valid:

ly () —ut,x ()| < Ke " |y —u(s,»)|, (80)
where 0 < 1, < A.
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