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The problem of guaranteed cost control for exponential synchronization of cellular neural networks with interval nondifferentiable
and distributed time-varying delays via hybrid feedback control is considered. The interval time-varying delay function is not
necessary to be differentiable. Based on the construction of improved Lyapunov-Krasovskii functionals is combined with Leibniz-
Newton’s formula and the technique of dealing with some integral terms. New delay-dependent sufficient conditions for the
exponential synchronization of the error systems with memoryless hybrid feedback control are first established in terms of LMIs
without introducing any free-weighting matrices. The optimal guaranteed cost control with linear error hybrid feedback is turned
into the solvable problem of a set of LMIs. A numerical example is also given to illustrate the effectiveness of the proposed method.

1. Introduction

In the past decade, synchronization in neural networks
(NNs), such as cellular NNs, Hopfield NNs, and bidirectional
associative memory networks, has received a great deal of
interest among scientists in a variety of areas, such as signal
processing, pattern recognition, static image processing,
associative memory, content-addressable memory and com-
binatorial optimization [1-6]. In performing a periodicity or
stability analysis of a neural network, the conditions to be
imposed on the neural network are determined by the cha-
racteristics of various activation functions and network para-
meters. When neural networks are created for problem solv-
ing, it is desirable for their activation functions not to be too
restrictive. As a result, there has been considerable research
work on the stability of neural networks with various activa-
tion functions and more general conditions [7-9]. On the
other hand, the problem of chaos synchronization has attract-
ed a wide range of research activity in recent years. A chao-
tic system has complex dynamical behaviors that possess

some special features, such as being extremely sensitive to
tiny variations of initial conditions and having bounded
trajectories in the phase space. The first concept of chaos syn-
chronization making two chaotic systems oscillate in a syn-
chronized manner was introduced by [2], and many different
methods have been applied theoretically and experimentally
to synchronize chaotic systems, for example, linear feedback
method [10], active control [11], adaptive control [11, 12],
impulsive control [13, 14], back-stepping design [15], time-
delay feedback control [16] and intermittent control [17],
sampled data control [18], and so forth.

The guaranteed cost control of uncertain systems was first
put forward by Chang and Peng [19] and introduced by a lot
of authors, which is to design a controller to robustly stabi-
lize the uncertain system and guarantee an adequate level
of performance. The guaranteed cost control approach has
recently been extended to the neural networks with time
delay (see [7, 9, 20-22] and references cited therein). In [7],
author investigated the guaranteed cost control problem for
a class of neural networks with various activation functions



and mixed time-varying delays in state and control. By using
improved Lyapunov-Krasovskii functionals combined with
LMIs technique. A delay-dependent criterion for existence of
the guaranteed cost controller is derived in terms of LMIs.
Optimal guaranteed cost control for linear systems with
mixed interval nondifferentiable time-varying delayed state
and control has been studied in [20]. By constructing a set of
augmented Lyapunov-Krasovskii functionals combined with
Newton-Leibniz formula, the sufficient conditions for the
existence of an optimal guaranteed cost state feedback for
the system have been derived in terms of LMIs. Moreover, all
this work has been developed for the guaranteed cost control
synchronization of time-varying delay systems [21-24]. Based
on the Lyapunov-Krasovskii analysis process and the zoned
discussion and maximax synthesis (ZDMS) method, the
quadratic matrix inequality (QMI) criterion for the guaran-
teed cost synchronous controller is designed to synchronize
the given neural networks with time-varying delay [21, 22].
However, to the best of our knowledge, few published papers
deal with the problem of guaranteed cost synchronization of
cellular neural networks with time-varying delay by using
feedback control. So, our paper presents cellular neural
networks with various activation functions and mixed time-
varying delays and we also approach to establish both delay
and nondelay controllers to the system.

It is known that exponential stability is a more favorite
property than asymptotic stability since it gives a faster con-
vergence rate to the equilibrium point and any information
about the decay rates of the delayed neural networks. There-
fore it is particularly important when the exponential conver-
gence rate is used to determine the speed of neural compu-
tations. The exponential stability property guarantees that,
whatever transformation occurs, the network’s ability to store
rapidly the activity pattern is left invariant by self-organiza-
tion. Thus, it is important to determine the exponential
stability and to estimate the exponential convergence rate for
delayed neural networks. Recently, exponential synchroniza-
tion of neural networks has been widely investigated and
many effective methods have been presented by [25-33].
A synchronization scheme for a class of delayed neural
networks with time-varying delays based on the Lyapunov
functional method and Hermitian matrices theory is derived
in [25]. In [26, 27], authors presented sufficient conditions
for the exponential synchronization of neural networks with
time-varying delays in terms of the feasible solution to the
LMIs.

The stability criteria for system with time delays can be
classified into two categories: delay independent and delay
dependent. Delay-independent criteria do not employ any
information on the size of the delay, while delay-depend-
ent criteria make use of such information at different levels.
Delay-dependent stability conditions are generally less con-
servative than delay-independent ones especially when the
delay is small. Recently, delay-dependent stability for interval
time-varying delay was investigated in [8, 9, 34-37]. Interval
time-varying delay is a time delay that varies in an interval
in which the lower bound is not restricted to be 0. Tian and
Zhou [36] considered the delay-dependent asymptotic stabi-
lity criteria for neural networks (NNs) with time-varying
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interval delay. By introducing a novel Lyapunov functional
stability criteria of asymptotic stability is derived in terms
of LMIs with adding the term free-weighting matrix. Delay-
dependent robust exponential stabilization criteria for inter-
val time-varying delay systems are proposed in [37], by using
Lyapunov-Krasovskii functionals combined with the free-
weighting matrices. It is noted that the former has more
matrix variables than our result. Therefore, our result has less
conservative and matrix variables than [36, 37]. Moreover,
neural networks with distributed delays have been extensively
discussed [29-33, 38-41]. In [38, 39, 41], a neural circuit
has been designed with distributed delays, which solves the
general problem of recognized patterns in a time-dependent
signal. The master-slave synchronization problem has been
investigated for neural networks with discrete and distributed
time-varying delays in [29, 30]; based on the drive-response
concept, LMI approach, and the Lyapunov stability theorem,
several delay-dependent feedback controllers were derived
to achieve the exponential synchronization of the chaotic
neural networks. In [33], by constructing proper Lyapunov-
Krasovskii functional and employing a combination of the
free-weighting matrix method, Leibniz-Newton, formulation
and inequality technique, the feedback controllers were de-
rived to ensure the asymptotical and exponential synchroni-
zation of the addressed neural networks.

However, It is worth pointing out that the given criteria
in [21, 22] still have been based on the following conditions:
(1) the time-varying delays are continuously differentiable;
(2) the derivative of time-varying delay is bounded; (3) the
time-varying delays with the lower bound are restricted
to be 0. However, in most cases, these conditions are dif-
ficult to satisfy. Therefore, in this paper we will employ
some new techniques so that the above conditions can be
removed. To the best of our knowledge, the guaranteed
cost synchronization problem of the cellular neural networks
with nondifferentiable interval time-varying discrete and dis-
tributed delays and various activation functions is seldom
discussed in terms of LMIs, which remains important and
challenging.

In this paper, inspired by the above discussions, we con-
sider the problem of guaranteed cost control for exponential
synchronization of cellular neural networks with interval
nondifferentiable and distributed time-varying delays via
hybrid feedback control. There are various activation func-
tions which are considered in the system, and the restric-
tion on differentiability of interval time-varying delays is
removed, which means that a fast interval time-varying delay
is allowed. Based on the construction of improved Lyapunov-
Krasovskii functionals combined with Liebniz-Newton for-
mula and the technique of dealing with some integral terms,
new delay-dependent sufficient conditions for the expo-
nential stabilization of the memoryless feedback controls
are first established of LMIs without introducing any free-
weighting matrices. The optimal guaranteed cost control with
linear error hybrid feedback is turned into the solvable pro-
blem of a set of LMIs. The new stability condition is much less
conservative and more general than some existing results. A
numerical example is also given to illustrate the effectiveness
of the proposed method.
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The rest of this paper is organized as follows. In Section 2,
we give notations, definition, propositions, and lemma for
using in the proof of the main results. Delay-dependent
sufficient conditions of guaranteed cost control for exponen-
tial synchronization of cellular neural networks with vari-
ous activation functions and interval and distributed time-
varying delays with memoryless hybrid feedback controls are
presented in Section 3. Numerical examples illustrating the
obtained results are given in Section 4. The paper ends with
conclusions in Section 5 and cited references.

2. Preliminaries

The following notation will be used in this paper: R* denotes
the set of all real nonnegative numbers; R” denotes the n-
dimensional space and the vector norm | - [l; M"™" denotes
the space of all matrices of (n x r)-dimensions.

AT denotes the transpose of matrix A; A is symmetric if
A = AT; I denotes the identity matrix; A(A) denotes the set
of all eigenvalues of A; A, (A) = max{Re A; A € A(A)}.

x, = {x(t+s) :s € [-hO0]} x| = SUPse (0] [lc(t +
s)|l; C([0, t], R™) denotes the set of all R"-valued continuous
functions on [0, t]; L, ([0, ], R™) denotes the set of all the R™-
valued square integrable functions on [0, t].

Matrix A is called semipositive definite (A > 0) if
(Ax,x) > 0 for all x € R"; A is positive definite (A > 0)
if (Ax,x) > 0 forall x#0; A > Bmeans A — B > 0. The sym-
metric term in a matrix is denoted by .

In this paper, the master-slave cellular neural networks
(MSCNNs) with mixed time-varying delays are described as
follows:

%(t)= — Ax (t) +Cf (x (1) + DG (x (t - hy (1))

+EJt h(x(s)ds+I(t), 1
tky (1)
x(t)=¢,(t), te[-d0],
y() = —Ay®)+Cf (y(®) +Dg(y(t—h, (1))
+Er h(y(s))ds+1(t)+%(t), 2)
1k, (1)
y(t)=¢, @), teldO0],
where x(t) = [x,(£), x,(t),...,x,(t)] € R"and y(¢) = [y,(?),

V(). ..., y,(£)] € R”" are the master system’s state vector
and the slave system’s state vector of the neural networks,
respectively. 7 is the number of neural,

Fe@) =[x ), fo (3 0) s Fo (2, )]
G ®) =13 (1 ©), 8 (% ) G (x, )], B)

() = [y (6, 6) Ty (%, 0) s Ty (3, 0)]

are the activation functions, A = diag(a,,a,,...,a,), a; > 0
represents the self-feedback term, and C, D, and E denote
the connection weights, the discretely delayed connection

T
>

weights, and the distributively delayed connection weight,
respectively.

The synchronization error e(t) is the form e(t) = y(t) -
x(t). Therefore, the cellular neural networks with mixed time-
varying delays of synchronization error between the master-
slave systems given in (1) and (2) can be described by

é(t)= — Ae(t) + Cf (e(t)) + Dg (e (t - hy (1))

+Er hie(s)ds+%(t), (4)
t=ky ()

e(t):¢2(t)_¢l(t):¢(t)’ tE[—d,O],

where f(e(t)) = fle(t) + x(t)) — f(x(1)), gle(t — hy(1)) =
gle(t — hy(®)) + x(t — h(t) - gx@t - h;(@))), and
Lt_kl(t) h(e(s))ds = It h(e(s) + x(s)) — h(x(s))ds. The state

t—k, (t)
hybrid feedback controller % (t) satisfies (H1):

(H1): % (t) = Byu(t) + Byu(t — h, (t))

t (5)
+ B, J u(s)ds, Vt=0,
t=k,(t)

where u(t) = Ke(t) and K is a constant matrix control gain. In
this paper, our goal is to design suitable K such that system (2)
synchronizes with system (1). Then, substituting it into (4), it
is easy to get the following:

é(t) = —Ae(t) + Cf (e(t)) + Dg (e (t — hy (1))

+Er h(e(s))ds + B;Ke (t) + B,Ke (t — h, (1))
=k, (t)

t

+ B3KJ e(s)ds, Vt=0,

=k, (t)

et)=¢, ()¢ () =¢ (1), te[-d,0].

(6)

Throughout this paper, we consider various activation func-

tions and the activation functions f (), g(-), and 10 satisfy
the following assumption.

(A1) The activation functions f('), g(-), and 10 satisfy
Lipschitzian with the Lipschitz constants £, g; > 0, and ; >
0:

|ﬁ(£1)‘ﬁ(£z)'5fi|£1_£z|> i=12,...,n

V¢, e R,

15 (&) -G (&) <6 -& i=12...n -
Vé1,8 € R,

o (&) -1 (&) < hif& -&), i=12....n,
Vé,8 € R,



and we denote that
F=diag{f, i=12....,n},
G =diag{g, i=1,2,...,n}, (8)
H=diag{fli, i=1,2,...,n}.

The time-varying delay functions h;(t) and k;(t), i = 1,2,
satisfy the condition

0<hy,<h (t)<h, 0<h,(t)<h,

€)

0<k (t)<k,, 0<k,(t) <k,.

It is worth noting that the time delay is assumed to be
a continuous function belonging to a given interval, which
means that the lower and upper bounds for the time-varying
delay are available, but the delay function is bounded but
not restricted to being zero. The initial functions ¢(t) €
C'([-d, 0], R"), d = max{h,;, h,, k;, k,}, with the norm

o= s lOF +[oof. o
te[-d,0]

Define the following quadratic cost function of the asso-
ciated system (4) as follows:

]:L " OQe®) +u" HYQu®)]dt, )

where Q; € R™" and Q, € R™ are positive definite mat-
rices.

Remark 1. If E = 0, B, = 0, B; = 0, and f(-) = g(:), the
system model (6) turns into the cellular neural networks with
activation functions and time-varying delays proposed by [21,
22]

e(t)=—-Ae(t)+Cf (e(t)) + Df (e(t —hy (t))) + BiKe (1),

vt > 0.
(12)

Therefore, (6) is a general cellular neural networks model,
with (12) as the special case.

Definition 2. Given « > 0, the zero solution of system (6)
with u(t) = Ke(t) is a-stable if there exists a positive number
N > 0 such that every solution e(t, ¢) satisfies the following
condition:

le (@) < Ne< g, e =0, )

We introduce the following technical well-known propo-
sitions and lemma, which will be used in the proof of our
results.

Proposition 3 (see [42] (Cauchy inequality)). For any sym-
metric positive definite matrix N € M™" and x,y € R", we
have

+2x"y <x'Nx+y'N'y. (14)
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Proposition 4 (see [42]). For any symmetric positive definite
matrix M > 0, scalar y > 0, and vector function w : [0,y] —
R" such that the integrations concerned are well defined, the
following inequality holds:

(o) ([ ([ m0)

(15)

Proposition 5 (see [42] (Schur complement lemma)). Given
constant symmetric matrices X, Y, and Z with appropriate
dimensions satisfying X = X', Y = YT > 0, then X +
ZTY"'Z < 0 if and only if

(JZ( %;) <0 or <; )Z(> <0. (16)
3. Main Results
Let us set
A1 = /\min (P_l) >
A2 = Amax (P_l) + (hlm + th) Amax (P_IQP_I)
+ (M3 + Mipr) Anax (P RPTY) (17)

+ 8 Aoy (PTUP™Y) + 134 o (PTIYTS]YPTY)

+ ki Ay (HUS 'H) + KA o (P7YTS)'YPTY).

Theorem 6. Given o > 0, Q; > 0 and Q, > 0, u(t) = Ke(t)
is a guaranteed cost controller if there exist symmetric positive
definite matrices P, Q, R, U, S,, and S,, diagonal matrices
U,,i = 1,2,3, and a matrix Y with appropriately dimensioned
such that the following LMIs holds:

I,=T-[00 I I 0]"xe®wmulo 0 -IT0]<o,

(18)
L=T T —20hy
,=T-[0 00 I -I] xe UulfooolI -I]<o,
(19)
I; =
-0.1 (e 4 e )R 2P PHT 2T PQ Y'Q
* -2U, 0 0 0 0
* x —U, 0 0 0
* * x —2eg 0 0
* * * * —Q1 0
* * * * * -Q,
<0,
(20)

-0.1P KYT
T, = <0, (1)
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—0.1e 2Mmy 2pGT

L5 = * -2U, <0,
Iy I, i3 0 Is
* I, 0 0 0
P=]=* % Ij Iy 0],
ko w Iy Iy
* % % ok o

where
I, =[-A+al]P+P[-A+al]" ~BY -Y'B"
+2Q+C'U,C + D"U,D + k,e** E"U,E
+3¢*"Bl'S, B, + 2k,e***BLS, B,
—0.9¢ 2MmR — 0.9¢72%Mm R,
I, =-PA" - Y"B,
r13 _ e—ZahlmR)
rls — e—ZathR,
I, =h’ R+h R+8°U-19P
22 1m 1M .
+C'U,C + D"U,D + 2k, E"U,E
+3¢*"BIS, B, + 2k,e** B S, B,
I~33 _ _e—ZahlmQ _ e—ZahlmR _ e—ZathU)
I~34 — e—2¢xh1MU,

T, = -1.9¢ "

wm,
_ p2ahy
I;s;=¢ U,

—2ah —2ah —2ah
I‘SS:_e ‘leQ_e “1MR_e “IMU’

then the error system (6) is exponentially stabilizable. More-

over, the feedback control is

u®)=-YP'e(t), t>0,

and the upper bound of the cost function (11) is as follows:

T<T" = M)¢l.

5
where
V, = el () We (t)
(22) : ’
t
v, = j 06T () WQWe (s) ds,
tihlm
t
V, = J DT (5) WQWe (s) ds,
t=hinm
0 t
Vv, = hlmj J 20T (9) WRW (6) dO ds,
—hy,, Jt+s
0 t
v, = thJ j 2O06T (0) WRW (6) dO dis,
—hyp Jtts (27)
_hlm t
V, = GJ J 00T (9) WUWe (0) d6 ds,
—hyy Jt+s
0 ,t
V, = h J J O (9) 741 (6) d6 ds,
h, Jt+s
0 t
Ve = j J PO (0 (8))US h (e (6)) dO ds,
—k, Jt+s
0 t
v, = j J 00T (9) 551 (6) dO ds.
-k, Jt+s
It is easy to check that
Mle @I <V (te®) < Aylle, ), ¥e=0.  (28)

Taking the derivative of V(t, e(t)) along the solution of system
(6), we have

V, = 2¢" () We (1)

@) T [ ~ Ae(t) + Cf (e (1)) + Dy (e (t — y (1))

t
+E J h(e(s))ds—B,YP 'e(t)
t=k,(t)

24 +B, (t)Ke (t — h, (t)) + B3K Jt
t=ky (£)

e(s) ds]

=2' (t) [-AP - PA" - 2B,Y] z (t) + 22" (t)Cf (e (1))

(25) +22" (t)Dg (e (t - hy (1))

t

Proof. LetW = P! and let z(t) = We(t). Using the feedback
control (24), we consider the following Lyapunov-Krasovskii
functional:

Vite(t) =) Vi (26)

™o

I
—

+2z () E J
t—ky (¢

h(e(s))ds
)

+22" (t) Byu (t - hy (1))

t

+22" (t) B, J u(s)ds,

t=k, ()



V,=z" () Qz (t) —e >z (t = hy,,) Qz (t - hy,,)
- 2aV,,

V, = 2" (1) Qz (t) — e 2T (t — hyy,) Qz (¢ — hyyy)

- 2aVs,
t
V, <k 2" (t) Rz () — hype 2 J £ (s)Rz (s)ds
tihlm
-2aV,,
t
Vi < h2y 2" () Rz () — hype 2 j zT (s) Rz (s) ds
t=hyy

- 2aVs,

t-hyy
V, < 872" (1) Uz (1) — e P J zT (s) Rz (s) ds

t=hyp
- 2aVy,

t
V, < KT (1) STV (f) — hpe M J a™ () ST (s) ds
t-h,

- 2aV,,

Ve < kh' (e (1)U hie (1))

_ ek j B (e () U3 h (e (5)) ds - 2aV,
t—k,

t
Vo < k2" (1) 8510 (1) — Kye 2% J u” (5) 85 u () ds

t—k,

- 2aV,.
(29)

For assumption (Al), we can obtain the following three
inequalities:

If; (e )] = |fi (e; ®) + x,(8) = F; (x; ()]

< filei () +x,(8) = x; ()] = fi le; ()]
|g: (e )] = 1@ (e (©) + x; (1) = G (x; )]

< i le () +x; (t) = x; ()] = Gi |e; (1)]
I (e ()] = [ (e; (8) + x; (6) = By (; ()]

< By le; (8) +x; (t) — x; ()] = ; |e; (1)) -
(30)

Applying Propositions 3 and 4 and since the matrices U;, i =
1,2, 3 are diagonal, we have

22" (t) Cf (e (1))
<z" (t)CTU,Cz(®) + fT (e®) U; " f (e (t)
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<z (t)C'UCz (t) + €' (t) F'U; ' Fe (t)
=2" (t)C"U,Cz (t) + 2" (t) PF'U;'FPz (t),
22" (1) Dg (e (t - by (1))
<z (t)D'U,Dz (t) + " (e(t - h, (1)) U;"
x g(e(t—hy (1))
<z (t)D'U,Dz (t) + ¢ (t —h, (1)) G'U;"
x Ge (t — hy (t))
= 2" (t)D"U,Dz (t) + 2" (t - h, (t)) PG' U, "
x GPz (t — h, (),
kh" (e (1) U3 ke ()
< ke’ (t)H'U; " He (t)

= k,z" (t) PH'U;"HPz (¢t),

t

22T (1) E J

h(e(s))ds
t=k, ()

< 2k, 2" (t) E"U,Ez (1)

1 o ([ T
—2a

+ —e he(s ds>
2k, <Jt—k1(t) ()

x U;! (Jt h(e(s)) ds)
t=k, (t)

< 2k, e**1 2" () E"U,Ez (1)

e
+

—2ak, t
J W' (e(s)) Uy h (e () ds,
2 Jiko

22" (t) Byu (t - hy (1))

< 3¢*"2" () B1S, B,z (1)

—2ath,

- ul (t=hy (1) S u(t—hy (1)),

t
277 (t) By J u(s)ds
t=k,(t)
< 2k,e®*2" (t) BIS,B,z (t)
e—20ck2 t T t
+ <J u(s) ds) S;l (J' u(s) ds)
2ky \Jiky0 £k, (1)

1

< 2k,e®* 2" (t) BI'S,B,z (t)

—2ak, ot
+ J ul (s) S;lu (s)ds,
PR 0)

IR ORI
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=12 () PYTSYP e (1)

=z () YS! 'Yz (1) +2" (t = hypg) Rz (t = hyy)] .-
(31)
and the Leibniz-Newton formula gives Note that
t_hlm
-8 T ouzeds
Sam, [F T -1 t=him
- hye ZJ uw (s)S; u(s)ds
t=h, t=h(t)
t A J 5T (s) Uz (s) ds
< —h, (t) e > J il (s) S; it (s)ds e
t=hy(t)

t—hy,,

T = (hiag = ho) 2" (s)Uz (s) ds

t t “h(t)
< —672“h2<J. 1 (s) ds) ;! (J 1 (s) ds)
t—h,(t) —h,(t)

t—h(t
=—(h; —h(®) T (s)Uz(s)ds
< —e 2y (1) S u (t) + 2672 u” (0) S u (- by (1) w J

—e 2T (= by (0) S7'u(t - by (1) — (h () = hy,,) j £ () Uz (s)ds
< —e 2" (1) 87 u (1) + 3¢ 0" () S u (8)
2o, ~(h(H) - lm) \ T () Uz (s) ds
T (= by (0) 58,8, u (t - by (1)) ;
—e My (£ = hy (1) ST u(t - hy (2) ~ (i =h®) oty ¢ OUz)ds.
= e 20, T O Y'Yz (1) Using Proposition 4 gives
1
e, t-ht) .
T (- iy () 87 (¢ -y (1) (=) | L, OUEOds
~2ah, - ~h(t) T ~h(t)
—e 2y (t = hy (8)) S u(t = hy (1)) - S—[fhté(s)ds] U“t tz(s)ds]
[zt -h(t) -zt —hy,)]"
Applying Proposition 4 and the Leibniz-Newton formula, we <l -h®) -zt =) U
have x[z(t=h(t) -z (t-hy)]
. thig _
by, e 2 L . 7 (s) Rz (s) ds —(h(t) - hyy) Jt—h(t) 2z (s)Uz (s)ds
, T . thyy T thyy,
< e 2 “t_hlm 5 (S)] R “t_hlm e (s)] < —“th(t) z(s) ds] U “th(t) z(s) ds]
< —e Mz (1)~ 2 (t - hy,)] Rz () = 2 (t - hyy,)] <-[z(t=hy,) -zt -h®)]'U
= —e 2 [T (6) Rz () - 22" (O) Rz (£ - ) x[z(t=hy) —2(t =R )]
+ZT (t h RZ (t )] Let ﬁ = (th - h(t))/(th - hlm) <L Then
lm
t=hy,,
t ~ (hyp b " () Uz (s)d
- the_z“th J a (s)Rz (s)ds (s ®) Jt—h(t) ¢ Uz(s)ds
t=hyy
: T ot =B r_h"" (hypy — 1m) 27 () Uz (s) ds
< —¢ 2 “ z (s)] R H z (s)] t=h(t)
t=hyy t=hyym t=h,,
T .
< e[ (1) 2 ¢ - hypg)| R [2 (0~ 2 (¢~ hypg)] <], 5O ) QU

= e [ZT () Rz (t) - 22" (t) R (t — hyyy)

(33)

(34)

(35)



< —Blz(t—hy,) -zt -h®)]'U
x[z(t-hy,)-z(E-h(1)],

t—h(t)

— (h(t) - hy,,) J 2" (s)Uz (s)ds

t—hyy

t—h(t) T
(=P (=) O Uz S ds

1M

t—h(t) . .
S—(l—ﬁ)j_ (hy—h(t)z (s)Uz(s)ds

<-(1=B) [zt =h®) =z (t—hyp)]"

xU[z(t=h(®) -z (t—hy)l.
(36)

Therefore from (35)-(36), we obtain

t=hy,,
) j £ (s) Uz (s) ds

—him

< [e(t-h() -z(t-hyy)]"
xU[z(t=h(t) -z (t - )]
~[z(t=hy) -zt —h)]"
xU [z (t=hy,) -zt -h(1)]
—Blz(t=hy,) -z -h®)]"

xU [z (t-hy,) -z ({E-h1)]

—(1=B) [zt =h @) =2z (t~hp)]"

xU[z(t—h(t)—z(t—hyy)].
(37)

By using the following identity relation:

0=

—é(t) — Ae(t) + Cf (e (1)) + Dg (e (t — hy (1))
+Ejt h(e(s))ds + B,;Ke (t) + B,Ke (t — h, (1))
t=k, (t)

t
+ B;K J
t=ks ()

—Pz(t) - APz (t) + Cf (e (t)) + Dg (e (t — hy (1))

e(s)ds,

t

+EJ h(e(s))ds—B,Yz(t) + B, (t) u(t — h, (1))
t—k, (1)

t

+ B, J u(s)ds,
t=k, (t)
(38)
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we have

0= —2z" (t) Pz(t) - 22" (t) APz (t) + 22" (t) Cf (e (t))

+22" (t) Dg (e (t - hy (1))

t

+2z7 (t)EJ

t_kl (t)

h(e(s))ds — 22" (t) B,Yz (t)

+227 (1) By, ®)u(t—hy(t)) + 227 (1) B, Jt u(s)ds.
t=k;,(t)
(39)

By using Propositions 3 and 4, we have

26" (1) Cf (e (1)
<" CTUCz () + fT (e®)U;' f(e(t)
<z (t)CTUCz (1) + €' (t) F'U; ' Fe (t)
=z"(t)C"U,Cz (t) + 2" (t) PF'U;'FPz (t),
2¢" (t) Dg (e (t = hy (1))
<z" (t)D'U,Dz(t) + g" (e(t - hy (1))
xU,'g(e(t—h (1))
<z (t)D"U,Dz (t) + € (t —h, (1)) G'U;"
x Ge (t — hy (t))
=z" (t)D"U,Dz (t) + 2" (t - h, (t)) PG' U, "

x GPz (t — h, (1)),

t

2T () E J

t—ky (¢

h(e(s))ds
)

< 2k, e** 27 (1) E"U,Ez (1)

1 e [ T
—2a

+ —e he(s ds>
2k, <L—k1(t) ()

X U;! (Jt he (s))ds)
t—k, (t)

<2k, 2" (t) E"U,Ez (1)
—2ak;

2

e
+

Jt W' (e(s)) Us ' h (e () ds,
£k, (1)

227 () By () u(t — hy (1))

< 3¢™"2" (1) BLS, B,z (1)

—2ah,
+ ul (t=hy (6)) ST u(t - hy (1)),
2" (1) B, r u(s)ds
t=k, ()
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< 2k,e** 2" (t) BLS, B,z (¢)

e—Zock2 t T t
+ (J u(s) ds> S;l (J u(s) ds)
2ky \Jik,) tky (1)

< 2k,e** 2" (t) BLS, B,z (1)

—2ak, t
+ 5 Jt_kz(t) ut (s) S;lu (s)ds.
(40)
From (29)-(40), we obtain
V (t,e(t)) +2aV (t,e(t))
<& O (1= P) M, + Blly) E (1) + 2" (8) Mz (2)
+ 2T (6) Mz () + 2" (t—hy () Msz (t —hy (1)) )
—e' () Me(t),
where
My = ~0.1R (e 4 700 4 2PE UL FP
+ PH'U;'HP + 2¢ **"y"s] 'y
+PQ,P+Y'QyY,
My =-01P +KY'S]'Y,
M5 =-0.1¢*"MU 1 2PG"U, 'GP,
Mg=Q,+P'Y'Q,YP,

EW) =[z(t),2(t),z(t =hyy),z(t=h (), z(t = hp)].
(42)

Since 0 < B < 1, (1- )M, + M, is a convex combination of
M, and M ,. Therefore, (1 — B).M, + B, < 0 is equivalent
toI; < 0and [, < 0. Applying Schur complement lemma,
Proposition 5, the inequalities .#5 < 0, #, < 0, and M5 < 0
are equivalenttoI; < 0,I, < 0,and I < 0, respectively. Thus,
from (18)-(21) and (41), we obtain

V(te(t) +2aV (te(t) < —e (t) Mse(t), Vi=0.
(43)
Since M > 0, we have
V(t,e®)) < -2aV (t,e(t)), Vt=0. (44)

Integrating both sides of (44) from 0 to ¢, we obtain
Vite() <V(p®)e ™, vt=o0. (45)

Furthermore, taking condition (28) into account, we have

Mlet@)* <V (te®) <V (g®)e™ < e |g|"
(46)

Because V(t,e(t)) is radially unbounded, by the Lyapunov-
Krasovskii theorem and the solution |le(t,$)|| of the error
system (6) satisfy

lle (. 9)]| < \/%e‘” lg|, vt=>o, (47)

which implies the exponential stability of the error system

(6) under the controller (H1). Consequentially, the controlled

slave system (1) is synchronized with the master system (2).
Furthermore, from (43) and V (¢, e(t)) > 0, we have

V(t,e(t)) < —e' (t) Mse(t), Vt=0. (48)

Integrating both sides of (48) from 0 to ¢, we obtain

r e’ (t) Mse (t)dt <V (0,4) =V (t,e(t)) <V (0,¢),
0
Vi >0,
(49)

due to V (¢, e(t)) > 0. Hence

t
[ @ e@ar<v .8 =1lof. =0

0

Givent — 00, we obtain
] = L () Mo dt < M|pF =T, (51)
The proof is completed. O

Remark 7. In our main results, guaranteed cost synchro-
nization problem for cellular neural networks with inter-
val nondifferentiable time-varying and distributed time-
varying delays is considered. We first construct the improved
Lyapunov-Krasovskii functionals V (¢, e(t)) as shown in (26).
We give sufficient conditions for the exponential synchro-
nization of the error systems are independent on the deriva-
tives of the time-varying delays and without introducing any
free-weighting matrices turn out to be less conservative with
fewer matrix variables than see [7, 9, 20, 35, 38, 39, 41].

Remark 8. In most results on guaranteed cost synchroniza-
tion problem for cellular neural networks, authors have con-
sidered only activation functions with time-varying delay [21,
22]. Butin our works, we have considered a more complicated
problem, namely, guaranteed cost synchronization of cellular
neural networks with various activation functions and mixed
time-varying delays in state and feedback control term simul-
taneously. To the best of our knowledge, our results are among
the first results on guaranteed cost synchronization of cellular
neural networks with various activation functions and mixed
time-varying delays using hybrid feedback control. Therefore,
our stability conditions are less conservative than other
existing results [21, 22].

4. Numerical Examples

In this section, we now provide an example to show the effect-
iveness of the result in Theorem 6.
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Example 9. Consider the cellular neural networks with var-
ious activation functions and mixed time-varying delays
using hybrid feedback control with the following parame-
ters:

%(t) = - Ax(t) +Cf (x (1)) + DG (x (t - hy (1))
+Ejt h(x(s))ds+I(t), (52)
t—k,(t)

x(t)=¢, (1),

()= —Ay(®)+Cf (y (1) + DG (y(t - hy (1))

t € [-d,0],

+E r h(y(s))ds+1(t)+Byu(t)
t—k, ()

(53)
t
+ Byu(t - h, (t))+B3J u (s)ds,
t=k, (t)
y)=¢,(t), te[-d,0],
where
10 0.2 —0.2 0.2 0.1
A= [0 1]’ C= [0.1 —0.3]’ b= [—0.1 0.2]’
0.1 02 05 0 05 0
E:[—o.s 0.1]’ F:[o 0.3]’ G:[o 0.4]’
04 0 40 10
H:[o 0.2]’ Bl:[o 4]’ BZZ[O 1]’
10
5=o i)

¢, (t) = [-0.4cost,0.5cost], ¢, (t) = [sint,sint].

(54)

Solution 1. From the conditions (18)-(22) of Theorem 6, we
let @ = 0.02, hy,, = 0.1, hyy = 0.3, h, = 03,k = 0.3,
ky =02,Q, = [39],and Q, = [2?]. By using the LMI
Toolbox in MATLAB, we obtain

_ [00.0789 0.0066 o - [0-0108 0.0039

=] 0.0066 0.1024]" =~ 10.0039 0.0196 |
r - [02139 0.0388] U - [0-1375 0.0336

= 10.0388 02779 = 10.0336 02546
5 _ [0:0009 0.0002] 5. _ [0:0012 0.0009
17 0.0002 0.0012 27 10.0009 0.0027]"

[0.1649 0 ] 02482 0
Ur=|"0  0.0935] UZ‘[ 0 0.1464]’
_[02491 0 L -3[0.1491 0.1249
U3‘[ 0 0.0336]’ y=10 [0.0726 0.3067]’

K = -0.0018 -0.0011
~ [-0.0007 -0.0030 |’

(55)
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and accordingly the feedback control is u(t) =
[ 230018 Z000I ] (y(¢) — x(t)). Thus, is 0.02 exponentially
synchronization and the value y/A,/A;, = 5.2860, so the
solution of the closed-loop system satisfies

Iy (t.¢2) = x (1. 9] < 5.2860e " ]|, vt e R", (56)

and the optimal guaranteed cost of the closed-loop system is
as follows:

J<J" =4.6365. (57)

We let b () = 0.1 + 0.2]sint], h,(t) = 0.3/ k() =
0.3| costl, ky(t) = 0.2/, ¢, (t) = [~0.4cost,0.5cost],
¢,(t) = [sint,sint], for all + € [-0.3,0], and the activation
functions as follows:

£ (6 ©) = 025 (jx, 0 + 1] = |, () - 1))
fo (23 (1) =015 (|, (1) + 1| = |, () = 1]),
g1 (%, (8) =025 (|x; (1) + 1] = |x; () = 1]),
92 (%, (1)) = 0.2 (|, (1) + 1] = |x, (1) = 1),
h; (x, (s)) = 0.4 tanh (-6x, (s)),
h, (x5 (s)) = 0.2 tanh (7x, (s)) .

Figure 1 shows the trajectories of solutions e, (t) and e,(f) of
the cellular neural networks with various activation functions
and mixed time-varying delays without hybrid feedback
control (u(t) = 0). Figure 2 shows the trajectories of solutions
e, (t) and e,(t) of the cellular neural networks with various
activation functions and mixed time-varying delays with
hybrid feedback control u(t) = [ 200065 00008 | (v (£) — x(¢)).

Remark 10. The advantage of Example 9 is the lower bound
of the delay h,,#0 and interval time-varying delay and
distributed time-varying delay are nondifferentiable. More-
over, in these examples we still investigate various activation
functions and mixed time-varying delays in state and feed-
back control term simultaneously; hence the synchronization
conditions derived in [21, 22] cannot be applied to these
examples.

5. Conclusions

In this paper, we have investigated the exponential synchro-
nization of cellular neural networks with various activation
functions and mixed time-varying delays via hybrid feedback
control. The interval time-varying delay function is not nec-
essary to be differentiable which allows time-delay function
to be a fast time-varying function. A new class of Lyapunov-
Krasovskii functional is constructed in new delay-dependent
sufficient conditions for the exponential synchronization of
the error systems, which have been derived by a set of LMIs
without introducing any free-weighting matrices. The opti-
mal guaranteed cost control with linear error hybrid feedback
is turned into the solvable problem of a set of LMIs. Simula-
tion results have been given to illustrate the effectiveness of
the proposed method.
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el(t)’ ez(t)

Time, t

e el(t)
— et

FIGURE 1: Synchronization error curves of the master system (52)
and the slave system (53) without hybrid feedback control.

0.6 T T T T T

0.4t 1

0.2 k

(=)

ey (t), ep(t)

Time, t

— e (1)
— e(t)

FIGURE 2: Synchronization error curves of the master system (52)
and the slave system (53) with hybrid feedback control input.
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