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Ontology, as a useful tool, is widely applied in lots of areas such as social science, computer science, and medical science. Ontology
concept similarity calculation is the key part of the algorithms in these applications. A recent approach is to make use of similarity
between vertices on ontology graphs. It is, instead of pairwise computations, based on a function that maps the vertex set of
an ontology graph to real numbers. In order to obtain this, the ranking learning problem plays an important and essential role,
especially k-partite ranking algorithm, which is suitable for solving some ontology problems. A ranking function is usually used to
map the vertices of an ontology graph to numbers and assign ranks of the vertices through their scores.Through studying a training
sample, such a function can be learned. It contains a subset of vertices of the ontology graph. A good ranking function means
small ranking mistakes and good stability. For ranking algorithms, which are in a well-stable state, we study generalization bounds
via some concepts of algorithmic stability. We also find that kernel-based ranking algorithms stated as regularization schemes in
reproducing kernel Hilbert spaces satisfy stability conditions and have great generalization abilities.

1. Introduction and Motivations

The study of ontology deals with questions concerning what
entities exist and how such entities can be grouped, related
within a hierarchy, and subdivided according to similarities
and differences.Thedeveloped tools have beenwidely applied
inmedicine, biology, and social science. In computer science,
ontology is defined as a model for sharing formal concepts
and has been applied in intelligent information integra-
tion, cooperative information systems, information retrieval,
electronic commerce, and knowledge management. After a
decade’s development, ontology technology has matured as
an effective model of hierarchical structure and semantics
for concepts, supported by systematic and comprehensive
engineering theory, representation, and construction tools.

Ontology similarity computation is an essential part in
practical applications. In information retrieval, it has been
used to compute semantic similarity and search for concepts.
We take a graph-theory approach and represent an ontology
by a weighted graph 𝐺 = (𝑉, 𝐸, 𝑤). In this setting, 𝑉 =

{V
1
, . . . , V

𝑛
} is the (finite) set of vertices corresponding to

concepts or objects of the ontology,𝐸 ⊂ 𝑉×𝑉 is a set of edges,
and𝑤 : 𝐸 → R

+
is a weight function. For two vertices V

𝑖
and

V
𝑗
representing two concepts, the weight 𝑤(V

𝑖
, V
𝑗
) measures

their similarity in the ontology.

Example 1. In some applications of ontology similarity com-
putation, the weight function 𝑤 takes values on [0, 1]. Then
the case 𝑤(V

𝑖
, V
𝑗
) = 1 means that V

𝑖
and V

𝑗
represent the

same concept while 𝑤(V
𝑖
, V
𝑗
) = 0 means that these two

concepts have no similarity. In information retrieval, with
a threshold parameter 0 < 𝜖 < 1, when one tries to find
related information of the concept V

𝑖
, all concepts V

𝑗
satisfying

𝑤(V
𝑖
, V
𝑗
) > 𝜖 are returned, which means that V

𝑗
and V

𝑖
have a

high similarity.

Traditional methods for ontology similarity computation
are based on pairwise similarity calculation. Their compu-
tational complexity is high, and they required selection of
many parameters, which are not so intuitive. In this paper,
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we use a learning theory approach. The idea is to learn a
scoring function 𝑓 : 𝑉 → R and then to determine the
similarity between vertices (concepts) V

𝑖
and V

𝑗
by their value

difference |𝑓(V
𝑖
)−𝑓(V

𝑗
)|: the smaller the difference the higher

the similarity. Formally, Sim(V
𝑖
, V
𝑗
1

) ≥ Sim(V
𝑖
, V
𝑗
2

) if and
only if |𝑓(V

𝑖
) − 𝑓(V

𝑗
1

)| ≤ |𝑓(V
𝑖
) − 𝑓(V

𝑗
2

)|. Such an inspiring
approachwas introduced from the viewpoint of ranking in [1]
where a ranking algorithm is used for learning from samples a
scoring function𝑓with small ranking error.Themethod was
employed in the ontology setting in [2] which demonstrates
accuracy and efficiency. Another possible way to learn such a
function 𝑓 is by a graph Laplacian and taking an eigenvector
associated with its second smallest eigenvalue. See [3–6] for
details.Thismethod requires a positive definiteness condition
for a similarity matrix which is hard to check in our setting.
Also, when the size of the graph is large, the computational
complexity is high.

In this paper, we explore the learning theory approach
for ontology similarity computations in a setting when the
ontology graph is a tree. It is a connected graph without
cycle. Thus, there is a unique path between any two vertices.
The tree structure gives restrictions on similarity of vertices
(concepts). For example, we assign a top vertex Vtop and
let it be the root, then denote 𝑘 the degree (the number of
edges that link to a vertex) of the top vertex. Let 𝑁

𝐺
(Vtop) =

{V
1
, V
2
, . . . , V

𝑘
} be the neighbor set of Vtop. If there is a

path from one vertex to Vtop through V
𝑖
, then it belongs to

branch 𝑖. Thus, we have 𝑘 branches in the tree and any two
vertices belonging to different branches have no edge between
them. The concepts in the same branch of the tree should
have higher similarity, compared with concepts in different
branches.This observationmotivates us to apply the 𝑘-partite
ranking algorithm [7] in which the 𝑘 parts correspond to the
𝑘 classes of vertices of 𝑘 rates. The rate values of all classes
are decided by experts. Intuitively, a vertex of a higher rate
𝑏 is ranked higher than any vertex of rate 𝑎 if 1 ≤ 𝑎 <

𝑏 ≤ 𝑘. Thus, the 𝑘-partite ranking algorithm is reasonable to
learn a similarity function for an ontology graph with a tree
structure.

Themain contribution of this paper is to state some ontol-
ogy computations as a 𝑘-partite ranking problem and to con-
duct stability analysis of the algorithms with mild conditions,
which leads to useful error bounds for ontology applications.

The organization of the rest part of this paper is as follows.
The setting and main results are given in the next section.
The generalization bounds for learning algorithms will be
shown in Section 4. The stability and generalization bounds
for the learning algorithms stated as regularization schemes
in reproducing kernel Hilbert spaces will be discussed in
Section 5.

2. Formal Setting and Main Results

Now, we state our learning algorithm for ontology similarity
computation.

Let 𝑉 = {V
1
, . . . , V

𝑛
} be the finite set of vertices of an

ontology graph. It is divided into 𝑘 disjoint subsets {𝑉
𝑖
}
𝑘

𝑖=1

corresponding to 𝑘 rates. Let D be a probability measure on
𝑉.

The performance of a ranking function 𝑓 : 𝑉 → R can
be measured by the following concept.

Definition 2. A ranking loss function is a function 𝑙 : R𝑉 ×
𝑉×𝑉 → R

+
∪ {0} that assigns, for 𝑓 : 𝑉 → R and V, V󸀠 ∈ 𝑉,

a nonnegative real number 𝑙(𝑓, V, V󸀠) interpreted as the loss of
𝑓 in its relative ranking of V and V󸀠. The expected 𝑘-partite
ranking error on the ontology graph for a ranking function
𝑓 : 𝑉 → R associated with the ranking loss function 𝑙 is
defined as

𝑒𝑟
𝑙
(𝑓) =

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

EV∼D
𝑎
,V󸀠∼D

𝑏

{𝑙 (𝑓, V, V
󸀠
)} , (1)

whereD
𝑎
is the conditional distribution ofD on 𝑉

𝑎
.

Example 3. One commonly used ranking loss function is the
hinge ranking loss defined as

𝑙
ℎ
(𝑓, V, V

󸀠
) = (1 − (𝑓 (V) − 𝑓 (V

󸀠
)))

+
, (2)

where 𝑥
+
= max{𝑥, 0}. Another ranking loss function is the

𝛾-ranking loss with a smoothing parameter 𝛾 > 0 defined as

𝑙
𝛾
(𝑓, V, V

󸀠
)

=

{{{{{{

{{{{{{

{

1, if (𝑓 (V) − 𝑓 (V󸀠)) < 0,

1 −
1

𝛾
(𝑓 (V) − 𝑓 (V󸀠)) , if 0 ≤ (𝑓 (V) − 𝑓 (V󸀠))

≤ 𝛾𝜏 (V, V󸀠) ,

0, otherwise.
(3)

Learning algorithms are implemented with a sampleT =

{𝑡
𝑖
}
𝑀

𝑖=1
of size𝑀, called a preference graph, which is assumed

here to be independently drawn according toD. It can also be
divided into 𝑘 parts {T

1
, . . . ,T

𝑘
}, whereT

𝑎
= {𝑡

𝑖
: 𝑡
𝑖
∈ 𝑉

𝑎
}

consists of those sampling points of rate 𝑎.
In [8], Agarwal and Niyogi have studied the algorithmic

stability in a general setting, where the training examples take
labels 𝑦 ∈ [0,𝑀

1
] for some𝑀

1
> 0. A goal ranking function

ranks future instances with larger labels higher than those
with smaller labels. Here, our setting is more specific. The
learner is given a preference graphT consisting of 𝑘 disjoint
parts corresponding to the 𝑘 classes of vertices. Every part
has a rate value. The target ranking function ranks future
instances in higher-rate parts higher than those in lower-rate
parts.

A large class of learning algorithms is generated by
regularization schemes. They penalize an empirical error
which is chosen here to be the empirical 𝑘-partite ranking
error on the ontology graph defined for a 𝑓 : 𝑉 → R

associated with the sampleT as

𝑒𝑟T,𝑙 (𝑓) =
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

∑

𝑖:𝑡
𝑖
∈T
𝑎

∑

𝑗:𝑡
𝑗
∈T
𝑏

𝑙 (𝑓, 𝑡
𝑖
, 𝑡
𝑗
) . (4)

In this paper, we study a learning algorithm generated by
a regularization scheme in a reproducing kernelHilbert space
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(RKHS) (H
𝐾
, ‖ ⋅ ‖

𝐾
) associated with a Mercer kernel𝐾 : 𝑉×

𝑉 → R. Now, the regularization scheme is defined by

𝑓T = arg min
𝑓∈H
𝐾

{𝑒𝑟T,𝑙 (𝑓) + 𝜆
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
} , (5)

where 𝜆 > 0 is a regularization parameter. On the selection
of the regularized parameter, readers are referred to [9, 10] for
more details about the method of cross-validation.

One point we need to emphasize that we abuse terminol-
ogy for the sake of better readability. If the ranking function
𝑓 does not associate with RKHS (for instance, in Lemma 9,
Theorems 10 and 12), then the second term in the right-hand
side of (5) vanishes.

Our error analysis provides a learning rate of algorithm
(5) when the ranking loss is 𝜎-admissible.

Definition 4. Let 𝑙 be a ranking loss, 𝜎 > 0, and F a class of
real-valued functions on𝑉. We say that 𝑙 is 𝜎-admissible with
respect toF if for any 𝑓

1
, 𝑓
2
∈ F and V, V󸀠 ∈ 𝑉,

󵄨󵄨󵄨󵄨󵄨
𝑙 (𝑓

1
, V, V

󸀠
) − 𝑙 (𝑓

2
, V, V

󸀠
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝜎 (
󵄨󵄨󵄨󵄨𝑓1 (V) − 𝑓2 (V)

󵄨󵄨󵄨󵄨 +
󵄨󵄨󵄨󵄨󵄨
𝑓
1
(V
󸀠
) − 𝑓

2
(V
󸀠
)
󵄨󵄨󵄨󵄨󵄨
) .

(6)

Let us state the estimate of learning rates which will be
proved in Section 5.

Theorem 5. Let H
𝐾
be a RKHS such that 𝐾(V, V) ≤ 𝜅2 < ∞

for all V ∈ 𝑉. Let 𝑙 be a ranking loss,𝜎-admissible with respect to
H
𝐾
, and bounded by some 𝐵 > 0, such that 𝑙(𝑓, V, V󸀠) is convex

with respect to 𝑓. Let 𝑓∗
𝑙
be a fixed function inH

𝐾
satisfying

𝑒𝑟
𝑙
(𝑓
∗

𝑙
) ≤ inf

𝑓∈H
𝐾

er
𝑙
(𝑓) +

1

𝑀󸀠
(7)

for some𝑀󸀠
> 0. Then, for any 0 < 𝛿 < 1, with confidence at

least 1 − 𝛿, one has

er
𝑙
(𝑓T) ≤ inf

𝑓∈H
𝐾

𝑒𝑟
𝑙
(𝑓) + 𝜆

󵄩󵄩󵄩󵄩𝑓
∗

𝑙

󵄩󵄩󵄩󵄩

2

𝐾

+
1

𝑀󸀠
+
16𝜎

2
𝜅
2

𝜆𝑀
+ (
24𝜎

2
𝜅
2

𝜆
+ 𝐵)√

ln (2/𝛿)
2𝑀

.

(8)

FormTheorem 5, we see that if 𝜆 → 0 and 𝜆√𝑀 → ∞

(e.g., 𝜆 = 𝑀−1/4), then 𝑒𝑟
𝑙
(𝑓T) converges with confidence to

inf
𝑓∈H
𝐾

𝑒𝑟
𝑙
(𝑓).The quantity inf

𝑓∈H
𝐾

𝑒𝑟
𝑙
(𝑓) is well understood

in the literature related to learning theory (e.g., [11–14]).

3. Stability Analysis

An algorithm is stable if any change of a single point in a
training set yields only a small change in the output. It is
natural to consider that a good ranking algorithm is one with
good stability; that is, a mild change of samples does not
necessarily lead to too much change in the ranking function.
Some analysis of the stability of ranking algorithms is given
in [1, 8, 15].

Let 𝑛
𝑎
= |T

𝑎
| and 𝑡𝑖𝑎

𝑎
be the 𝑖

𝑎
th element in T

𝑎
for

1 ≤ 𝑎 ≤ 𝑘, 1 ≤ 𝑖
𝑎
≤ 𝑛

𝑎
. LetT(𝑡

𝑖𝑎

𝑎
,𝑡
𝑎
) be the sequence obtained

by replacing 𝑡𝑖𝑎
𝑎
in T by a new sampling point 𝑡𝑎 of rate

𝑎. We define some notions of stability for 𝑘-partite ranking
algorithms.

Definition 6 (uniform loss stability for a 𝑘-partite ranking
algorithm on ontology graph). Let A be a 𝑘-partite ranking
algorithm for ontology whose output on a preference graph
T = (T

1
, . . . ,T

𝑘
) is denoted by 𝑓T. Let 𝑙 be a ranking loss

function and 𝛼
𝑎
: N𝑘 → R for 1 ≤ 𝑎 ≤ 𝑘. We say that 𝐴

has uniform loss stability (𝛼
1
, . . . , 𝛼

𝑘
) with respect to 𝑙 if for

all 1 ≤ 𝑎 ≤ 𝑘, 𝑛
𝑎
∈ N, 𝑡𝑖𝑎

𝑎
∈ T

𝑎
and 𝑖

𝑎
∈ {1, . . . , 𝑛

𝑎
}, we have

for all 𝑡𝑎 ∈ 𝑉
𝑎
, V, V󸀠 ∈ 𝑉 but belong to different rate,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑙 (𝑓T, V, V
󸀠
) − 𝑙 (𝑓

T
(𝑡

𝑖𝑗

𝑗
,𝑡
𝑗
)

, V, V
󸀠
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) ,

𝑗 = 1, . . . , 𝑘.

(9)

Definition 7 (uniform score stability for a 𝑘-partite ranking
algorithm on ontology graph). Let A be a 𝑘-partite ranking
algorithm for ontology whose output on a preference graph
T = (T

1
, . . . ,T

𝑘
) is denoted by 𝑓T. Let 𝑙 be a ranking loss

function and 𝜇
𝑎
: N𝑘 → R for 1 ≤ 𝑎 ≤ 𝑘. We say that 𝐴 has

uniform score stability (𝜇
1
, . . . , 𝜇

𝑘
) with respect to 𝑙 if for all

1 ≤ 𝑎 ≤ 𝑘, 𝑛
𝑎
∈ N, 𝑡𝑖𝑎

𝑎
∈ T

𝑎
, 𝑖
𝑎
∈ {1, . . . , 𝑛

𝑎
}, and 𝑡𝑎 ∈ 𝑉

𝑎
, and

for all V ∈ 𝑉,
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑓T (V) − 𝑓
T
(𝑡

𝑖𝑗

𝑗
,𝑡
𝑗
)

(V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝜇
𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) , 𝑗 = 1, . . . , 𝑘. (10)

Themain tool used here isMcDiarmid’s inequality, which
bounds the deviation of any function of a sample on which a
single change in the sample has limited effect.

Theorem8 (see [16]). Let𝑋
1
, . . . , 𝑋

𝑁
be independent random

variables, each taking values in a set 𝐴. Let 𝜙 : 𝐴𝑁 → R such
that for each 𝑖 ∈ {1, . . . , 𝑁}, there exists a constant 𝑐

𝑖
> 0 such

that

sup
𝑥
1
,...,𝑥
𝑁
∈𝐴,𝑥
󸀠

𝑖
∈𝐴

󵄨󵄨󵄨󵄨𝜙 (𝑥1, . . . , 𝑥𝑁)

−𝜙 (𝑥
1
, . . . , 𝑥

𝑖−1
, 𝑥
󸀠

𝑖
, 𝑥
𝑖+1
, . . . , 𝑥

𝑁
)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑐

𝑖
.

(11)

Then, for any 𝜀 > 0,

P {𝜙 (𝑋
1
, . . . , 𝑋

𝑁
)−E {𝜙 (𝑋

1
, ⋅ ⋅ ⋅ , 𝑋

𝑁
)}≥𝜀}≤𝑒

−2𝜀
2
/∑
𝑁

𝑖=1
𝑐
2

𝑖 .

(12)

In what follows,T(𝑡
𝑖1

1
,𝑡
1
),...,(𝑡
𝑖
𝑘

𝑘
,𝑡
𝑘
) denotes a training sample

set obtained by replacing 𝑡𝑖1
1
in T by 𝑡1, . . . , 𝑡𝑖𝑘

𝑘
by 𝑡𝑘 for

𝑡
𝑖
𝑎

𝑎
∈ T

𝑎
, and 𝑖

𝑎
∈ {1, . . . , 𝑛

𝑎
}. Also, 𝛼

𝑎
(𝑛
1
, . . . , 𝑛

𝑘
) and

𝜇
𝑎
(𝑛
1
, . . . , 𝑛

𝑘
) are simply denoted by 𝛼

𝑎
and 𝜇

𝑎
, respectively.

We only consider the case of sample replacements with the
same rate: for some ontology graphs, the graph structure is
fixed; hence themembers of vertices and edges in each branch
are fixed.
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4. Generalization Bounds for Stable 𝑘-Partite
Ranking Algorithms on Ontology Graph

From this section, our analysis for stability of 𝑘-partite
ranking algorithms is stated on an ontology graph and
our organization follows [8]. In this section, generalization
bounds for ranking algorithms that exhibit good stability
properties will be derived. Our tricks are based on those of
[17]. We start with the following technical lemma.

Lemma 9. Let A be a symmetric 𝑘-partite ranking algorithm
for ontology whose output on a preference graph T =

(T
1
, . . . ,T

𝑘
) is denoted by 𝑓T, and let 𝑙 be a ranking loss

function. Then, for all 𝑡𝑖𝑎
𝑎
∈ T

𝑎
, 𝑖
𝑎
∈ {1, . . . , 𝑛

𝑎
}, and 𝑡𝑎 ∈ 𝑉

𝑎
,

𝑡
𝑏
∈ 𝑉

𝑏
, one has

ET [er𝑙 (𝑓T) − 𝑒𝑟T,𝑙 (𝑓T)]

=
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓T, 𝑡
𝑎
, 𝑡
𝑏
)

− 𝑙 (𝑓
T
(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
),(𝑡
𝑖
𝑏

𝑏
,𝑡
𝑏
)
, 𝑡
𝑎
, 𝑡
𝑏
)]} .

(13)

Proof. We have

ET [𝑒𝑟T,𝑙 (𝑓T)]

=
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET
[

[

∑

𝑖:𝑡
𝑖
∈T
𝑎

∑

𝑗:𝑡
𝑗
∈T
𝑏

𝑙 (𝑓T, 𝑡𝑖, 𝑡𝑗)
]

]

.

(14)

By symmetry, the term in the summation is the same for all
𝑖, 𝑗. Therefore, we get

ET [𝑒𝑟T,𝑙 (𝑓T)]

=
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏
[

[

∑

𝑖:𝑡
𝑖
∈T
𝑎

∑

𝑗:𝑡
𝑗
∈T
𝑏

𝑙 (𝑓T, 𝑡𝑖, 𝑡𝑗)
]

]

.

(15)

Interchanging the roles of 𝑡
𝑖
with 𝑡𝑎 and 𝑡

𝑗
with 𝑡𝑏, we get

ET [𝑒𝑟T,𝑙 (𝑓T)]

=
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓
T
(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
),(𝑡
𝑖
𝑏

𝑏
,𝑡
𝑏
)
, 𝑡
𝑎
, 𝑡
𝑏
)]} .

(16)

Since

ET [𝑒𝑟𝑙 (𝑓T)] =
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎 ,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓T)]} , (17)

the results follow.

We are now ready to give our main result of this section,
which bounds the expected 𝑙-error of a ranking function
learned by a 𝑘-partite ranking algorithm with good uniform
loss stability in terms of its empirical 𝑙-error on the training
sample. The proof follows [18].

Theorem 10. Let A be a symmetric 𝑘-partite ranking algo-
rithm for ontology whose output on a preference graph T =

(T
1
, . . . ,T

𝑘
) is denoted by 𝑓T, and let 𝑙 be ranking loss

function such that 0 ≤ 𝑙(𝑓, V, V󸀠) ≤ 𝐵 for all 𝑓 : 𝑉 → R

and V, V󸀠 ∈ T. Let 𝛼
𝑎
: N𝑘 → R for 1 ≤ 𝑎 ≤ 𝑘 such

that A has uniform loss stability (𝛼
1
, . . . , 𝛼

𝑘
) with respect to 𝑙.

Let 𝛼max = max{𝛼
1
, . . . , 𝛼

𝑘
}. Then, for any 0 < 𝛿 < 1, with

confidence at least 1 − 𝛿, one has

𝑒𝑟
𝑙
(𝑓T)≤𝑒𝑟T,𝑙 (𝑓T)+2𝛼max+(2𝛼max+

𝐵

𝑀
)√

𝑀 ln (1/𝛿)
2

.

(18)

Proof. Let 𝜙 : 𝑉𝑀 → R be defined by

𝜙 (T) = 𝑒𝑟
𝑙
(𝑓T) − 𝑒𝑟T,𝑙 (𝑓T) . (19)

We show that 𝜙 satisfies the condition for McDiarmid’s
inequality. To this end, let 𝑡𝑎 ∈ 𝑉

𝑎
. For each 𝑖

1
∈ {1, . . . , 𝑛

1
},

we have
󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑟
𝑙
(𝑓T) − 𝑒𝑟𝑙 (𝑓

T
(𝑡
𝑖1

1
,𝑡
1
)
)
󵄨󵄨󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

EV∼D
𝑎
,V󸀠∼D

𝑏

{𝑙 (𝑓T, V, V
󸀠
)−𝑙 (𝑓

T
(𝑡
𝑖1

1
,𝑡
1
)
, V, V

󸀠
)}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤𝛼
1
,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑟T,𝑙 (𝑓T) − 𝑒𝑟T,𝑙 (𝑓

T
(𝑡
𝑖1

1
,𝑡
1
)
)
󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

∑

𝑖:{𝑡
𝑖
∈T
𝑎
,𝑡
𝑖
̸= 𝑡
𝑖1

1
}

∑

𝑗:𝑡
𝑗
∈T
𝑏

󵄨󵄨󵄨󵄨󵄨
𝑙 (𝑓T, 𝑡𝑖, 𝑡𝑗)

−𝑙 (𝑓
T
(𝑡
𝑖1

1
,𝑡
1
)
, 𝑡
𝑖
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

+
1

𝑀2

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

󵄨󵄨󵄨󵄨󵄨󵄨
𝑙 (𝑓T, 𝑡

𝑖
1

1
, 𝑡
𝑗
, ) − 𝑙 (𝑓

T
(𝑡
𝑖1

1
,𝑡
1
)
, 𝑡
𝑖
1

1
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛼
1
+
𝐵∑

𝑘

𝑏=2
𝑛
𝑏

𝑀2
≤ 𝛼

1
+
𝐵

𝑀
.

(20)

These give
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝜙 (T) − 𝜙 (T

(𝑡
𝑖1

1
,𝑡
1
)
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2𝛼

1
+
𝐵

𝑀
. (21)

Similarly, it can be shown that for any 𝑖
𝑎
∈ {1, . . . , 𝑛

𝑎
}, 1 ≤ 𝑎 ≤

𝑘,
󵄨󵄨󵄨󵄨󵄨󵄨
𝜙 (T) − 𝜙 (T

(𝑡
𝑖𝑎

𝑎
,𝑡
𝑎
)
)
󵄨󵄨󵄨󵄨󵄨󵄨
≤ 2𝛼

𝑎
+
𝐵

𝑀
. (22)

Thus, applying McDiarmid’s inequality to 𝜙, we get for any
𝜀 > 0,

PT {{𝑒𝑟𝑙 (𝑓T)−𝑒𝑟T,𝑙 (𝑓T)}−ET {𝑒𝑟𝑙 (𝑓T)−𝑒𝑟T,𝑙 (𝑓T)} ≥ 𝜀}

≤ exp{− 2𝜀
2

𝑀(2𝛼max + 𝐵/𝑀)
2
} .

(23)
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Now, by Lemma 9, we know that the expectation
ET[𝑒𝑟𝑙(𝑓T) − 𝑒𝑟T,𝑙(𝑓T)] can be bounded as

1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓T, 𝑡
𝑎
, 𝑡
𝑏
)

−𝑙 (𝑓
T
(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
),(𝑡
𝑖
𝑏

𝑏
,𝑡
𝑏
)
, 𝑡
𝑎
, 𝑡
𝑏
)]}

=
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓T, 𝑡
𝑎
, 𝑡
𝑏
)

−𝑙 (𝑓
T(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
)
, 𝑡
𝑎
, 𝑡
𝑏
)]}

+
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏 [𝑙 (𝑓T(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
)
, 𝑡
𝑎
, 𝑡
𝑏
)

−𝑙 (𝑓
T
(𝑡
𝑖𝑎
𝑎
,𝑡
𝑎
),(𝑡
𝑖
𝑏

𝑏
,𝑡
𝑏
)
, 𝑡
𝑎
, 𝑡
𝑏
)]}

≤
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏𝛼𝑎}

+
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

ET,𝑡𝑎,𝑡𝑏 {𝑛𝑎𝑛𝑏𝛼𝑏} ≤ 2𝛼max.

(24)

Thus, for any 𝜀 > 0,

PT {𝑒𝑟𝑙 (𝑓T) − 𝑒𝑟T,𝑙 (𝑓T) − 2𝛼max ≥ 𝜀}

≤ exp{− 2𝜀
2

𝑀(2𝛼max + 𝐵/𝑀)
2
} .

(25)

The result follows by setting the right-hand side equal to 𝛿
and solving it for 𝜀.

For any 𝛾 > 0, and any 𝑘-partite ranking algorithm with
good uniform loss stability with respect to 𝑙

𝛾
, Theorem 10

can be applied to bound the expected ranking error of a
learned ranking function in terms of its empirical 𝑙

𝛾
-error

on the training sample. The following lemma shows that, for
every 𝛾 > 0, a ranking algorithm with good uniform score
stability also has good uniform loss stability with respect to 𝑙

𝛾
.

Using the techniques of Lemma 2 in [17], and taking 𝜏(V
𝑖
, V
𝑗
)

in Example 3 as 1, the following lemma can be obtained
immediately.

Lemma 11. Let A be a 𝑘-partite ranking algorithm for ontology
whose output on a preference graph T = (T

1
, . . . ,T

𝑘
) is

denoted by 𝑓T. Let 𝜇𝑎 : N𝑘 → R for 1 ≤ 𝑎 ≤ 𝑘 such that A
has uniform score stability (𝜇

1
, . . . , 𝜇

𝑘
). Then, for every 𝛾 > 0,

A has uniform loss stability (𝛼𝛾
1
, . . . , 𝛼

𝛾

𝑘
) with respect to the 𝛾

ranking loss 𝑙
𝛾
, where for all 𝑛

1
, . . . , 𝑛

𝑘
∈ N,

𝛼
𝛾

𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) =

2𝜇
𝑗

𝛾
, 𝑗 = 1, . . . , 𝑘. (26)

Combining Theorem 10 and Lemma 11, we get the fol-
lowing result which bounds the expected ranking error of a
learned ranking function in terms of its empirical 𝑙

𝛾
-error for

any ranking algorithm with good uniform score stability.

Theorem 12. Let A be a 𝑘-partite ranking algorithm for ontol-
ogy whose output on a preference graph T = (T

1
, . . . ,T

𝑘
)

is denoted by 𝑓T. Let 𝜇𝑎 : N𝑘 → R for 1 ≤ 𝑎 ≤ 𝑘 such
that A has uniform score stability (𝜇

1
, . . . , 𝜇

𝑘
), and 𝛾 > 0.

Denote 𝜇max = max{𝜇
1
, . . . , 𝜇

𝑘
}. If 𝑙 is a ranking loss satisfying

0 ≤ 𝑙(𝑓, V, V󸀠) ≤ 𝐵 for all 𝑓 : 𝑉 → R and V, V󸀠 ∈ T, then for
any 0 < 𝛿 < 1, with probability of at least 1 − 𝛿,

𝑒𝑟
𝑙
(𝑓T)≤𝑒𝑟T,𝑙 (𝑓T)+

4

𝛾
𝜇max+(

4

𝛾
𝜇max+

𝐵

𝑀
)√

𝑀 ln (1/𝛿)
2

.

(27)

Proof. One applies Theorem 10 to 𝐴 with the ranking loss 𝑙
𝛾

(using Lemma 11), which satisfies 0 ≤ 𝑙
𝛾
≤ 𝐵. One finishes the

proof thanks to the fact that 𝑒𝑟 ≤ 𝑒𝑟
𝑙
𝛾

5. Stable Ranking Algorithms

In this section, we will demonstrate stability of some rank-
ing algorithms in which a ranking function is selected
by minimizing a regularized objective function. A general
result for regularization-based 𝑘-partite ranking algorithms
will be derived in Section 5.1. In Section 5.2, this result is
used to illustrate stability of kernel-based 𝑘-partite ranking
algorithms that perform regularization in a reproducing
kernel Hilbert space. These stability results are also used
to achieve consistency theorem for kernel-based 𝑘-partite
ranking algorithms in Section 5.3.

5.1. General Regularizers. Let 𝑙 be given a ranking loss func-
tion,F a class of real-valued functions on 𝑉, and𝑁 : F →

R
+
∪ {0} a regularization functional. Consider the following

regularized empirical 𝑙-error of a ranking function 𝑓 ∈ F
(with respect to a preference graph T) with regularization
parameter 𝜆 > 0,

𝑒𝑟
𝜆

T,𝑙 =
1

𝑀2

𝑘−1

∑

𝑎=1

𝑘

∑

𝑏=𝑎+1

∑

𝑖:𝑡
𝑖
∈T
𝑎

∑

𝑗:𝑡
𝑗
∈T
𝑏

𝑙 (𝑓, 𝑡
𝑖
, 𝑡
𝑗
) + 𝜆𝑁 (𝑓) .

(28)

We consider 𝑘-partite ranking algorithms thatminimize such
a regularized objective function; that is, ranking algorithms
that, given a preference graph T, output a ranking function
𝑓T ∈ F that satisfies

𝑓T = arg min
𝑓∈F

𝑒𝑟
𝜆

T,𝑙 = arg min
𝑓∈F

{𝑒𝑟T,𝑙 + 𝜆𝑁 (𝑓)} , (29)

for some fixed choice of ranking loss 𝑙, function class F,
regularized 𝑁, and regularization parameter 𝜆. We derive a
general result below that will be useful for showing stability
of such regularization-based algorithms.
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Lemma 13. Let 𝑙 be a ranking loss such that 𝑙(𝑓, V, V󸀠) is convex
in 𝑓. LetF be a convex set of real-valued functions on 𝑉, and
let𝜎 > 0 such that 𝑙 is𝜎-admissiblewith respect toF. Let𝜆 > 0,
and let𝑁 : F → R

+
∪ {0} be a functional defined onF such

that for preference graph T = (T
1
, . . . ,T

𝑘
), the regularized

empirical 𝑙-error 𝑒𝑟𝜆T,𝑙 has a minimum (not necessarily unique)
in F. Let A be a 𝑘-partite ranking algorithm for ontology
defined by (29). Let 𝑡𝑎 ∈ 𝑉

𝑎
, 𝑡𝑖𝑎
𝑎
∈ T

𝑎
, and 𝑖

𝑎
∈ {1, . . . , 𝑛

𝑎
}.

For brevity, denote

𝑓 ≡ 𝑓T, 𝑓
1,𝑖
1

≡ 𝑓
T
((𝑡
𝑖1

1
,𝑡
1
))
, . . . , 𝑓

𝑘,𝑖
𝑘

≡ 𝑓
T
((𝑡
𝑖
𝑘

𝑘
,𝑡
𝑘
))
, (30)

and let

Δ𝑓
1,𝑖
1

= (𝑓
1,𝑖
1

− 𝑓) , . . . , Δ𝑓
𝑘,𝑖
𝑘

= (𝑓
𝑘,𝑖
𝑘

− 𝑓) . (31)

Then for any 𝑡 ∈ [0, 1] and 𝑞 = 1, . . . , 𝑘, one has

𝑁(𝑓) − 𝑁(𝑓 + 𝑡Δ𝑓
𝑞,𝑖
𝑞

)

+ 𝑁(𝑓
𝑞,𝑖
𝑞

) − 𝑁(𝑓
𝑞,𝑖
𝑞

− 𝑡Δ𝑓
𝑞,𝑖
𝑞

)

≤
𝑡𝜎

𝜆𝑀2
∑

𝑏 ̸= 𝑞

∑

𝑗:𝑡
𝑗
∈T
𝑏

{
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑖
𝑞

𝑞 )
󵄨󵄨󵄨󵄨󵄨󵄨

+2
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑞
)
󵄨󵄨󵄨󵄨󵄨󵄨
} .

(32)

Proof. Recall that a convex function 𝑔 satisfies

𝑔 (𝑥 + 𝑡 (𝑦 − 𝑥)) − 𝑔 (𝑥) ≤ 𝑡 (𝑔 (𝑦) − 𝑔 (𝑥)) , ∀𝑡 ∈ [0, 1] .

(33)

Since 𝑙(𝑓, V, V󸀠) is convex in 𝑓, 𝑒𝑟T,𝑙(𝑓) is convex in 𝑓.
Therefore, for any 𝑡 ∈ [0, 1], we have

𝑒𝑟T,𝑙 (𝑓 + 𝑡Δ𝑓1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓) ≤ 𝑡 (𝑒𝑟T,𝑙 (𝑓1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓)) ,

(34)

and also (interchanging the roles of 𝑓 and 𝑓
1,𝑖
1

),

𝑒𝑟T,𝑙 (𝑓1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

)

≤ 𝑡 (𝑒𝑟T,𝑙 (𝑓) − 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

)) .

(35)

Adding the above two inequalities yields

𝑒𝑟T,𝑙 (𝑓 + 𝑡Δ𝑓1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓)

+ 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

) ≤ 0.

(36)

Now, sinceF is convex, (𝑓+𝑡Δ𝑓
1,𝑖
1

) ∈ F and (𝑓
1,𝑖
1

−𝑡Δ𝑓
1,𝑖
1

) ∈

F. Since 𝑓 minimizes 𝑒𝑟𝜆T,𝑙(𝑓) in F and 𝑓
1,𝑖
1

minimizes
𝑒𝑟
𝜆

T
(𝑡
𝑖1

1
,𝑡
1
)
,𝑙

(𝑓) inF, we have

𝑒𝑟
𝜆

T,𝑙 (𝑓) − 𝑒𝑟
𝜆

T,𝑙 (𝑓 + 𝑡Δ𝑓1,𝑖1
) ≤ 0,

𝑒𝑟
𝜆

T
(𝑡
𝑖1

1
,𝑡
1
)
,𝑙

(𝑓
1,𝑖
1

) − 𝑒𝑟
𝜆

T
(𝑡
𝑖1

1
,𝑡
1
)
,𝑙

(𝑓
1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

) ≤ 0.

(37)

Adding these two inequalities and applying (36), we get

𝜆 (𝑁 (𝑓)−𝑁(𝑓+𝑡Δ𝑓
1,𝑖
1

)+𝑁(𝑓
1,𝑖
1

)−𝑁(𝑓
1,𝑖
1

−𝑡Δ𝑓
1,𝑖
1

))

≤ 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

) − 𝑒𝑟
T
(𝑡
𝑖1

1
,𝑡
1
)
,𝑙

(𝑓
1,𝑖
1

)

+ 𝑒𝑟
T
(𝑡
𝑖1

1
,𝑡
1
)
,𝑙

(𝑓
1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

) − 𝑒𝑟T,𝑙 (𝑓1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

)

=
1

𝑀2

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

{(𝑙 (𝑓
1,𝑖
1

, 𝑡
𝑖
1

1
, 𝑡
𝑗
) − 𝑙 (𝑓

1,𝑖
1

− 𝑡Δ𝑓
1,𝑖
1

, 𝑡
𝑖
1

1
, 𝑡
𝑗
))

+ (𝑙 (𝑓
1,𝑖
1

−𝑡Δ𝑓
1,𝑖
1

, 𝑡
1
, 𝑡
𝑗
)−𝑙 (𝑓

1,𝑖
1

, 𝑡
1
, 𝑡
𝑗
))}

≤
𝑡𝜎

𝑀2

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

{
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑖
1

1
)
󵄨󵄨󵄨󵄨󵄨
+ 2
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
} .

(38)

Similarly, for 𝑞 = 2, . . . , 𝑘, we have

𝜆 (𝑁 (𝑓) − 𝑁(𝑓 + 𝑡Δ𝑓
𝑞,𝑖
𝑞

) + 𝑁(𝑓
𝑞,𝑖
𝑞

) − 𝑁(𝑓
𝑞,𝑖
𝑞

− 𝑡Δ𝑓
𝑞,𝑖
𝑞

))

≤
𝑡𝜎

𝑀2
∑

𝑏 ̸= 𝑞

∑

𝑗:𝑡
𝑗
∈T
𝑏

{
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑖
𝑞

𝑞 )
󵄨󵄨󵄨󵄨󵄨󵄨

+ 2
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨󵄨
Δ𝑓
𝑞,𝑖
𝑞

(𝑡
𝑞
)
󵄨󵄨󵄨󵄨󵄨󵄨
} .

(39)

The results follow.

As we will see below, the above result can be used
to establish stability of some regularization-based ranking
algorithms.

5.2. Regularization in Reproducing Kernel Hilbert Spaces. Let
F be a reproducing kernel Hilbert space (RKHS) of real-
valued functions on 𝑉 associated with a Mercer kernel 𝐾 :

𝑉 × 𝑉 → R. Here, 𝐾V : 𝑉 → R is defined as 𝐾V(V
󸀠
) =

𝐾(V, V󸀠), and the reproducing property ofF gives that for all
𝑓 ∈ F and all V ∈ 𝑉,

𝑓 (V) = ⟨𝑓,𝐾V⟩𝐾, (40)

where ⟨⋅, ⋅⟩
𝐾
denotes the RKHS inner product in F. By the

Schwartz inequality, it is easy to show that for all 𝑓 ∈ F and
all V ∈ 𝑉,

󵄨󵄨󵄨󵄨𝑓 (V)
󵄨󵄨󵄨󵄨 ≤
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐾
󵄩󵄩󵄩󵄩𝐾V
󵄩󵄩󵄩󵄩𝐾 =

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝐾
√𝐾 (V, V), (41)

where ‖ ⋅ ‖
𝐾

denotes the RKHS norm in F. We consider
ranking algorithms that perform regularization in the RKHS
F using the squared norm in F as regularizers. Specifically,
let𝑁 : F → R

+
∪ {0} be the regularizer defined by

𝑁(𝑓) =
󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
. (42)

It will be demonstrated below that if for some 0 ≤ 𝜅 <

∞, 𝐾(V, V) ≤ 𝜅 for any V ∈ 𝑉, then a ranking algorithm
that minimizes an appropriate regularized error over F,
with regularizer𝑁 defined as above, has good uniform score
stability.
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Theorem 14. Let F be an RKHS with kernel 𝐾 such that for
all V ∈ 𝑉, 𝐾(V, V) ≤ 𝜅2 < ∞. Let 𝑙 be a ranking loss such that
𝑙(𝑓, V, V󸀠) is convex in𝑓 and 𝑙 is 𝜎-admissible with respect toF.
Let 𝜆 > 0, and let 𝑁 be given by (42). Let A be the 𝑘-partite
ranking algorithm for ontology that, given a preference graph
T, outputs a ranking function 𝑓T ∈ F defined by (29). Then,
A has uniform score stability (𝜇

1
, . . . , 𝜇

𝑘
) with

𝜇
𝑞
(𝑛
1
, . . . , 𝑛

𝑘
) =

4𝜎𝜅
2

𝜆𝑀
, 𝑞 = 1, . . . , 𝑘. (43)

Proof. Let V𝑎 ∈ 𝑉
𝑎
and 𝑖

𝑎
∈ {1, . . . , 𝑛

𝑎
}.

Applying Lemma 13 with 𝑡 = 1/2, we get (using the
notation in the proof of Lemma 13) that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 +

1

2
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

+
󵄩󵄩󵄩󵄩󵄩
𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩

2

𝐾
−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
1,𝑖
1

−
1

2
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

≤
𝜎

2𝜆𝑀2

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

{
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑖
1

1
)
󵄨󵄨󵄨󵄨󵄨

+2
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
} .

(44)

Since F is a vector space, Δ𝑓
1,𝑖
1

∈ F, (𝑓 + (1/2)Δ𝑓
1,𝑖
1

) ∈

F, and (𝑓
1,𝑖
1

− (1/2)Δ𝑓
1,𝑖
1

) ∈ F, so ‖𝑓 + (1/2)Δ𝑓
1,𝑖
1

‖
2

𝑘
and

‖𝑓
1,𝑖
1

− (1/2)Δ𝑓
1,𝑖
1

‖
2

𝑘
are well defined. It is easy to check that

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩

2

𝐾
−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓 +

1

2
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

+
󵄩󵄩󵄩󵄩󵄩
𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩

2

𝐾

−

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑓
1,𝑖
1

−
1

2
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

𝐾

=
1

2

󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩

2

𝐾
.

(45)

Combined with (44), this gives
󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩

2

𝐾

≤
𝜎

𝜆𝑀2

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

{
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑖
1

1
)
󵄨󵄨󵄨󵄨󵄨

+2
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨
+
󵄨󵄨󵄨󵄨󵄨
Δ𝑓
1,𝑖
1

(𝑡
1
)
󵄨󵄨󵄨󵄨󵄨
} .

(46)

Since (as noted above)Δ𝑓
1,𝑖
1

∈ F, this togetherwith (41) gives

󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩

2

𝐾

≤
𝜎

𝜆𝑀2

󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩𝐾

𝑘

∑

𝑏=2

∑

𝑗:𝑡
𝑗
∈T
𝑏

{√𝐾(𝑡
𝑖
1

1
, 𝑡
𝑖
1

1
)

+2√𝐾(𝑡
𝑗
, 𝑡
𝑗
)+√𝐾 (𝑡1, 𝑡1)}

≤
4𝜎𝜅

𝜆𝑀

󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩𝐾
.

(47)

It follows that

󵄩󵄩󵄩󵄩󵄩
Δ𝑓
1,𝑖
1

󵄩󵄩󵄩󵄩󵄩𝐾
≤
4𝜎𝜅

𝜆𝑀
. (48)

This together with (41) tells us that for any V ∈ 𝑉,

󵄨󵄨󵄨󵄨󵄨󵄨
𝑓T (V) − 𝑓

T
𝑡
𝑖1

1
,𝑡
1 (V)

󵄨󵄨󵄨󵄨󵄨󵄨
≤
4𝜎𝜅

2

𝜆𝑀
. (49)

Similarly, we can also obtain

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑓T (V) − 𝑓

T
𝑡

𝑖𝑞

𝑞
,𝑡
𝑞
(V)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≤
4𝜎𝜅

2

𝜆𝑀
, 𝑞 = 2, . . . , 𝑘. (50)

The conclusion follows.

Theorems 12 and 14 give the following generalization
bound for kernel-based ranking algorithms.

Corollary 15. Under the conditions of Theorem 14, one has
that for any 0 < 𝛿 < 1, with probability of at least 1−𝛿 over the
draw of T, the expected ranking error of the ranking function
𝑓T learned by the regularized algorithm associated with the 𝑙

1

ranking loss is bounded by

𝑒𝑟
𝑙
1

(𝑓T) ≤ 𝑒𝑟T,𝑙
1

(𝑓T) +
16𝜎𝜅

2

𝜆𝑀

+ (
16𝜎𝜅

2

𝜆𝑀
+
1

𝑀
)√

𝑀 ln (1/𝛿)
2

.

(51)

The result of Corollary 15 shows that a larger regular-
ization parameter 𝜆 leads to better stability and, therefore,
a tighter confidence interval in the resulting generalization
bound.

Under the conditions of the above results, a kernel-based
ranking algorithmminimizing a regularized empirical 𝑙-error
also has good uniform loss stability with respect to 𝑙; this
follows from the following simple lemma.

Lemma 16. LetF be a class of real-valued functions on𝑉, and
let A be a 𝑘-partite ranking algorithm for ontology that, given
a preference graph T, outputs a ranking function 𝑓T ∈ F. If
A has uniform score stability (𝜇

1
, . . . , 𝜇

𝑘
) and 𝑙 is a ranking loss

that is 𝜎-admissible with respect toF, then A has uniform loss
stability (𝛼

1
, . . . , 𝛼

𝑘
) with respect to 𝑙, where for all𝑚 ∈ N,

𝛼
𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) = 2𝜎𝜇

𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) , 𝑗 = 1, . . . , 𝑘. (52)

The proof of this result can follow the proof of Lemma 13
in [8]. UsingTheorem 14 and Lemma 16, we can immediately
get the following corollary.

Corollary 17. Under the conditions of Theorem 14, A has
uniform loss stability (𝛼

1
, . . . , 𝛼

𝑘
) with respect to 𝑙, where for

all 𝑛
𝑎
∈ N,

𝛼
𝑗
(𝑛
1
, . . . , 𝑛

𝑘
) =

8𝜎
2
𝜅
2

𝜆𝑀
, 𝑗 = 1, . . . , 𝑘. (53)
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5.3. Consistency. We can also use the above results to show
consistency of kernel-based ranking algorithms. In partic-
ular, let 𝑒𝑟∗

𝑙
(F) denote the optimal expected 𝑙-error in an

RKHSF (for a given distribution):

𝑒𝑟
∗

𝑙
(F) = inf

𝑓∈F
𝑒𝑟
𝑙
(𝑓) . (54)

Then, for a bounded loss function 𝑙, we can show that
with an appropriate choice of the regularization parameter
𝜆, the expected 𝑙-error 𝑒𝑟

𝑙
(𝑓T) of the ranking function 𝑓T

learned by a kernel-based ranking algorithm thatminimizes a
regularized empirical 𝑙-error inF converges (in probability)
to this optimal value. We first show the following simple
lemma.

Lemma 18. Let 𝑓 : 𝑉 → R be a fixed ranking function,
and let 𝑙 be a bounded ranking loss function such that 0 ≤
𝑙(𝑓, V, V󸀠) ≤ 𝐵 for all 𝑓 : 𝑉 → R and V, V󸀠 ∈ 𝑉. Then, for
any 0 < 𝛿 < 1, with probability of at least 1 − 𝛿,

𝑒𝑟T,𝑙 (𝑓) ≤ 𝑒𝑟𝑙 (𝑓) +
8𝜎
2
𝜅
2

𝜆

√
ln (1/𝛿)
2𝑀

. (55)

Proof. Define 𝜙 as

𝜙 (T) = 𝑒𝑟T,𝑙 (𝑓) . (56)

Then, ET[𝜙(T)] = 𝑒𝑟𝑙(𝑓). We show that 𝜙 satisfies the condi-
tion of McDiarmid’s inequality. For each 𝑖

𝑎
∈ {1, . . . , 𝑛

𝑎
} and

V𝑎 ∈ 𝑉
𝑎
, we have

󵄨󵄨󵄨󵄨󵄨󵄨
𝜙 (T) − 𝜙 (T

V𝑖𝑎
𝑎
,V𝑎
)
󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨󵄨
𝑒𝑟T,𝑙 (𝑓) − 𝑒𝑟T(V

𝑖𝑎
𝑎
,V𝑎)
,𝑙
(𝑓)
󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

𝑀2

𝑘

∑

𝑏=𝑎+1

∑

𝑗:𝑡
𝑗
∈T
𝑏

󵄨󵄨󵄨󵄨󵄨
𝑙 (𝑓, V

𝑖
𝑎

𝑎
, 𝑡
𝑗
) − 𝑙 (𝑓, V

𝑎
, 𝑡
𝑗
)
󵄨󵄨󵄨󵄨󵄨

+
1

𝑀2

𝑎−1

∑

𝑚=1

∑

𝑖:𝑡
𝑖
∈T
𝑚

󵄨󵄨󵄨󵄨󵄨
𝑙 (𝑓, 𝑡

𝑖
, V
𝑖
𝑎

𝑎
) − 𝑙 (𝑓, 𝑡

𝑖
, V
𝑎
)
󵄨󵄨󵄨󵄨󵄨

≤
𝑘𝐵

𝑀
.

(57)

Therefore, applyingMcDiarmid’s inequality, we know that for
any 𝜀 > 0,

PT (𝑒𝑟T,𝑙 (𝑓) − 𝑒𝑟𝑙 (𝑓) ≤ 𝜀) ≤ exp{− 𝜀
2
𝜆
2
𝑀

32𝜎4𝜅4
} . (58)

The result follows by setting the right-hand side equal to 𝛿
and solving it for 𝜀.

We are now in a position to prove our main result
(Theorem 5).

Proof of Theorem 5. We use Corollary 17 and apply
Theorem 10 with 𝛿/2 to get that with probability of at
least 1 − 𝛿/2,

𝑒𝑟
𝑙
(𝑓T) ≤ 𝑒𝑟T,𝑙 (𝑓T) +

16𝜎
2
𝜅
2

𝜆𝑀

+ (
16𝜎

2
𝜅
2

𝜆𝑀
+
𝐵

𝑀
)√

𝑀 ln (2/𝛿)
2

.

(59)

Clearly,

𝑒𝑟T,𝑙 (𝑓T) ≤ 𝑒𝑟T,𝑙 (𝑓T) + 𝜆
󵄩󵄩󵄩󵄩𝑓T
󵄩󵄩󵄩󵄩

2

𝐾
≤ 𝑒𝑟T,𝑙 (𝑓

∗

𝑙
) + 𝜆

󵄩󵄩󵄩󵄩𝑓
∗

𝑙

󵄩󵄩󵄩󵄩

2

𝐾
.

(60)

Applying Lemma 18 to 𝑓∗
𝑙
with 𝛿/2, we, thus, get that with

probability of at least 1 − 𝛿/2:

𝑒𝑟T,𝑙 (𝑓T) ≤ 𝑒𝑟𝑙 (𝑓
∗

𝑙
) +
8𝜎
2
𝜅
2

𝜆

√
ln (2/𝛿)
2𝑀

+ 𝜆
󵄩󵄩󵄩󵄩𝑓
∗

𝑙

󵄩󵄩󵄩󵄩

2

𝐾
. (61)

One finishes the proof by combining the inequalities in (59)
and (61), each of which holds with probability at least 1−𝛿/2,
together with the condition in (7).

6. Conclusion

The main focus of this paper is on studying the stability
and generalization properties of 𝑘-partite ranking algorithm
used for ontology computation. This algorithm shows good
intuition about the vertex in ontology graph mapping to a
vertex in a line. The representation of vertices in ontology
graph does not take real-valued labels, and the samples are
given by preference graph (pairwise vertices in different
ranking rates). This setting is suitable for ontology. We
have derived generalization bounds for 𝑘-partite ranking
algorithms in this setting using the notion of algorithmic
stability. It is also shown that 𝑘-partite ranking algorithms
revealing good stability properties have good generalization
properties. Our results are applied to obtain generalization
bounds for kernel-based 𝑘-partite ranking algorithms that
perform regularization in a reproducing kernel Hilbert space.
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