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Structured population in evolutionary algorithms (EAs) is an important research track where an individual only interacts with its
neighboring individuals in the breeding step. The main rationale behind this is to provide a high level of diversity to overcome the
genetic drift. Cellular automata concepts have been embedded to the process of EA in order to provide a decentralized method
in order to preserve the population structure. Harmony search (HS) is a recent EA that considers the whole individuals in the
breeding step. In this paper, the cellular automata concepts are embedded into the HS algorithm to come up with a new version
called cellular harmony search (cHS). In cHS, the population is arranged as a two-dimensional toroidal grid, where each individual
in the grid is a cell and only interacts with its neighbors.Thememory consideration and population update are modified according
to cellular EA theory. The experimental results using benchmark functions show that embedding the cellular automata concepts
with HS processes directly affects the performance. Finally, a parameter sensitivity analysis of the cHS variation is analyzed and a
comparative evaluation shows the success of cHS.

1. Introduction

The optimization techniques have the utility of navigating
the search space using effective operators driven by control
parameters. The tricky point of the success of any opti-
mization method is its ability to strike a suitable balance
between exploration (diversification) and exploitation (inten-
sification) of the problem search space [1]. Exploration is the
optimization method capability of navigating a promising
region of the search space, if necessary, while exploitation
refers to the capability of fine-tuning the already-navigated
regions to converge into the local optima [1].

Harmony search (HS) algorithm is a recent evolutionary
algorithm (EA) proposed by Geem et al. [2] to imitate the
musical improvisation process. Due to its advantages over
other optimizationmethods, it stipulates fewer mathematical
requirements in the initial search [3]. It has a novel stochastic
derivative which reduces the number of iterations required

to converge towards local minima [4], in addition to being
simple, adaptable, general, and scalable [5]. Therefore, HS
algorithm has been intensively tailored for several optimiza-
tion problems such as timetabling [6, 7], nurse restoring
[8], space allocation [9], and many others [10–13]. However,
due to the complex nature of some optimization problems
and the avoidance of a premature convergence situation,
HS theories are modified [14]. Furthermore, the control
parameter adaptation for HS is also studied [5, 15–17].

In a procedural context, HS, which is an iterative
improvement algorithm, initiates with a population of ran-
dom individuals stored in harmony memory (HM). At each
iteration, a new individual is generated based on three oper-
ators: (i) memory consideration, which selects the variables
of a new individual from whole HM individuals; (ii) pitch
adjustment, which is responsible for local improvement, and
(iii) random consideration, used to provide random elements
for the new individual. The new individual is then evaluated



2 Journal of Applied Mathematics

Table 1: CEC’2005 functions.
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and replaces the worst individual in HM, if it is better. This
process is cycled until a desired condition ismet (see Table 3).

As other EAs, HS algorithm interacts with whole individ-
uals in theHMduring each breeding step.The update process
selects the worst individual from a single HM and replaces
it with a new one, if better. The decentralized methods used
in other structured EAs have shown that the performance of
EA is improved. Examples include cellular genetic algorithm
(cGA) [18], distributed EA (dEA) [19], cellular PSO [20], and
others [21]. The main idea of these structured methods is
to partition the population into several sets with common
features [22].

Cellular genetic algorithm (cGA), in particular, is a
decentralized method where the population is represented as
a toroidal grid of two-dimensions, as shown in Figure 3 [23,
24].The individuals are located in this toroidal in a predefined
topology and solely interact with their nearest neighbors in
the breeding step [22]. Note that all the neighborhoods have
the same size and identical shape. This concept embedded in
cGA provides useful advantages for the optimization domain
[23] and parallel implementations [25, 26] because it assists
in providing a high-level of diversity and yields a small
diffusion of solutions through the search. The cGA provides

a proper exploitation power inside each neighborhood of
an individual by the operators of GA [22]. Theoretically,
it has been shown that nonrandom mating keeps genetic
diversity at higher level, thus preventing the algorithms from
converging prematurely to the local optima [27].

The main objective of this paper is to embed the cel-
lular automata concepts in the HS algorithm optimization
framework, where the HM is arranged as a two-dimensional
toroidal grid. The population diffusion will be expectably
preserved, maintaining a high-level of diversity during the
search, thus avoiding genetic drift.The improvisation process
of HS algorithm is adjusted to interact with the neighbor-
hoods of specific individuals. The updating process of HM is
done within the neighborhoods of that individual.The results
show that the new decentralized version of HS (i.e., cHS)
algorithm improves the performance of HS using standard
benchmark functions.

The rest of the paper is organized as follows. The basics
of HS algorithm are described in Section 2. The proposed
cellular harmony search (cHS) is discussed in Section 3.
Results of the experiments are presented in Section 4. Finally,
the conclusion and promising future research directions are
provided in Section 5.
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Figure 1: The flowchart of the HS algorithm.

2. The Harmony Search Algorithm

The harmony search (HS) algorithm is a recent evolutionary
approach proposed by Geem et al. [2]. It is initiated with a set
of individuals stored in an augmentedmatrix called harmony
memory (HM). It is a centralized algorithm where at each
breeding step, it generates a new individual by interacting
with the whole individuals in HM. HS follows three rules
in the breeding step to generate a new individual: memory
consideration, random consideration, and pitch adjustment.
If the new individual is better than the worst individual in the
whole HM, the replacement process is triggered.This process
is repeated as many times as the HS is stagnated. The steps of
HS algorithm are flowcharted in Figure 1, where each step is
described below in more detail.

Step 1 (initialize parameters). The optimization problem is
initially represented as min{𝑓(x) | x ∈ X}, where 𝑓(x) is the
objective function and x = {𝑥

𝑖
| 𝑖 = 1, . . . , 𝑁} is the set of

decision variables. X = {X
𝑖
| 𝑖 = 1, . . . , 𝑁} is the possible

value range for each decision variable, whereX
𝑖
∈ [𝐿𝐵

𝑖
, 𝑈𝐵
𝑖
],

and 𝐿𝐵
𝑖
and 𝑈𝐵

𝑖
are the lower and upper bounds for the

decision variable 𝑥
𝑖
, respectively, and 𝑁 is the number of

decision variables. The parameters of the HS algorithm are
also predefined in the following step.

(a) The harmony memory consideration rate (HMCR),
used in the breeding step to determine whether the
value of a decision variable is to be selected from the
individuals stored in the harmony memory (HM).

(b) The harmony memory size (HMS) which determines
the number of individuals in HM.

(c) The pitch adjustment rate (PAR), which is used to
decide the adjustments of some decision variables
selected from memory.

(d) The distance bandwidth (BW) which determines
the distance of the adjustment that occurs to the
individual in the pitch adjustment operator.

(e) The number of improvisations (NI) which is similar
to the number of generations.

Step 2 (initialize the harmonymemory (HM)). The harmony
memory (HM) is a matrix of size 𝑁 × HMS which includes
sets of individuals determined by HMS (see (1)). In this step,
these individuals are randomly generated as follows: 𝑥𝑗

𝑖
=

𝐿𝐵
𝑖
+ (𝑈𝐵

𝑖
− 𝐿𝐵
𝑖
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all 𝑗 = 1, 2, . . . ,HMS, and𝑈(0, 1) generate a random number
between 0 and 1. Consider
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. (1)

Step 3 (improvise a new individual). The HS algorithm
generates a new individual, x󸀠 = (𝑥

󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
), using

three operators: (1) memory consideration, (2) random
consideration, and (3) pitch adjustment.

Memory Consideration. In memory consideration, the value
of the first decision variable in the new individual 𝑥󸀠

1
is ran-

domly selected from the historical values, {𝑥1
1
, 𝑥
2

1
, . . . , 𝑥

HMS
1

},
stored in whole HM individuals. Values of the other decision
variables, (𝑥

󸀠

2
, 𝑥
󸀠

3
, . . . , 𝑥

󸀠

𝑁
), are sequentially assigned in a

similar way with a probability of HMCR, where HMCR ∈

(0, 1). It is worth mentioning that this process interacts with
thewhole individuals inHMwhichmight lead to a premature
convergence situation due to the genetic drift.

Random Consideration. Decision variables that are not
assigned with values according to memory consideration
are randomly assigned according to their possible range by
random consideration with a probability of (1-HMCR) as
follows:

𝑥
󸀠

𝑖
←󳨀 {

𝑥
󸀠

𝑖
∈ {𝑥
1

𝑖
, 𝑥
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𝑖
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𝑖

} w.p. HMCR,
𝑥
󸀠

𝑖
∈ X
𝑖

w.p. 1 −HMCR.
(2)

Pitch Adjustment. Each decision variable 𝑥󸀠
𝑖
of a new individ-

ual, x󸀠 = (𝑥
󸀠

1
, 𝑥
󸀠

2
, 𝑥
󸀠

3
, . . . , 𝑥

󸀠

𝑁
), that has been assigned a value by

memory consideration is pitch adjusted with the probability
of PAR, where PAR ∈ (0, 1) as follows:

Pitch adjusting decision for 𝑥
󸀠

𝑖
←󳨀 {

Yes w.p. PAR,
No w.p. 1 − PAR.

(3)

In pitch adjustment, if the decision for 𝑥󸀠
𝑖
is Yes, the value of

𝑥
󸀠

𝑖
is modified to its neighboring value as follows: 𝑥󸀠

𝑖
= 𝑥
󸀠

𝑖
±

𝑈(0, 1) × BW.

Step 4 (update HM). If the new individual, x󸀠 =

(𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
), has better objective function value than that

of the worst individual xworst stored in HM (i.e., xworst = xHMS

in case HM is sorted), the worst individual will be replaced
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Figure 2: The flowchart of cHS.

by the new one. Note that the worst individual is selected
from the whole HM where the decentralized structure of the
population is not observed.

Step 5 (check the termination rule). The HS algorithm will
repeat Steps 3 and 4 of HS until a termination rule is met,
which is normally decided by the value of NI parameter.

3. Cellular Harmony Search (cHS) Algorithm

There has been much interest from researchers and scientists
from different fields exploiting the cellular automata (CA) in
physics, biology, social science, computer science, and so on.
The initial concepts of CA were developed by Neumann [28]
and have been an effective research tool to be incorporated
with a wide variety of disciplines.

The concepts of cellular automata (CA) are normally
concerned with individual perspective. The main idea from
CA is to provide a population of a particular structure
formulated as a toroidal grid. The cell in the toroidal grid
refers to an individual who communicates with his closest
neighboring individuals so that all the individuals have
exactly the same number of neighbors. This leads us to a
kind of locality known as isolation by distance. Normally, the
Manhattan distance is used to measure the distance between
any individual and his neighbors. Note that the neighboring
individuals have identical shapes and the same size [22].

There exist two-different kinds of cellular models based
on how the breeding cycle is performed to the individuals.
To put it differently, if the cycle is performed to the whole
individuals at the same time, the cellular model is said to be
synchronous, where the individuals of the next generation are
simultaneously build. On the other hand, if the individuals
of the population are sequentially updated with a particular
order policy, an asynchronous cellular model is stated. For
more discussion about the theory of cellular automata,
relevant papers can be seen in [22, 29].

Figure 3: The population arrangement based on cellular structure
where each cell is an individual in HM.

Cellular harmony search (cHS) algorithm can be consid-
ered as a new decentralized variation of HS which hinges on
the structured HM. The individuals in the HM are arranged
in the form of two-dimensional toroidal grid. This is meant
to keep a high level of diversity during the breeding step and
thus increases the chance to converge into global minima.
This can be achieved by avoiding the genetic drift and
providing a more suitable population diffusion during the
search.

Some steps of cHS algorithm to the original version of
HS algorithm presented in Section 2 have been adjusted.
The adjustments are flowcharted in Figure 2. The breeding
step of cHS solely interacts with the neighboring individuals
of a randomly selected individual using “cellular memory
consideration” operators. The update of HM step is adjusted
to replace the worst individual amongst the neighboring
individuals with a new individual, but not amongst the whole
HM. Figure 3 shows the population on cellular structure
(toroidal grid population), which inspires the concept of
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Figure 4: The individuals of HMmapped into the toroidal mesh Y.

small neighborhood regions in the cellular automata. Par-
ticularly, the overlap of the neighborhood provides implicit
technique migration into population. Therefore, the best
solutions are diffused smoothly in the whole population,
where the diversity of the cellular harmony search is pre-
served throughout the search.The cellularHSmodel includes
several components.

(1) Cell: the selected random individual in the population
(the number of individual is HMS).

(2) Cell space: the set of the whole individuals in HM.

(3) Neighborhood: the set of potential mates of any
individual.

(4) Neighborhood shapes: the way of selecting the neigh-
borhoods of the cell as seen in Figure 5.

(5) Discrete time limit: the number of generations in
HS algorithm which is normally determined by NI
parameter.

The detailed steps of cHS are discussed in the steps below.

Step 1 (initialize cHS parameters and optimization problem).
It is clear that the successful search of any metaheuristic
method is based on skillful parameter setting. The param-
eters have different effects on optimization solutions. The
parameters of cHS are harmony memory size (HMS), har-
mony memory consideration rate (HMCR), pitch adjusting
rate (PAR), number of improvisation (NI), and the size of
neighborhood (NH) determined by cellular structure (see
Figure 5), where if NH = L9, this means the neighbors
structure is length with 8 neighbors.

Step 2 (initialize the harmony memory (HM)). This step is
the same as Step 2 in the original version of HS. Note that
the individuals of the HM are arranged as a two-dimensional
toroidal grid as shown in Figure 4.

Step 3 (initialization of neighborhoodmatrix (NM)). NM is a
binarymatrix of size HMS×HMS (see (4)).The binary values
are assigned to each element NM

𝑖,𝑗
based on NH parameter.

This matrix is used during the breeding step to determine the

neighboring individuals of any randomly selected individual.
The NMmatrix is filled by binary value as in (5). Consider

NM =
[

[

[

NM
1,1

. . . . . . NM
1,HMS

... d d
...

NMHMS,1 . . . . . . NMHMS,HMS

]

]

]

, (4)

NM
𝑖,𝑗

←󳨀 {

1 x𝑗 ∈ N (x𝑖) ∀𝑖 ∧ 𝑗 ∈ {1, . . . ,HMS} .
0 otherwise.

(5)

The N(xi) is a set of all neighboring individuals of the
individual x𝑖 arranged in two-dimensional toroidal mesh.
This set is determined based on a neighborhood shape as seen
in Figure 5.

Figure 4 shows how the HM individuals are mapped to
toroidal grid. Note that the element 𝑌

1,1
reflects the index of

the individual 1 in HM, while the 𝑌
𝐾,𝐾

reflects the individual
index HMS in HM. The HMS value is the square value of K
(i.e., 𝐾2 = HMS).

To map the element (𝑌
𝑖,𝑗
) in toroidal grid Y and the

individual index 𝑟 in HM, the following will be used:

𝑟 = ((𝑖 − 1) × 𝐾 + 𝑗) . (6)

To map the index of the individual 𝑟 in HM to the element
(𝑌
𝑖,𝑗
) in the matrix NM, the following will be used:

𝑖 = int((𝑟 − 1)

𝐾

) + 1, (7)

𝑗 = ((𝑟 − 1) mod 𝐾) + 1. (8)

This mapping mechanism between the individual index of
HM and the elements in Y is very useful to determine
the neighboring of any individual in HM. As shown in
Figure 5, there are several neighborhood shapes to deter-
mine the neighbors of any individual. For example, the L5
neighborhood shape takes the nearest neighbors of a given
cell axial direction. Therefore, to determine the individual
indexes in HM that belong to the neighbors of the individual
index 𝑟 using L5, the 𝑖 and 𝑗 should be calculated using
(7) and (8). And the set of neighbors of individual 𝑟 called
𝜗 = {𝑌

𝑖−1,𝑗
, 𝑌
𝑖+1,𝑗

, 𝑌
𝑖,𝑗−1

, 𝑌
𝑖,𝑗+1

}, then (8) is used to map the
elements inY to the corresponding individual indexes inHM.
The same step is used if different neighborhood shapes (i.e.,
L9, C9,. . .) are used to determine the neighboring individuals
of x𝑟.

As can be noted, the individuals in the set 𝜗 will be
assigned by 1 in NM for the individual x𝑟 while others will
be assigned by 0.

Step 4 (select random individual from HM). The selection
of a random individual x𝑟, 𝑟 ∈ {1, . . . ,HMS}, is done to
determine the neighboring individuals taken from thematrix
NM (i.e., 𝜉

𝑟
= {x1, x2, . . . , x𝑚}), where𝑚 is the number of the

neighboring individuals; that is,𝑚 ≤ HMS. The neighboring
individuals interact together in order to generate the new
individual in the next step.
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Figure 5: Neighboring shapes [22].
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Memory consideration
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Figure 6: The processes fluency of cHS algorithm.

Step 5 (generate a new individual). In this step, a new
individual, x = (𝑥́

1
, 𝑥́
2
, . . . , 𝑥́

𝑁
), is generated based on

the three operators: (1) cellular memory consideration, (2)
pitch adjustment, and (3) random consideration. The whole
process is drawn in Figure 6.

The pitch adjustment and random consideration opera-
tors in cHS algorithm are the same as those in the original

version ofHS algorithm.However, thememory consideration
ismodified to be inline with the concepts of cellular automata
as follows.

CellularMemory Consideration. As in cellularGA, the cellular
memory consideration solely interacts with the close individ-
uals of x𝑟 taken from the set of 𝜉

𝑟
. The other individuals are

not used in the breeding step. The value of the first decision
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Figure 7: The benchmark functions landscape where the value of𝑁 = 2 (2 dimensions).

variable 𝑥́
1
is randomly selected from the historical values,

{𝑥
1

1
, 𝑥
2

1
, . . . , 𝑥

𝑚

1
}, stored individuals in the set 𝜉

𝑟
. The other

decision variables, (𝑥󸀠
2
, 𝑥
󸀠

3
, . . . , 𝑥

󸀠

𝑁
), are sequentially assigned

in a similar way with a probability of HMCR, whereHMCR ∈

(0, 1).
It is worth mentioning that cellular memory considera-

tion is able to control the diffusion between the individuals
in HM, and thus, it is able to preserve the cHS diversity as
long as the search process is iterated. By this strategy, the

population is structured and it is possible to improve the
numerical behavior of the cHS algorithm.

Step 6 (update the harmony memory). This step is modified
in cHS algorithm. The worst individual from the set of
neighbors 𝜉

𝑟
, that is, (xworst | xworst ∈ 𝜉

𝑟
∧ 𝑓(xworst) ≥ 𝑓(x𝑖),

∀𝑖 ∈ {1, . . . , 𝑚}), is replaced by the new individual 𝑥́, if better.
Note that the replacement process is done taking into account
the neighboring individuals in the set 𝜉

𝑟
only.
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Figure 8: The box plots for showing the effect varying HMCR values using the ten global optimization functions.

Step 7 (check stopping criterion). In this step, the cHS will
stop if the maximum number of the iteration (i.e., NI) is
reached; otherwise the algorithm repeats Steps 4 to 6. The
pseudocode of cHS is demonstrated in Algorithm 1.

4. Experimental and Comparative Evaluation

In this section, cHS algorithm is evaluated using benchmark
functions circulated in the literature used to evaluate different
variations of HS algorithm. The comparative evaluation is
demonstrated while the sensitivity analysis of the control
parameters of the proposed method is carried out.

4.1. Comparative Evaluation. In this section, a set of test
functions designed for the special session on real-parameter
optimization organized in the 2005 IEEE Congress on Evo-
lutionary Computation (CEC 2005) [30], is used. The CEC
2005 comprises 25 test functions including 5 unimodals and
20 multimodals functions, as shown in Table 1. Note that
a full discussion about these functions can be taken from
Sunganthan et al. [30]. The CEC 2005 provides a suitable

number of comparative methods in which the proposed
method can be evaluated, as abbreviated in Table 2.

The experiments done followed the conditions of CEC
2005 [30], where the 25 repeated runs have been performed
for each test function. The 25 runs have been summarized
in terms of average of the error (AE) of the best individual
(i.e., AE = |𝑓(x∗) − 𝑓(xbest)|). Note that x∗ is a given optimal
solution while the xbest is the average best solution obtained
in 25 runs. The dimension 𝑁 = 10 and the cHS is iterated
100,000 evaluations of the fitness function.

Notably, most of the winner comparative methods are
hybrid versions of a particular EA,where their results are very
efficient to the tested functions. It is appeared that the AE of
HS and cHS are very close or sometimes better than those
achieved by the comparative methods. In particular, the HS
algorithm is able to achieve very powerful results for most
test functions and excels some of the best results reported by
the comparative methods. For example, HS has achieved the
smallest AE for 𝑓

1
, 𝑓
2
, 𝑓
9
, 𝑓
14
, and 𝑓

23
.

It is noted that the AE obtained by cHS is not the best
in most cases. This is because the main idea of proposing
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Figure 9: The box plots for showing the effect varying HMS values using the ten global optimization functions.

Table 2: Key to CEC’2005 comparative methods.

Key Method name Reference

BLXGL50 Hybrid real-coded genetic algorithms with female and male
differentiation

[31]

BLX-MA Adaptive local search parameters for real-coded memetic algorithms [32]

CoEVO Real-parameter optimization using the mutation step coevolution [33]

DE Real-parameter optimization with differential evolution [34]

DMS-L-PSO Dynamic multiswarm particle swarm optimizer with local search [35]

EDA Experimental results for the special session on real-parameter
optimization at CEC’2005 : a simple, continuous EDA

[36]

K-PCX A population-based, steady-state procedure for real-parameter
optimization

[37]

G-CMA-ES A restart CMA evolution strategy with increasing population size [38]

L-CMA-ES Performance evaluation of an advanced local search evolutionary
algorithm

[39]

L-SaDE Self-adaptive differential evolution algorithm [40]

SPC-PNX Real-parameter optimization performance study on the CEC-2005
benchmark with SPC-PNX [41]
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Figure 10: The box plots for showing the effect varying PAR values using the ten global optimization functions.

the cHS is to ensure a high-level of diversity, and thus, the cHS
required a higher number of evaluations to hit better results.
However, the results obtained by cHS are very close to the
winner results.

4.2. Sensitivity Analysis of cHS Parameters. All the experi-
ments are run using a computer with 2.66 Intel Core 2 Quad
with 4GB of RAM. The operating system used is Microsoft
windows Vista Enterprise Service Pack 1. The source code is
implemented using MATLAB Version 7.6.0.324(R2008a).

The common parameters among all algorithms used in
the experiments are set based on empirical guidelines [2]. For
the sake of studying the effect of different parameter settings,
in general, the parameters setting used for evaluating the cHS
method are as follows: HMS = 25, HMCR = 0.98, PAR = 0.3,
𝑁 = 30, NH = 9, and NI = 5 × 10

4. The neighborhood shape
used is C9, presented in Figure 5.

All functions are implemented in 30 dimensions (30D).
For the scalability study in Section 4.2.6, the functions are

implemented in 10 dimensions (10D), 50 dimensions (50D),
and 100 dimensions (100D).The stopping criterion used is the
maximum number of improvisation (NI).

All the results in this section are presented in Tables 4 to
8, demonstrating the mean and standard deviation for thirty
independent runs. The best solution has been highlighted in
bold font. A comparative analysis between cHS algorithmand
the original variant of HS for the common parameters is also
conducted.

4.2.1. Benchmark Functions. Theglobal minimization bench-
mark functions are used to study the sensitivity analysis of
the parameters of the proposed method (cHS) against the
original version of HS algorithm. Five functions are defined
by Whitley et al. [42] and the other five were described by
Yao et al. [43]. These functions provide a balance between
unimodal and multimodal functions. These functions are
commonly used to evaluate the state-of-the-art variations of
harmony search algorithms [5, 44, 45].
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Figure 11: The box plots for showing the effect varying NH values using the ten global optimization functions.

Most of the benchmark functions have standard solution
space range of the objective function. Otherwise, unsymmet-
rical initialization ranges are used for these functions whose
global optima are at the center of the solution space. These
benchmark functions are as follows.

(1) Sphere function, defined as

𝑓
1
(𝑥) =

𝑁𝑑

∑

𝑖=1

𝑥
2

𝑖
, (9)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−100 ≤ 𝑥

𝑖
≤ 100) (Figure 7(a)).

(2) Schwefel’s problem 2.22, defined as

𝑓
2
(𝑥) =

𝑁𝑑

∑

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
+

𝑁𝑑

∏

𝑖=1

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
, (10)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−10 ≤ 𝑥

𝑖
≤ 10) (Figure 7(b)).

(3) Step function, defined as

𝑓
3
(𝑥) =

𝑁𝑑

∑

𝑖=1

(⌊𝑥
𝑖
+ 0.5⌋)

2

, (11)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−100 ≤ 𝑥

𝑖
≤ 100) (Figure 7(c)).

(4) Rosenbrock function, defined as

𝑓
4
(𝑥) =

𝑁𝑑−1

∑

𝑖=1

(100 (𝑥
𝑖+1

− 𝑥
2

𝑖
)

2

+ (𝑥
𝑖
− 1)
2

) , (12)

where global optimum 𝑥
∗

= (1, 1, . . . , 1) and 𝑓(𝑥
∗

) = 0

(search range −100 ≤ 𝑥
𝑖
≤ 100) (Figure 7(d)).

(5) Rotated hyper-ellipsoid function, defined as

𝑓
5
(𝑥) =

𝑁𝑑

∑

𝑖=1

(

𝑖

∑

𝑗=1

𝑥
𝑗
)

2

, (13)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−100 ≤ 𝑥

𝑖
≤ 100) (Figure 7(e)).
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Set HMCR, PAR, NI, HMS, bw.
𝑥
𝑗

𝑖
= 𝐿𝐵
𝑖
+ 𝑈(0, 1) × (𝑈𝐵

𝑖
− 𝐿𝐵
𝑖
), ∀𝑖 = 1, 2, . . . , 𝑁 , ∀𝑗 = 1, 2, . . . ,HMS, 𝑈(0, 1);

Calculate (𝑓(𝑥́
𝑖
)), ∀𝑗 = 1, 2, . . . ,HMS;

Generate(NM) {generate the neighborhood matrix}
While !𝑆𝑡𝑜𝑝𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛() do

select random individual x𝑟
𝑥́ = ⌀;
for 𝑖 = 1, . . . , 𝑁 do

if 𝑈(0, 1) ≤ HMS then
𝑥́
𝑖

∈ 𝜉
𝑟
; {Memory Consideration}

if 𝑈(0, 1) ≤ PAR then
𝑥́
𝑖

= 𝑥́
𝑖

+ 𝑈(−1, 1) × 𝑏𝑤; {Pitch Adjustment}
end if

else
𝑥́
𝑖

= 𝐿𝐵
𝑖
+ 𝑈(0, 1) × (𝑈𝐵

𝑖
− 𝐿𝐵
𝑖
); {Random Consideration}

end if
end for
find(𝑥worst) where 𝑥worst

∈ 𝜉
𝑟

if 𝑓(𝑥́) < 𝑓(𝑥
worst

) then
include 𝑥́ toHM;
exclude 𝑥́

worst fromHM;
end if

end while

Algorithm 1: The pseudocode of cellular harmony search (cHS).

(6) Generalized Schwefel’s problem 2.26, defined as

𝑓
6
(𝑥) = −

𝑁𝑑

∑

𝑖=1

(𝑥
𝑖
sin√(

󵄨
󵄨
󵄨
󵄨
𝑥
𝑖

󵄨
󵄨
󵄨
󵄨
)) , (14)

where global optimum 𝑥
∗

= (420.9687, 420.9687, . . . , . . . , . . .,
420.9687) and 𝑓(𝑥

∗

) = −12569.5 (search range −500 ≤ 𝑥
𝑖
≤

500) (Figure 7(f)).
(7) Rastrigin function, defined as

𝑓
7
(𝑥) =

𝑁𝑑

∑

𝑖=1

(𝑥
2

𝑖
− 10 cos (2𝜋𝑥

𝑖
) + 10) , (15)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−5.12 ≤ 𝑥

𝑖
≤ 5.12) (Figure 7(g)).

(8) Ackley’s function, defined as

𝑓
8
(𝑥) = −20 exp−0.2√(

1

30

𝑁𝑑

∑

𝑖=1

𝑥
2

𝑖
)

− exp(

1

30

𝑁𝑑

∑

𝑖=1

cos (2𝜋𝑥
𝑖
)) + 20 + 𝑒,

(16)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−32 ≤ 𝑥

𝑖
≤ 32) (Figure 7(h)).

(9) Griewank function, defined as

𝑓
9
(𝑥) =

1

4000

𝑁𝑑

∑

𝑖=1

𝑥
2

𝑖
−

𝑁𝑑

∏

𝑖=1

cos(
𝑥
𝑖

√𝑖

) + 1, (17)

where global optimum 𝑥
∗

= 0 and 𝑓(𝑥
∗

) = 0 (search range
−600 ≤ 𝑥

𝑖
≤ 600) (Figure 7(i)).

(10) Six-Hump Camel-Back function, defined as

𝑓
10

(𝑥) = 4𝑥
2

1
− 2.1𝑥

4

1
+

1

3

𝑥
6

1
+ 𝑥
1
𝑥
2
− 4𝑥
2

2
+ 4𝑥
4

2
, (18)

where global optimum 𝑥 = (−0.08983, 0.7126), (−0.08983,
0.7126) and 𝑓(𝑥

∗

) = 1.0316285 (search range −5 ≤ 𝑥
𝑖
≤ 5)

(Figure 7(j)).
Figure 7 depicts the corresponding landscape of the

search space of each function [46].

4.2.2. The Effect of HMCR. Table 4 summarizes the effect of
HMCR on the performance of cHS and the original version
of HS using four values of HMCR (i.e., 0.7, 0.9, 0.94, and
0.98).The best solution obtained at each corresponding value
is highlighted in bold font. Figure 8 is the box plot visualizing
the effect of various values of HMCR on the behavior of cHS
algorithm using the ten global minimization functions.

The results show that increasing the HMCR value
improves the performance of the cHS for all functions, except
six-hump where the opposite function is true. Where a
small value is used, HMCR increases the diversity and hence
prevents the cHS from convergence (i.e., it results in random
search). Thus, it is generally better to use a large value for the
HMCR (i.e., ≤0.98).

The high value of HMCRmeans high probability of using
the harmony memory that leads to less exploration of search
space. Using a probability of HMCR close to 1 (high value)
might lead the algorithm to fall into the local minima. Using
less probability of HMCR allows more randomly generated
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Table 4: The effect of varying the HMCR parameter on HS and cHS for ten functions (𝑓
1
–𝑓
10
).

Function Alg. 0.7 0.9 0.94 0.98

Sphere
cHS 5.514𝐸 + 03 3.383𝐸 + 01 2.240𝐸 + 00 1.323E − 04

(8.887𝐸 + 02) (1.164𝐸 + 01) (9.216𝐸 − 01) (3.285E − 05)

HS 3.750𝐸 + 03 1.663𝐸 + 01 1.152𝐸 + 00 6.086𝐸 − 03

(6.455𝐸 + 02) (4.716𝐸 + 00) (7.069𝐸 − 01) (1.406𝐸 − 03)

Schwefel’s 2.22
cHS 1.939𝐸 + 01 2.584𝐸 − 01 5.397𝐸 − 02 2.738E − 02

(1.966𝐸 + 00) (1.006𝐸 − 01) (8.303𝐸 − 03) (2.542E − 03)

HS 1.581𝐸 + 01 5.359𝐸 + 00 4.081𝐸 − 01 2.20087𝐸 − 01

(2.380𝐸 + 00) (1.036𝐸 + 00) (4.914𝐸 − 01) (2.49573𝐸 − 02)

Step
cHS 5.700𝐸 + 03 3.233𝐸 + 01 2.437𝐸 + 00 1.288E − 04

(8.707𝐸 + 02) (1.085𝐸 + 01) (1.132𝐸 + 00) (3.421E − 05)

HS 3.949𝐸 + 03 1.605𝐸 + 01 8.041𝐸 + 00 6.510𝐸 − 03

(6.671𝐸 + 02) (4.439𝐸 + 00) (5.844𝐸 − 01) (1.019𝐸 − 03)

Rosenbrock
cHS 3.578𝐸 + 06 1.276𝐸 + 03 1.944𝐸 + 02 9.892E + 01

(9.728𝐸 + 05) (9.524𝐸 + 02) (1.177𝐸 + 02) (8.330E + 01)

HS 2.143𝐸 + 06 5.444𝐸 + 02 1.449𝐸 + 02 1.489𝐸 + 02

(5.423𝐸 + 05) (2.240𝐸 + 02) (7.499𝐸 + 01) (1.22097𝐸 + 02)

Rotated hyper
cHS 7.206𝐸 + 05 5.588𝐸 + 03 4.250𝐸 + 01 8.421E − 01

(1.122𝐸 + 05) (2.071𝐸 + 03) (2.364𝐸 + 02) (1.381E + 00)

HS 5.155𝐸 + 05 2.972𝐸 + 03 1.373𝐸 + 02 2.647𝐸 + 00

(7.586𝐸 + 04) (9.061𝐸 + 02) (1.137𝐸 + 02) (1.531𝐸 + 00)

Schwefel’s 2.26
cHS −1.075𝐸 + 04 −1.250𝐸 + 04 −1.256𝐸 + 04 −1.257E + 04

(2.536𝐸 + 02) (2.208𝐸 + 01) (3.982𝐸 + 00) (2.371𝐸 + 00)

HS −1.123𝐸 + 04 −1.253𝐸 + 04 −1.256𝐸 + 04 −1.257E + 04
(2.643𝐸 + 02) (1.389𝐸 + 01) (2.465𝐸 + 00) (2.131E + 00)

Rastrigin
cHS 8.581𝐸 + 01 4.029𝐸 + 00 7.068𝐸 − 02 2.380𝐸 − 02

(8.587𝐸 + 00) (1.780𝐸 + 00) (9.444𝐸 − 02) (2.85250𝐸 − 02)

HS 6.612𝐸 + 01 1.548𝐸 + 00 1.289𝐸 − 01 1.582E − 02
(8.693𝐸 + 00) (1.198𝐸 + 00) (3.037𝐸 − 01) (7.023E − 03)

Ackley
cHS 1.295𝐸 + 01 2.522𝐸 + 00 1.891𝐸 − 01 3.890E − 02

(6.804𝐸 − 01) (3.160𝐸 − 01) (2.418𝐸 − 01) (1.686E − 01)

HS 1.209𝐸 + 01 1.830𝐸 + 00 6.493𝐸 − 01 1.060𝐸 − 01

(5.334𝐸 − 01) (3.862𝐸 − 01) (1.282𝐸 − 01) (5.763𝐸 − 02)

Griewank
cHS 5.234𝐸 + 01 1.298𝐸 + 00 1.024𝐸 + 00 7.870𝐸 − 01

(8.732𝐸 + 00) (1.066𝐸 − 01) (3.995𝐸 − 02) (2.086𝐸 − 01)

HS 3.895𝐸 + 01 1.166𝐸 + 00 1.013𝐸 + 00 6.566E − 01
(6.677𝐸 + 00) (5.312𝐸 − 02) (1.920𝐸 − 02) (2.352E − 01)

Six-Hump
cHS −1.032E + 00 −1.032E + 00 −1.032E + 00 −1.032E + 00

(2.882E − 10) (2.998𝐸 − 11) (9.912𝐸 − 11) (4.150𝐸 − 11)

HS −1.032E + 00 −1.032E + 00 −1.032E + 00 −1.032E + 00
(1.291𝐸 − 10) (5.571𝐸 − 11) (3.175𝐸 − 11) (2.922𝐸 − 09)

solutions. Therefore, the diversity increases in a way that
prevents the convergence.The results reveal that cHS and HS
have identical sensitivity to the different values of HMCR for
all functions, and in 0.98 probabilities to use HMCR they get
the best results for the majority of optimization functions.
Furthermore, the results produced by cHS are better than
those produced by HS in almost all tested functions.

4.2.3. The Effect of HMS. Table 5 summarizes the effect of
HMS on the performance of cHS and basic HS using four

values of HMS (i.e., 16, 25, 36, and 100). The best solution
obtained at each corresponding value is highlighted in bold
font. Figure 9 is the box plot visualizing the effect of various
values of HMS on the behavior of cHS algorithm using the
ten global minimization functions.

It is revealed that both cHS and the basic HS are not
sensitive to the HMS. For (𝑓

4
, 𝑓
6
, 𝑓
10
), cHS obtained the

best results when the value of HMS is large (see Figure 9).
Apparently, with different values of HMS, cHS performance
is better for most of the functions because the overlap of
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Table 5: The effect of varying the HMS parameter on HS and cHS for ten functions (𝑓
1
–𝑓
10
).

Function Alg. 16 25 36 100

Sphere
cHS 1.188𝐸 − 04 1.323𝐸 − 04 8.506𝐸 − 04 6.950𝐸 − 01

(2.204𝐸 − 05) (3.285𝐸 − 05) (2.744𝐸 − 03 (5.385𝐸 − 01)

HS 7.961E − 05 6.086𝐸 − 03 3.934𝐸 − 03 7.274𝐸 − 01

(1.511E − 05) (1.40654𝐸 − 03) (1.721𝐸 − 02) (5.510𝐸 − 01)

Schwefel’s 2.22
cHS 3.011𝐸 − 02 2.738𝐸 − 02 2.869𝐸 − 02 3.850𝐸 − 01

(3.522𝐸 − 03) (2.542𝐸 − 03) (3.043𝐸 − 03) (1.391𝐸 − 01)

HS 2.208E − 02 2.200𝐸 − 01 2.447𝐸 − 02 3.210𝐸 − 02

(2.658E − 03) (2.495𝐸 − 02) (5.482𝐸 − 03) (3.840𝐸 − 03)

Step
cHS 1.225𝐸 − 04 1.288𝐸 − 04 1.637𝐸 − 02 7.698𝐸 − 01

(2.373𝐸 − 05) (3.421𝐸 − 05) (6.139𝐸 − 02) (5.098𝐸 − 01)

HS 7.988E − 05 6.510𝐸 − 03 3.161𝐸 − 03 8.057𝐸 − 01

(1.123E − 05) (1.019𝐸 − 03) (9.481𝐸 − 03) (4.692𝐸 − 01)

Rosenbrock
cHS 1.106𝐸 + 02 1.328𝐸 + 02 1.025𝐸 + 02 2.738𝐸 + 02

(1.449𝐸 + 02) (2.425𝐸 + 02) (8.530𝐸 + 01) (4.751𝐸 + 02)

HS 8.418𝐸 + 02 9.892E + 01 1.148𝐸 + 02 2.573𝐸 + 02

(7.497𝐸 + 02) (1.220E + 02) (1.278𝐸 + 02) (4.789𝐸 + 02)

Rotated hyper
cHS 2.604E − 02 8.421𝐸 − 01 2.883𝐸 + 00 1.649295𝐸 + 01

(3.042E − 02) (1.381𝐸 + 00) (2.572𝐸 + 00) (2.234042𝐸 + 01)

HS 1.661𝐸 − 01 2.647𝐸 + 00 1.808𝐸 + 00 1.259𝐸 + 02

(1.835𝐸 − 01) (1.531𝐸 + 00) (4.377𝐸 + 00) (1.060𝐸 + 02)

Schwefel’s 2.26
cHS −1.075𝐸 + 04 −1.256𝐸 + 04 −1.256𝐸 + 04 −1.257E + 04

(1.163𝐸 + 00) (1.190𝐸 + 00) (2.122𝐸 + 00) (3.050𝐸 + 00)

HS −1.257E + 04 −1.257E + 04 −1.256𝐸 + 04 −1.256𝐸 + 04

(1.209E + 00) (1.300𝐸 + 00) (2.125𝐸 + 00) (2.263𝐸 + 00)

Rastrigin
cHS 2.159E − 02 2.380𝐸 − 02 3.625𝐸 − 02 1.010𝐸 − 01

(7.348E − 03) (2.852𝐸 − 02) (7.533𝐸 − 02) (2.517𝐸 − 01)

HS 3.268𝐸 − 02 1.418𝐸 + 01 5.107𝐸 − 02 2.503𝐸 − 02

(1.956𝐸 − 03) (2.376𝐸 + 00) (1.816𝐸 − 01) (8.612𝐸 − 03)

Ackley
cHS 3.495E − 03 3.890𝐸 − 02 3.369𝐸 − 02 2.636𝐸 − 02

(2.452E − 03) (1.686𝐸 − 01) (1.006𝐸 − 01) (4.388𝐸 − 02)

HS 6.760𝐸 − 03 1.060𝐸 − 01 2.313𝐸 − 02 8.757𝐸 − 02

(8.735𝐸 − 04) (5.763𝐸 − 02) (8.375𝐸 − 02) (1.395𝐸 − 01)

Griewank
cHS 6.481𝐸 − 01 7.437𝐸 − 01 8.571𝐸 − 01 9.878𝐸 − 01

(2.614𝐸 − 01) (2.086𝐸 − 01) (1.486𝐸 − 01) (5.487𝐸 − 02)

HS 5.010E − 01 6.566𝐸 − 01 8.020𝐸 − 01 9.907𝐸 − 01

(2.409E − 01) (2.352𝐸 − 01) (1.658𝐸 − 01) (5.565𝐸 − 02)

Six-Hump
cHS −1.031𝐸 + 00 −1.031𝐸 + 00 −1.031𝐸 + 00 −1.032E + 00

(5.325𝐸 − 11) (4.15028𝐸 − 11) (6.052𝐸 − 11) (2.001E − 11)

HS −1.031𝐸 + 00 −1.031𝐸 + 00 −1.031𝐸 + 00 −1.030𝐸 + 00

(1.897𝐸 − 11) (2.922𝐸 − 09) (4.793𝐸 − 10) (2.235𝐸 − 10)

the neighborhoods provides an implicitmechanismofmigra-
tion to the cHS. Since the best solutions spread smoothly
through the whole population, the cHS diversity in the
structured population is preserved longer than in the classical
version of HS algorithm.

HM is analogous to the short-termmemory of amusician
that is known to be small. A plausible interpretation may rely
on the high number of similar harmonies within the HM
when the HMS is large that leads to shortages of diversity
and, hence, lead to falling into local minima. Therefore, cHS

is likely to be capable of maintaining the diversity than HS
with the cellular structure.

4.2.4. The Effect of PAR. Table 6 summarizes the effect of
PAR on the performance of cHS and basic HS using four
values of PAR (0.1, 0.3, 0.7, and 0.9).The best solution at each
corresponding value is highlighted in bold font. Figure 10
is the box plot visualizing the effect of various values of
PAR on the behavior of cHS algorithm using the ten global
minimization functions.
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Table 6: The effect of varying the PAR parameter on HS and cHS for ten functions (𝑓
1
–𝑓
10
).

Function Alg. 0.1 0.3 0.7 0.9

Sphere
cHS 1.343𝐸 − 02 1.323E − 04 3.136𝐸 − 04 4.713𝐸 − 04

(3.391𝐸 − 02) (3.285E − 05) (4.066𝐸 − 05) (5.207𝐸 − 05)

HS 2.012𝐸 − 02 6.086𝐸 − 03 3.827𝐸 − 04 5.497𝐸 − 04

(6.098𝐸 − 02) (1.406𝐸 − 03) (5.318𝐸 − 05) (7.251𝐸 − 05)

Schwefel’s 2.22
cHS 4.965𝐸 − 03 2.738𝐸 − 02 5.784𝐸 − 02 2.827𝐸 − 02

(7.512𝐸 − 04) (2.542𝐸 − 03) (5.463𝐸 − 03) (3.017𝐸 − 03)

HS 3.518E − 03 2.200𝐸 − 01 7.583𝐸 − 02 9.548𝐸 − 02

(5.837E − 04) (2.495𝐸 − 02) (5.482𝐸 − 03) (4.834𝐸 − 03)

Step
cHS 5.526𝐸 − 02 1.288E − 04 2.929𝐸 − 04 4.606𝐸 − 04

(1.177𝐸 − 01) (3.421E − 05) (3.776𝐸 − 05) (5.136268𝐸 − 05)

HS 1.682𝐸 − 02 6.510𝐸 − 03 3.753𝐸 − 04 5.291𝐸 − 04

(3.939𝐸 − 02) (1.019𝐸 − 03) (5.417𝐸 − 05) (4.401𝐸 − 05)

Rosenbrock
cHS 2.065𝐸 + 02 9.892𝐸 + 01 3.114𝐸 + 02 1.030𝐸 + 02

(4.747𝐸 + 02) (8.330𝐸 + 01) (6.121𝐸 + 02) (6.798𝐸 + 01)

HS 1.813𝐸 + 02 1.489𝐸 + 02 1.312𝐸 + 02 8.301E + 01
(3.929𝐸 + 02) (1.220𝐸 + 02) (2.515𝐸 + 02) (5.748E + 01)

Rotated hyper
cHS 1.038E − 02 8.421𝐸 − 01 1.323𝐸 − 01 1.970𝐸 − 01

(1.603E − 02) (1.381𝐸 + 00) (5.359𝐸 − 02) (5.845𝐸 − 02)

HS 5.404𝐸 + 00 2.647𝐸 + 00 4.726𝐸 − 01 4.660𝐸 − 01

(1.507𝐸 + 01) (1.531𝐸 + 00) (3.248𝐸 − 01) (3.479𝐸 − 01)

Schwefel’s 2.26
cHS −1.257E + 04 −1.256𝐸 + 04 −1.256𝐸 + 04 −1.257E + 04

(2.536𝐸 + 02) (1.190𝐸 + 00) (3.982𝐸 + 00) (2.371𝐸 + 00)

HS −1.257E + 04 −1.256𝐸 + 04 −1.257E + 04 −1.257E + 04
(2.092𝐸 + 00) (1.393𝐸 + 00) (1.082E + 00) (1.151𝐸 + 00)

Rastrigin
cHS 9.355E − 04 2.380𝐸 − 02 5.248𝐸 − 02 9.029𝐸 − 02

(8.827E − 04) (2.852𝐸 − 02) (9.304𝐸 − 03) (3.178𝐸 − 02)

HS 3.468𝐸 − 03 1.418𝐸 + 01 7.952𝐸 − 02 1.092𝐸 − 01

(1.763𝐸 − 03) (2.376𝐸 + 00) (1.720𝐸 − 02) (1.377𝐸 − 02)

Ackley
cHS 5.655E − 03 3.890𝐸 − 02 5.730𝐸 − 02 3.827𝐸 − 02

(1.197E − 02) (1.686𝐸 − 01) (1.815𝐸 − 01) (1.152𝐸 − 03)

HS (1.878𝐸 − 02) 1.060𝐸 − 01 1.585𝐸 − 02 1.804𝐸 − 02

(8.563𝐸 − 02) (5.763𝐸 − 02) (1.606𝐸 − 03) (1.168𝐸 − 01)

Griewank
cHS 8.866𝐸 − 01 7.437𝐸 − 01 7.310𝐸 − 01 4.982𝐸 − 01

(1.306𝐸 − 01) (2.086𝐸 − 01) (1.826𝐸 − 01) (2.712𝐸 − 01)

HS 8.542𝐸 − 01 6.566𝐸 − 01 4.912𝐸 − 01 3.853E − 01
(1.270𝐸 − 01) (2.352𝐸 − 01) (2.591𝐸 − 01) (2.413E − 01)

Six-Hump
cHS −1.032E + 00 −1.032E + 00 −1.032E + 00 −1.032E + 00

(1.496𝐸 − 10) (4.150𝐸 − 11) (3.543𝐸 − 11) (3.197E − 11)

HS −1.032E + 00 −1.032E + 00 −1.032E + 00 −1.032E + 00
(1.897𝐸 − 10) (2.922𝐸 − 09) (4.793𝐸 − 11) (2.235𝐸 − 10)

It seems that using a relatively small value of PAR (i.e.,
≤0.5) improves the performance of the cHA and HS. Most
results at large value of PAR can increase the convergence
speed of HS algorithm, while a small value of PAR increases
diversity in HM. On the other hand, the small value of PAR

allows more exploration of the search space, and the large
value of PAR leads to a lower rate of exploration, where the
diversity is reduced and then the algorithmmight be trapped
into the local optima. It is observed that cHS is able to get
the best results than the original version of HS algorithm for
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Table 7: The effect of varying the number of neighbors on cHS for ten functions (𝑓
1
− 𝑓
10
).

Function NH = 4 NH = 8 NH = 12

Sphere 5.338𝐸 − 03 1.587𝐸 − 04 1.32E − 04
(2.819𝐸 − 02) (5.907𝐸 − 05) (3.29E − 05)

Schwefel’s 2.22 3.331𝐸 − 02 2.827𝐸 − 02 2.74E − 02
(3.789𝐸 − 03) (3.017𝐸 − 03) (2.54E − 03)

Step 2.074𝐸 − 04 1.761𝐸 − 04 1.29E − 04
(1.339𝐸 − 04) (2.058𝐸 − 04) (3.42E − 05)

Rosenbrock 1.169𝐸 + 02 1.329𝐸 + 02 9.89E + 01
(9.558𝐸 + 01) (2.425𝐸 + 02) (8.33E + 01)

Rotated hyper-ellipsoid 1.945𝐸 + 00 1.119𝐸 + 00 8.42E − 01
(5.520𝐸 + 00) (2.500𝐸 + 00) (1.38E + 00)

Schwefel’s 2.26 −1.257E + 04 −1.257E + 04 −1.26𝐸 + 04

(1.901E + 00) (2.371𝐸 + 00) (1.19𝐸 + 00)

Rastrigin 3.548𝐸 − 02 2.021E − 02 2.38𝐸 − 02

(5.073𝐸 − 02) (4.141E − 03) (2.85𝐸 − 02)

Ackley 2.901𝐸 − 02 8.698E − 03 3.89𝐸 − 02

(6.715𝐸 − 02) (1.152E − 03) (1.69𝐸 − 01)

Griewank 7.530𝐸 − 01 7.870𝐸 − 01 7.44E − 01
(2.071𝐸 − 01) (1.903𝐸 − 01) (2.09E − 01)

Six-Hump Camel-Back −1.032E + 00 −1.032E + 00 −1.032E + 00
(5.473𝐸 − 11) (2.821E − 11) (4.15𝐸 − 11)

some benchmark functions (i.e., 𝑓
4
, 𝑓
2
, 𝑓
8
, 𝑓
9
), but not so for

the others.

4.2.5. The Effect Number of Neighbors NH. Table 7 summa-
rizes the effect number of neighbors (NH) according to
cellular structure on the performance of cHS. Table 7 also
exhibits the effect of NH for (𝑓

1
to 𝑓
10
) using four values of

NH (4, 8, 12), where the value ofHMS = 25.The best solution
at each corresponding value is highlighted in bold font. The
best results of comparing cHS with original version HS are
highlighted in bold. Figure 11 is the box plot visualizing the
effect of various NH values on the behavior of cHS algorithm
using the ten global minimization functions.

The results show that cHS obtained the best result when
the number of neighbors is large, except (𝑓

6
) which obtained

the best result when the number of neighbors is small.
Generally, this leads to the conclusion that cHS often shows
better performance at larger values of NH between 8 and 12.
Figure 11 shows the box plots of the recorded results which
reveal the distribution of the 30 tested runs against the various
value of NH.

4.2.6. Scalability Study of 𝑁. In this section, the results
produced by cHS and HS, when the dimension of the
function is set to 𝑁 = 10, 𝑁 = 30, 𝑁 = 50, and 𝑁 = 100

as shown in Table 8, are recorded.
In general, decreasing the dimensionality leads to better

results in cHS and HS. This comes in line with the previous
theory. However, it is observed from results (Table 8) that the

proposed cHS algorithm outperforms the HS when dimen-
sionality is large for the majority of the benchmark optimiza-
tion functions.This shows that increasing the dimensionality
of the problem needs a better algorithm like cHS.

5. Conclusion and Future Work

In this paper, a new version of HS algorithm called cellular
harmony search (cHS) algorithm is proposed. cHS is an
HS algorithm embedded with cellular automata concepts.
The main idea of proposing cHS algorithm is to provide a
structured population that preserves a high level of diversity
during the search. In cHS, the HM individuals are arranged
as a two-dimensional toroidal grid, where each individual is
generated and only interacts with its neighboring individuals.
The operators of the original version of HS algorithm are
adjusted to observe the cellular GA theory, where the con-
cepts of cell and cell search space are employed.

Using ten global optimization functions circulated in
the literature, the cHS is evaluated. The results support the
theory of cellular automata, where in almost all cases the
cHS outperforms HS algorithm. The sensitivity analysis of
cHS parameters has suggested that the cHS is sensitive to
the values of HMCR, PAR, 𝑁, and NH. The comparative
evaluation is also conducted with two versions of HS algo-
rithms proposed in [44, 45], where comparable results were
obtained.

This is an initial investigation of using cellular automata
concepts in the HS algorithm optimization framework.
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Table 8: Mean and standard deviation of ten functions (𝑓
1
–𝑓
10
) when𝑁 = (10, 30, 50, 100).

Function Alg. 𝑁 = 10 𝑁 = 30 𝑁 = 50 𝑁 = 100

Sphere
cHS 7.022𝐸 − 08 1.323𝐸 − 04 4.776𝐸 + 02 2.036𝐸 + 04

(4.079𝐸 − 08) (3.285𝐸 − 05) (9.256𝐸 + 01) (2.584𝐸 + 03)

HS 3.033E − 08 6.086𝐸 − 03 8.746𝐸 + 02 1.591𝐸 + 04

(1.842E − 08) (1.406𝐸 − 03) (1.484𝐸 + 02) (2.471𝐸 + 03)

Schwefel’s 2.22
cHS 3.548𝐸 − 04 2.738𝐸 − 02 8.810𝐸 + 00 8.500𝐸 + 01

(1.327𝐸 − 04) (2.542𝐸 − 03) (9.866𝐸 − 01) (8.610𝐸 + 00)

HS 2.725E − 04 2.200𝐸 − 01 1.050𝐸 + 01 5.479𝐸 + 01

(6.537E − 05) (2.495𝐸 − 02) (1.323𝐸 + 00) (3.951𝐸 + 00)

Step
cHS 6.297𝐸 − 08 1.288𝐸 − 04 3.771𝐸 + 02 1.960𝐸 + 04

(3.292𝐸 − 08) (3.42100𝐸 − 05) (1.029𝐸 + 02) (2.260𝐸 + 03)

HS 3.501E − 08 6.510𝐸 − 03 7.214𝐸 + 02 1.551𝐸 + 04

(2.873E − 08) (1.019𝐸 − 03) (1.364𝐸 + 02) (1.169𝐸 + 03)

Rosenbrock
cHS 3.758𝐸 + 01 9.892𝐸 + 01 2.090𝐸 + 04 1.359𝐸 + 07

(7.344𝐸 + 01) (8.330𝐸 + 01) (9.488𝐸 + 03) (2.397𝐸 + 06)

HS 1.651E + 01 1.489𝐸 + 02 9.093𝐸 + 04 1.730𝐸 + 07

(3.809E + 01) (1.220𝐸 + 02) (2.346𝐸 + 04) (2.195𝐸 + 06)

Rotated hyper-ellipsoid
cHS 2.351𝐸 − 06 8.421𝐸 − 01 1.993𝐸 + 05 3.097𝐸 + 07

(1.799𝐸 − 06) (1.381𝐸 + 00) (4.916𝐸 + 04) (3.408𝐸 + 06)

HS 8.554E − 07 2.647𝐸 + 00 2.825𝐸 + 05 2.723𝐸 + 07

(7.059E − 07) (1.531𝐸 + 00) (4.035𝐸 + 04) (3.321𝐸 + 06)

Schwefel’s 2.26
cHS −4.190E + 03 −1.256𝐸 + 04 9.019𝐸 + 02 8.874𝐸 + 03

(1.040𝐸 − 01) (1.190𝐸 + 00) (2.182𝐸 + 02) (8.167𝐸 + 02)

HS −4.190E + 03 −1.256𝐸 + 04 8.594𝐸 + 02 5.119𝐸 + 03

(3.861E − 03) (1.393𝐸 + 00) (1.645𝐸 + 02) (5.619𝐸 + 02)

Rastrigin
cHS 8.538𝐸 − 06 2.380𝐸 − 02 3.594𝐸 + 01 3.575𝐸 + 02

(4.752𝐸 − 06) (2.852𝐸 − 02) (4.537𝐸 + 00) (4.352𝐸 + 01)

HS 4.938E − 06 1.418𝐸 + 01 4.766𝐸 + 01 2.325𝐸 + 02

(5.215E − 06) (2.376𝐸 + 00) (4.308𝐸 + 00) (1.703𝐸 + 01)

Ackley
cHS 9.366E − 06 3.890𝐸 − 02 5.168𝐸 + 00 1.385𝐸 + 01

(4.385E − 06) (1.686𝐸 − 01) (4.202𝐸 − 01) (3.524𝐸 − 01)

HS 2.101𝐸 − 04 1.060𝐸 − 01 6.197𝐸 + 00 1.277𝐸 + 01

(1.146𝐸 − 04) (5.763𝐸 − 02) (3.790𝐸 − 01) (3.405𝐸 − 01)

Griewank
cHS 9.958𝐸 − 02 7.437𝐸 − 01 5.828𝐸 + 00 1.931𝐸 + 02

(4.819𝐸 − 02) (2.086𝐸 − 01) (1.398𝐸 + 00) (2.241𝐸 + 01)

HS 7.082E − 02 6.566𝐸 − 01 8.641𝐸 + 00 1.470𝐸 + 02

(4.053E − 02) (2.352𝐸 − 01) (1.330𝐸 + 00) (1.583𝐸 + 01)

Six-Hump Camel-Back
cHS −1.032E + 00 −1.03163𝐸 + 00 −1.032E + 00 −1.032E + 00

(3.927𝐸 − 11) (4.150𝐸 − 11) (0) (0)

HS −1.032E + 00 −1.03163𝐸 + 00 −1.032E + 00 −1.032E + 00
(6.526𝐸 − 11) (2.922𝐸 − 09) (0) (0)

The future, indeed, is pregnant with several research direc-
tions, such as

(i) analyzing the selection pressure and time complexity
concepts of cHS algorithm,

(ii) studying the effect of the neighborhood shapes on the
performance of cHS,

(iii) studying a new migration strategy to empower the
interaction between the individuals and their neigh-
bors.
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