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The generalized practical synchronization (GPS) of uncertain Duffing-Holmes chaotic systems
with parameter mismatching, unknown external excitation, plant uncertainties, and uncertain
deadzone nonlinearities is investigated. Based on the composite control approach, a tracking
control is derived to realize the GPS for the uncertain Duffing-Holmes chaotic systems
with parameter mismatching, unknown external excitation, plant uncertainties, and uncertain
deadzone nonlinearities. Besides, the guaranteed exponential decay rate, convergence radius, and
desired scaling factor can be prespecified. Finally, numerical simulations are provided to illustrate
the feasibility and effectiveness of the proposed GPS scheme.

1. Introduction

Recently, synchronizations of various dynamic systems or chaotic systems have been
intensively studied; see, for instance, [1–6] and the references therein. Occasionally, chaos
in many systems is a source of the generation of oscillation. Chaos synchronizations exist in
certain fields of application, such as, secure communication, ecological systems, and system
identification.

It is well known that there inevitably exist nonlinearities in electric components,
such as, operational amplifier, resistor, inductors, capacitor, and electromechanical actuator.
Furthermore, the control schemes of controlled driver-response chaotic systems can be
realized by various electric components. Input nonlinearities not only often appear in the
controlled driver-response chaotic systems but also frequently cause undesirable behavior,
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such as, instabilities or spurious limit cycles. Over the past decades, researchers have
been concerned with several input nonlinearities common in dynamical systems, such as,
deadzones, saturation, hysteresis, relays, and others; see, for instance, [7–10]. Generally
speaking, the synchronization of chaotic system with parameter mismatching, unknown
external excitation, plant uncertainties, and uncertain deadzone nonlinearities is in general
not as simple as that without any uncertainties and nonlinearities.

Over the past decades, Duffing systems have been received a great deal of interest
due to theoretical interests and successful applications in numerous areas. In [11], the virtual
stabilizability of Duffing-Holmes control systems has been studied and a tracking control
has been proposed such that the states of Duffing-Holmes control system track the desired
trajectories. In addition, a harmonic balance method in conjunction with the successive
integration technique has been offered in [12] to solve the Duffing oscillator equation with
damping and excitation. In this paper, the concept of the GPS for chaotic systems is presented
and the GPS of uncertain Duffing-Holmes chaotic systems with parameter mismatching,
unknown external excitation, plant uncertainties, and uncertain deadzone nonlinearities is
explored. Using the composite control strategy, a tracking control is offered to realize the GPS
for uncertain Duffing-Holmes chaotic systems, with any prespecified exponential decay rate,
convergence radius, and desired scaling factor.

2. Problem Formulation and Main Result

Before presenting the problem formulation, let us introduce a definition as follows.

Definition 2.1. The deadzone nonlinearities D(u, d,m), with d ≥ 0 and m > 0, is defined to be
the collection of all functions Δφ(u) := � → � satisfying

Δφ(u) :=

⎧
⎪⎪⎨

⎪⎪⎩

m(u −Δr), if u ≥ Δr,

0, if −Δr ≤ u ≤ Δ
m
(
u + Δr

)
if u ≤ −Δr,

r, (2.1)

for any Δr and Δr with 0 ≤ Δr, Δr ≤ d.

In this paper, we consider the following uncertain Duffing-Holmes chaotic systems
with parameter mismatching, unknown external excitation, plant uncertainties, and uncer-
tain deadzone nonlinearities described as

Driver system:

r̈ + p1r + p2ṙ + r3 + p3 cos(wt) + Δf1(t, r, ṙ) = 0, t ≥ 0,
[
r(0) ṙ(0)

]
=
[
ri1 ri2

]
,

(2.2)

Response system:

q̈ + p1q + p2q̇ + Δf2
(
t, q, q̇

)
+ Δφ(u) = 0, t ≥ 0,

[
q(0) q̇(0)

]
=
[
qi1 qi2

]
,

(2.3)
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where r, q ∈ �, Δf1 and Δf2, for all i ∈ {1, 2}, represent the mixed uncertainties (parameter
mismatching, unknown external excitation, and plant uncertainties), [ri1 ri2] and [qi1 qi2]
represent the initial conditions, u ∈ � is the control input, and Δφ(u) ∈ D(u, d,m) is the
uncertain deadzone nonlinearity. For the existence of the solutions of (2.2), we assume that
the uncertainties Δf1 and Δf2 are continuous. It is noted that the system (2.2) without
any uncertainties (i.e., Δf1 = Δf2 = 0) displays chaotic behavior for certain values of the
parameters [13]. Letting

x(t) :=
[
x1(t) x2(t)

]T
:=

[
r(t) ṙ(t)

]T
,

z(t) :=
[
z1(t) z2(t)

]T
:=

[
q(t) q̇(t)

]T
,

(2.4)

the corresponding state-space equations of system (2.2) and system (2.3) are

ẋ1 = x2,

ẋ2 = −p1x1 − p2x2 − x3
1 − p3 cos(wt) −Δf1(t, x1, x2), ∀t ≥ 0,

(2.5)

ż1 = z2,

ż2 = −p1z1 − p2z2 −Δf2(t, z1, z2) −Δφ(u), ∀t ≥ 0.
(2.6)

Throughout this paper, an assumption is made as follows.

(A1) There exist two continuous functions g1(t, r, ṙ) ≥ 0 and g2(t, q, q̇) ≥ 0 such that, for
all arguments,

∣
∣Δf1(t, r, ṙ)

∣
∣ ≤ g1(t, r, ṙ),

∣
∣Δf2

(
t, q, q̇

)∣
∣ ≤ g2

(
t, q, q̇

)
. (2.7)

For brevity, let us define the synchronous error vector as

e(t) :=
[
e1(t) e2(t)

]T
:= z(t) − βx(t), (2.8)

where β ∈ � is the scaling factor.
The purpose of this paper is to search a composite control u = u1 + u2 such that the

states z1 and z2 of the response system (2.6) track, respectively, the signals βx1 and βx2 of the
driver system (2.5), with any desired scaling factor β.

The precise definition of the GPS, in terms of error response, is given as follows.

Definition 2.2. The driver-response dynamical systems (2.5) and (2.6) are said to realize the
GPS, provided that, for any α > 0, ε > 0, and β ∈ �, there exists a tracking control u(t) :=
u(α, ε, β) and positive number k such that the synchronous error satisfies

‖e(t)‖ ≤ k · e−α t + ε, ∀t ≥ 0. (2.9)

In this case, the positive number ε is called the convergence radius, the positive number α is
called the exponential decay rate, and β is called the desired scaling factor. In other words, the
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GPS means that the states z1 and z2 of the response system can track, respectively, the signals
βx1 and βx2 of the driver system, with any prespecified exponential decay rate, convergence
radius, and desired scaling factor.

From (2.5)–(2.8), we have the following error dynamical system:

ė =
[

0 1
−p1 −p2

]

e + B

[
0

−Δφ −Δf2 + βx3
1 + βp3 cos(wt) + βΔf1

]

=
[

0 1
−p1 −p2

]

e −mBu + B

[
0
Δf

]

, ∀t ≥ 0,
(2.10)

with B :=
[
0
1

]
and Δf := [−Δφ(u) +mu] + βx3

1 + βp3 cos(wt) + βΔf1 −Δf2. First consider the
case of the system (2.10) without any parameter mismatching, unknown external excitation,
and plant uncertainties, that is, Δf = 0. Thus the nominal system of (2.10) can represented as

ė =
[

0 1
−p1 −p2

]

e −mBu. (2.11)

According to the linear system theory, it can be easily obtained that given any positive
constant α, the system (2.11) subjected to the linear control law:

u(t) = Ke(x) =
[
(α + 1)2 − p1

m

2(α + 1) − p2
m

]

e(t), (2.12)

is globally exponentially stable with guaranteed exponential decay rate α. Nevertheless, the
nominal control law (2.12) may not suffice to render the uncertain error system (2.10) to be
globally exponentially stable. Hence a corrective control termmust be added to overcome the
uncertain part of (2.10). In the following, a composite control, consisting of a nominal control
and a corrective control, is proposed such that the GPS between systems (2.5) and (2.6) can
be guaranteed.

Now we present the main result for the GPS between system (2.5) and system (2.6).

Theorem 2.3. The GPS between system (2.5) and system (2.6) can be achieved under the composite
control u(t) := u(α, ε, β) defined by

u(t) = u1(t) + u2(t), (2.13)

where

u1(t) = Ke(x) =
[
(α + 1)2 − p1

m

2(α + 1) − p2
m

]

e(t), (2.14)

u2(t) =
h2(t)

m · h(t) · ∣∣p21e1 + p22e2
∣
∣ + α ·m · ε2 · λmin(P)

(
p21e1 + p22e2

)
, (2.15)
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where

h(t) = md +
∣
∣β
∣
∣ · g1 + g2 +

∣
∣
∣βx3

1

∣
∣
∣ +

∣
∣βp3

∣
∣, (2.16)

and P := 	pij
2 × 2 > 0 is the unique solution to the following Lyapunov equation:

(A + αI)TP + P(A + αI) = −2I, (2.17)

with A :=
[

0 1
−(α+1)2 −2(α+1)

]
.

Proof. From (2.10), (2.13), and (2.14), the dynamical error system can be performed

ė =
[

0 1
−p1 −p2

]

e −mB(u1 + u2) + B

[
0
Δf

]

= Ae −mBu2 + B

[
0
Δf

]

, ∀ t ≥ 0,
(2.18)

with B :=
[
0
1

]
and Δf := [mu −Δφ(u)] + βx3

1 + βp3 cos(wt) + βΔf1 −Δf2.
Obviously, one has σ(A) = {−α − 1}, σ(A + αI) = {−1}, and |Δf | ≤ h(t). Let

W(e(t)) = eT(t)Pe(t). (2.19)

The time derivative of W(e(t)) along the trajectories of dynamical error system, with (2.11)–
(2.19) and (A1), is given by

Ẇ(e(t)) = ėTPe + eTPė

=
[
Ae + B

(−mu2 + Δf
)]T

Pe + eTP
[
Ae + B

(−mu2 + Δf
)]

= eT
(
ATP + PA

)
e − 2m · eTPBu2 + 2eTPB ·Δf

= eT (−2αP − 2I)e − 2m · eTPBu2 + 2eTPB ·Δf

≤ −2αW − 2m · eTPBu2 + 2
∣
∣
∣eTPB

∣
∣
∣ ·

∣
∣Δf

∣
∣

≤ −2αW − 2
h2(t)

h · ∣∣BTPe(t)
∣
∣ + α · ε2 · λmin(P)

∣
∣
∣eTPB

∣
∣
∣
2
+ 2

∣
∣
∣eTPB

∣
∣
∣ · h

= −2αW + 2
α · ε2 · λmin(P) · h · ∣∣eTPB∣∣

h · ∣∣BTPe(t)
∣
∣ + α · ε2 · λmin(P)

= −2αW + 2α · ε2 · λmin(P), ∀t ≥ 0,

(2.20)

in view of |Δf(t)| ≤ h(t) and p21e1 + p22e2 = BTPe = eTPB. Thus, one has

e2α1t · Ẇ + e2αt · 2αW =
d

dt

[
e2αt ·W

]
≤ e2αt · 2α · ε2 · λmin(P), ∀t ≥ 0 (2.21)
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It follows that

∫ t

0

d

dt

[
e2αt ·W(e(t))

]
dt = e2αt ·W(e(t)) −W(e(0))

≤
∫ t

0
e2αt · 2α · ε2 · λmin(P)dt

= ε2 · λmin(P)
(
e2αt − 1

)
, ∀t ≥ 0.

(2.22)

This implies

W(e(t)) ≤
[
W(e(0)) − ε2 · λmin(P)

]
· e−2αt + ε2 · λmin(P), ∀t ≥ 0. (2.23)

Thus, from (2.19) and (2.23), it can be readily obtained that

λmin(P)‖e(t)‖2 ≤ W(e(t)) ≤ e−2αt
[
W(e(0)) − ε2λmin(P)

]
+ ε2λmin(P), ∀ t ≥ 0. (2.24)

Consequently, we conclude that

‖e(t)‖ ≤
√
√
√
√e−2αt

[
W(e(0)) + ε2λmin(P)

λmin(P)

]

+ ε2

≤
√
√
√
√e−2αt

[
W(e(0)) + ε2λmin(P)

λmin(P)

]

+
√
ε2

=

√
√
√
√

[
W(e(0)) + ε2λmin(P)

λmin(P)

]

· e−αt + ε, ∀ t ≥ 0.

(2.25)

This completes the proof.

Remark 2.4. In what follows, we present an algorithm to find a tracking control law of (2.13)
stated in Theorem 2.3.

INPUT: the driver-response systems (2.5) and (2.6), the prespecified exponential decay
rateα > 0, and the prespecified convergence radius ε > 0.

OUPUT: tracking control of (2.13).

Step 1. Choose g1(t, r, ṙ) and g2(t, q, q̇) such that (A1) is satisfied.

Step 2. Calculate m and d, from Definition 2.1.

Step 3. Calculate P , λmin(P), p21, and p22, from (2.17).

Step 4. Form e1 and e2 from (2.8).
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Figure 1: Typical state trajectories of the uncertain Duffing-Holmes system for (3.1).
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Figure 2: Synchronization errors of systems (3.1)–(3.7) with β = 1.

Step 5. Form u1 from (2.14).

Step 6. Form h(t) from (2.16).

Step 7. Form u2 from (2.15).

Step 8. OUPUT u(t) = u1(t) + u2(t).

3. Illustrative Example

In what follows, we provide an example to illustrate the main result.
Driver system:

ẋ1 = x2,

ẋ2 = −p1x1 − p2x2 − x3
1 − p3 cos(wt) −Δa(t)x1x2, ∀t ≥ 0.

(3.1)
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Figure 3: Synchronization errors of systems (3.1)–(3.7) with β = −1.
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Figure 4: Synchronization errors of systems (3.1)–(3.7) with β = 5.

Response system:

ż1 = z2,

ż2 = −p1z1 − p2z2 −Δb(t) sin(t) −Δφ(u), ∀t ≥ 0,
(3.2)

where

p1 = −1, p2 = 0.25 p3 = 0.3, w = 1,

−0.1 ≤ Δa(t) ≤ 0.1, −0.1 ≤ Δb(t) ≤ 0.1, Δφ(u) ∈ D(u, 1, 2).
(3.3)

Our objective, in this example, is to design a tracking control such that the systems (3.1)
and (3.2) can realize the GPS, with the exponential decay rate α = 2 and convergence radius
ε = 0.1. Comparison of (3.1)-(3.2)with (2.5)-(2.6), it can be obtained that

d = 1, m = 2,

Δf1(t, x1, x2) = Δa(t) · x1x2, Δf2(t, z1, z2) = Δb(t) sin(t).
(3.4)
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Figure 5: Synchronization errors of systems (3.1)–(3.7) with β = 0.

The condition (A1) is evidently satisfied if we let

g1(t, x1, x2) = 0.1 · |x1x2|, g2(t, z1, z2) = 0.1 · |sin(t)|. (3.5)

Solving the Lyapunov equation (2.17) yields

P =
[
49 11
11 3

]

, λmin(P) = 0.5049,

p21 = 11, p22 = 3.
(3.6)

Finally, owing to (2.13)–(2.16), we obtain the design controller

u(t) = 5e1 + 2.875e2 +
h2(t)

2 · h(t) · |11e1 + 3e2| + 0.02
(11e1 + 3e2), (3.7)

with

h(t) = 2 + 0.1 · [∣∣β∣∣ · |x1x2| + |sin(t)|] +
∣
∣
∣βx3

1

∣
∣
∣ +

∣
∣0.3β

∣
∣. (3.8)

Consequently, by Theorem 2.3, we conclude that the GPS between the driver system (3.1) and
the response system (3.2) can be achieved under the control law (3.7), with the guaranteed
exponential decay rate α = 2 and convergence radius ε = 0.1.

With, for instance,

Δa(t) = Δb(t) = 0.1, (3.9)

the typical state trajectories of uncertain Duffing-Holmes chaotic system (3.1) are depicted in
Figure 1. In addition, the synchronization errors of systems (3.1)–(3.7) with β = 1,−1, 5, and
0, are depicted in Figures 2, 3, 4 and 5, respectively. From the foregoing simulations results, it
is seen that the controlled drive-response systems (3.1) and (3.2) achieve the GPS under the
control law (3.7).
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4. Conclusion

In this paper, the GPS of uncertain Duffing-Holmes chaotic systems with parameter
mismatching, unknown external excitation, plant uncertainties, and uncertain deadzone
nonlinearities has been investigated. Based on the composite control methodology, a tracking
control has been proposed to realize the GPS for such uncertain Duffing-Holmes chaotic
systems, with prespecified exponential decay rate, convergence radius, and desired scaling
factor. Finally, numerical simulations have also been given to verify the feasibility and
effectiveness of the proposed GPS scheme.

Nomenclature

�n : The n-dimensional real space
|a| : The modulus of a real number a
‖x‖ : The Euclidean norm of the vector x ∈ �n

I : The unit matrix
AT : The transport of the matrix A
λmin(P) : The minimum eigenvalue of the matrix

P with real eigenvalues
σ(A) : The spectrum of the matrix A
P > 0 : The matrix P is a symmetric positive

definite matrix.
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