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A combined interior point homotopy continuation method is proposed for solving general
multiobjective programming problem. We prove the existence and convergence of a smooth
homotopy path from almost any interior initial interior point to a solution of the KKT system
under some basic assumptions.

1. Introduction

In this paper, for any two vectors y = (y1, y2, . . . , yn)
T and z = (z1, z2, . . . , zn)

T in Rn, we use
the following conventions:

y = z, iff yi = zi, i = 1, 2, . . . , n;

y < z, iff yi < zi, i = 1, 2, . . . , n;

y � z, iff yi ≤ zi, i = 1, 2, . . . , n;

y ≤ z, iff yi ≤ zi, y /= z, i = 1, 2, . . . , n.

(1.1)
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We consider the following multiobjective programming problem:
(MOP)

min f(x),

s.t. g(x) � 0,

h(x) = 0,

(1.2)

where f = (f1, f2, . . . , fp)
T : Rn → Rp, g = (g1, g2, . . . , gm)

T : Rn → Rm, and h =
(h1, h2, . . . , hs)

T : Rn → Rs.
For λ = (λ1, λ2, . . . , λp)

T ∈ Rp, let Rn
+ and Rn

++ denote the nonnegative and positive
orthant of Rn. Respectively, let

Ω =
{
x ∈ Rn | g(x) � 0, h(x) = 0

}
, Ω0 =

{
x ∈ Rn | g(x) < 0, h(x) = 0

}
, ∂Ω =

Ω
Ω0

,

Λ+ =

{

λ ∈ R
p
+ |

p∑

i=1

λi = 1

}

, Λ++ =

{

λ ∈ R
p
++ |

p∑

i=1

λi = 1

}

,

I = {1, 2, . . . , m}, J = {1, 2, . . . , s},
(1.3)

and let

B(x) =
{
i ∈ {1, 2, . . . , m} | gi(x) = 0

}
(1.4)

denote the active index set at a given point.
MOP has important application in many practical fields like production planning,

structural designing, portfolio selection, and so forth. Research on it can be traced back to
Pareto [1], Von Neumann andMorgenstern [2], and Koopmans [3] or even earlier. Especially,
more and more attention has been paid to the homotopy method since Kellogg et al. [4],
Smale [5], and Chow et al. [6] published the remarkable papers. The homotopy method now
becomes an important tool for numerically solving complementary, variational inequalities,
convex multiobjective programming, and nonlinear mathematical programming et al. [7–12]
as a globally convergent method.

Among many methods, the weighed sum method is popular and efficient. It
transforms the MOP to a single-objective programming [13]:

min λTf(x),

s.t. g(x) � 0,
p∑

i=1

λi = 1,

(1.5)

where λ is the weight vector.
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Recently, Song and Yao [14] generalize the combined homotopy interior point method
to the general multi-objective programming problem under the so-called normal cone
condition instead of the convexity condition about the feasible set. In that paper, they proved
the existence of the homotopy path under the following assumptions:

(A1) Ω0 is nonempty and bounded;

(A2) for all x ∈ Ω, the vectors {∇gi(x), i ∈ B(x),∇hj(x), j ∈ J} are linearly independent;

(A3) for all x ∈ Ω, {x +
∑

i∈B(x) ui∇gi(x) +
∑

j∈J zj∇hj(x) : zj ∈ R, ui ≥ 0, j ∈ J, i ∈
B(x)}⋂Ω = {x}.

In [14], the combined homotopy method was given as follows:

H
(
ω,ω(0), t

)
=

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

(1 − t)
(∇f(x)λ +∇g(x)u

)
+∇h(x)z + t

(
x − x(0))

h(x)

U × g(x) − tU(0) × g
(
x(0))

(1 − t)

(

1 −
p∑

i=1

λi

)

e − t
(
λ − λ(0)

)

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

= 0, (1.6)

where x(0) ∈ Ω0, u(0) > 0, λ(0) > 0, and
∑p

i=1 λi
(0) = 1. However, the solution simply yields

λ = λ(0) for all t ∈ (0, 1]. That is, λ is fixed. In fact, from the last equation, we have p(1 − t) +
(pt − p − t)

∑p

i=1 λi + t = 0. According to this, we know that λ ≡ λ0 for all of t ∈ [0, 1].
That is, these methods are all solving the single-objective programming problem.
In [15], they present the concept of “positive linear independent” and weaken the

assumptions than the ones in [14]. But in order to extend their results to a broader class of
nonconvex multi-objective programming problems, we construct a new homotopy equation
under generalized quasinorm cone condition in this paper and λ is not fixed in the calculation
process.

The paper is organized as follows. In Section 2, we recall some notations and
preliminaries results. In Section 3, we construct a new combined homotopy mapping and
prove the existence and convergence of a smooth homotopy path from almost any interior
initial point to the KKT points of MOP under some assumptions. In Section 4, numerical
results are given,which show that the method is feasible and effective.

2. Some Definitions and Properties

Definition 2.1. Let U ⊂ Rn be an open set, and let ϕ : U → RP be a smooth mapping. If
Range[∂ϕ(x)/∂x] = Rp for all x ∈ ϕ−1(y), then y ∈ Rp is a regular value and x ∈ Rn is a
regular point.

Definition 2.2. Let ηi : Rn → Rn (i = 1, 2, . . . , m) and βj : Rn → Rn (j = 1, 2, . . . , s). For any
x ∈ Ω, {∇gi(x), ηi(x) : i ∈ B(x)} is said to be positive linear independent with respect to β(x),
if

β(x)z +
∑

i∈B(x)

(
yi∇gi(x) + uiηi(x)

)
= 0, z ∈ Rs, yi ≥ 0, ui ≥ 0 (2.1)
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implies that

z = 0, yi = 0, ui = 0 (i ∈ B(x)), (2.2)

where β(x) = (β1(x), . . . , βs(x)).

Lemma 2.3 (parametric form of the Sard theorem on a smoothmanifold; see [16]). LetQ,N, P
be smooth manifolds of dimensions q,m, p. Respectively, let ϕ : Q × N → P be a Cr map, where
r > max{0, m − p}. If 0 ∈ P is a regular value of ϕ, then for almost all α ∈ Q, 0 is a regular value of
ϕ(α, ·).

Lemma 2.4 (inverse image theorem; see [17]). If 0 is a regular value of the mapping ϕα(·) �
ϕ(α, ·), then ϕ−1

α (0) consists of some smooth manifolds.

Lemma 2.5 (classification theorem of one-dimensional manifold; see [17]). A one-dimensional
smooth manifold is diffeomorphic to a unit circle or a unit interval.

The following four basic assumptions are commonly used in this paper:

(C1) Ω0 is nonempty and bounded;

(C2) for any x ∈ Ω and t ∈ [0, 1], there exists map η(x) and β(x), such that {∇gi(x),
ηi(x) : i ∈ B(x)} is positive linear independent with respect to ∇h(x) + t(β(x) −
∇h(x));

(C3) for any x ∈ ∂Ω,

⎧
⎨

⎩
x +

∑

i∈B(x)
uiηi(x) + β(x)z : z ∈ Rs, ui ≥ 0, i ∈ B(x)

⎫
⎬

⎭

⋂
Ω = {x} (2.3)

(generalized quasinormal cone condition);
(C4) for any x ∈ Ω, ∇h(x)Tβ(x) is nonsingular.

Remark 2.6. If Ω satisfies the assumptions (A1)–(A3), then it necessarily satisfies the assump-
tions (C1)–(C4).

In fact, if we choose η(x) = ∇g(x) and β(x) = ∇h(x), then it is easy to get the result.
Clearly, if Ω satisfies the assumptions (C1)–(C4), then it does not necessarily satisfies the
assumptions (A1)–(A3).

3. Main Results

Let x ∈ Ω be a KKT point of MOP; our aim is to find (λ, u, z) ∈ R
p+m
+ × Rs, such that

∇f(x)λ +∇g(x)u +∇h(x)z = 0, (3.1a)

Ug(x) = 0, (3.1b)

1 −
p∑

i=1

λi = 0, (3.1c)
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where ∇f(x) = (∇f1(x), . . . ,∇fp(x)) ∈ Rn×p, ∇g(x) = (∇g1(x), . . . ,∇gm(x)) ∈ Rn×m, ∇h(x) =
(∇h1(x), . . . ,∇hm(x)) ∈ Rn×s.

Meanwhile, the KKT system of MOP is (3.1a)–(3.1c).
For a convex multi-objective programming problem, the solution of the MOP can be

obtained from the KKT system. And for a nonconvex multi-objective programming problem,
it is significant that we can obtain a solution of the KKT system.

To solve the KKT system (3.1a)–(3.1c), we construct a homotopy equation as follows:

H
(
ω,ω(0), t

)

=

⎡

⎢
⎢
⎢
⎢
⎢⎢⎢
⎣

(1 − t)
(∇f(x)λ +∇g(x)u + tη(x)u2) +

[∇h(x) + t
(
β(x) − ∇h(x)

)]
z + t

(
x − x(0))

h(x)

U × g(x) − tU(0) × g
(
x(0))

(1 − t)

(

1 −
p∑

i=1

λi

)

e − t
(
λ5/2 − (λ(0))5/2

)

⎤

⎥
⎥
⎥
⎥
⎥⎥⎥
⎦

= 0,
(3.2)

where ω(0) = (x(0), λ(0), u(0), z(0)) ∈ Ω0 × Λ++ × Rm
++ × {0}, ω = (x, λ, u, z) ∈ Ω × Rp+m+s, u2 =

(u2
1, u

2
2 . . . , u

2
m)

T ∈ Rm, λ5/2 = (λ5/21 , λ5/22 , . . . , λ5/2p )T ∈ Rp, U = diag(u), e = (1, 1, . . . , 1)T ∈ Rp,
and t ∈ [0, 1].

As t = 1, the homotopy equation (3.2) becomes

β(x)z +
(
x − x(0)

)
= 0, (3.3a)

h(x) = 0, (3.3b)

Ug(x) −U(0)g
(
x(0)

)
= 0, (3.3c)

λ5/2 =
(
λ(0)

)5/2
. (3.3d)

By the assumption (C3), we get z = 0, x = x(0). Since g(x(0)) < 0 and x = x(0), (3.3c)
implies that u = u(0). Equation (3.3d) shows that λ = λ(0). That is, H(ω,ω(0), 1) = 0 with
respect to ω has only one solution ω = ω(0) = (x(0), λ(0), u(0), 0).

As t = 0, H(ω,ω(0), t) = 0 turns to the KKT system (3.1a)–(3.1c).
For a given ω(0), rewrite H(ω,ω(0), t) asHω(0) (ω, t). The zero-point set of Hω(0) is

H−1
ω(0) =

{
(ω, t) ∈ Ω × R

p+m
++ × Rs × (0, 1] : H

(
ω,ω(0), t

)
= 0

}
. (3.4)

Theorem 3.1. Suppose f, g, and h are three times continuous differentiable functions. In addition, let
the assumptions (C1)-(C2) hold and ηi, βj twice times continuously differentiable functions. Then for
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almost all initial points ω(0) ∈ Ω0 ×Λ++ × Rm
++ × {0}, 0 is a regular value ofHω(0) andH−1

ω(0) consists
of some smooth curves. Among them, a smooth curve, say Γω(0) , is starting from (ω(0), 1).

Proof. Denote the Jacobi matrix of H(ω,ω(0), t) by DH(ω,ω(0), t). For any ω(0) ∈ Ω0 × Λ++ ×
Rm

++ × {0} and t ∈ [0, 1], we have DH(ω,ω(0), t) = (∂H/∂ω, ∂H/∂ω(0), ∂H/∂t). Now, we
consider the submatrix of DH(ω,ω(0), t).

For any (x, x(0), λ(0), u(0)) ∈ Rn ×Ω0 ×Λ++ × Rm
++,

∂H

∂
(
x, x(0), λ(0), u(0)

) =

⎡

⎢
⎢
⎢
⎢⎢
⎢
⎣

Q −tIn 0 0
∇h(x)T 0 0 0
U∇g(x)T −tU(0)∇g

(
x(0))T 0 −tdiag(g(x(0)))

0 0
5
2
t
(
λ(0)

)3/2
Ip 0

⎤

⎥
⎥
⎥
⎥⎥
⎥
⎦

,

(3.5)

where Q = (1 − t)(
∑p

i=1 λi∇2fi(x) +
∑m

j=1 uj∇2gj(x) + t
∑m

j=1 u
2
j∇ηj(x)) + [∇2h(x) + t(∇β(x) −

∇2h(x))]z + tIn.
We obtain that

rank
∂H

∂
(
x, x(0), λ(0), u(0)

) = n + p +m + s. (3.6)

That is, 0 is a regular value of H. By parametric form of the Sard theorem, for almost
allω(0) ∈ Ω0×Λ++×Rm

++×{0}, 0 is a regular value ofHω(0) . By inverse image theorem,H−1
ω(0) (0)

consists of some smooth curves. Since H(ω(0), ω(0), 1) = 0, there must be a smooth curve,
denoted by Γω(0) , that starts from (ω(0), 1).

Theorem 3.2. Let assumptions (C1)-(C2) hold. For a given ω(0) = (x(0), λ(0), u(0), z(0)) ∈ Ω0 ×Λ++ ×
Rm

++×{0}, if 0 is a regular value ofHω(0) , then the projection of the smooth curve Γω(0) on the component
λ is bounded.

Proof. Suppose that the conclusion does not hold. Since (0,1] is bounded, there exists a
sequence {(ω(k), tk)} ⊂ Γω(0) , such that

tk −→ t∗,
∥∥∥λ(k)

∥∥∥ −→ ∞. (3.7)

From the last equality of (3.2), we have

⎛

⎜⎜
⎝

1 − tk
1 − tk
· · ·

1 − tk

⎞

⎟⎟
⎠ −

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(1 − tk)λ
(k)
1 + (1 − tk)

∑

i /= 1

λ
(k)
i + tk

(
λ
(k)
1

)5/2

(1 − tk)λ
(k)
2 + (1 − tk)

∑

i /= 2

λ
(k)
i + tk

(
λ
(k)
2

)5/2

· · ·
(1 − tk)λ

(k)
p + (1 − tk)

∑

i /= p

λ
(k)
i + tk

(
λ
(k)
p

)5/2

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

− tk

⎛

⎜⎜⎜⎜⎜⎜
⎝

(
λ
(0)
1

)5/2

(
λ
(0)
2

)5/2

· · ·
(
λ
(0)
p

)5/2

⎞

⎟⎟⎟⎟⎟⎟
⎠

= 0. (3.8)
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If we assume ‖λ(k)‖ → +∞(k → ∞), this hypothesis implies

{
i ∈ {1, 2, . . . , p} : lim

k→∞
λ
(k)
i = ∞

}

/=Φ. (3.9)

Since tk → t∗, λ(k) > 0, it follows that the second part in the left-hand side of some
equations in (3.8) tends to infinity as k → ∞. But the other two parts are bounded. This is
impossible. Thus, the component λ is bounded.

Theorem 3.3. Let f, g, and h be three times continuous differentiable functions. In addition, let the
assumptions (C1)–(C4) hold and ηi, βj twice times continuously differentiable functions. Then, for
almost all of ω(0) ∈ Ω0 × Λ++ × Rm

++ × {0}, H−1
ω(0) (0) contains a smooth curve Γω(0) ⊂ Ω × R

p
+ × Rm

+ ×
Rs × (0, 1], which starts from (ω(0), 1). As t → 0, the limit set T × {0} ⊂ Ω ×Λ+ ×Rm

+ ×Rs × {0} of
Γω(0) is nonempty and every point in T is a solution of the KKT system (3.1a)–(3.1c).

Proof. From the homotopy equation (3.2), it is easy to see that Γω(0) ⊂ Ω×R
p
+ ×Rm

+ ×Rs × (0, 1].
By Theorem 3.1, for almost all ω(0) ∈ Ω0 × Λ++ × Rm

++ × {0}, 0 is a regular value of Hω(0) and
H−1

ω(0) contains a smooth curve Γω(0) starting from (ω(0), 1). By the classification theorem of
one-dimensional smooth manifolds, Γω(0) is diffeomorphic to a unit circle or the unit interval
(0, 1].

Noticing that

∣∣∣∣∣
∂Hω(0)

(
ω(0), 1

)

∂ω

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣∣∣

In 0 0 β
(
x(0))

∇h
(
x(0))T 0 0 0

U(0)∇g
(
x(0))T 0 diag

(
g
(
x(0))) 0

0 −5
2
(
λ(0)

)3/2
Ip 0 0

∣∣∣∣∣∣∣∣∣∣∣∣∣

= (−1)s
∣∣∣diag

(
g
(
x(0)

))∣∣∣

∣∣∣∣−
5
2

(
λ(0)

)3/2
Ip

∣∣∣∣

∣∣∣∣∇h
(
x(0)

)T
β
(
x(0)

)∣∣∣∣ .

(3.10)

Because g(x(0)) < 0, λ(0) ∈ Λ++ and by the assumption (C4), we know that
[∂Hω(0) (ω(0), 1)/∂ω] is nonsingular. Therefore, the smooth curve Γω(0) starts from (ω(0), 1)
diffeomorphic to (0, 1].

Let (ω∗, t∗) be a limit point of Γω(0) ; only three cases are possible:

(a) (ω∗, t∗) ∈ Ω ×Λ+ × Rm
+ × Rs × {0};

(b) (ω∗, t∗) ∈ ∂(Ω0 × R
p+m
+ ) × Rs × (0, 1];

(c) (ω∗, t∗) ∈ Ω × R
p+m
+ × Rs × {1}.

BecauseH(ω(0), ω(0), 1) = 0 has a unique solution (ω(0), 1), the case (c)will not happen.
In case (b), becauseΩ and (0, 1] are bounded sets and by the assumption (C2), for any

x ∈ Ω and t ∈ [0, 1], there exists map η(x) and β(x) such that, {∇gi(x), ηi(x) : i ∈ B(x)} is
positive linear independent with respect to ∇h(x) + t(β(x) − ∇h(x)). From the first equation
of (3.2), we get that the component z of Γω(0) is bounded.
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If case (b) holds, then there exists a sequence {(ω(k), tk)} ⊂ Γω(0) , such that

∥
∥
∥
(
ω(k), tk

)∥∥
∥ −→ ∞. (3.11)

Because Ω and (0, 1] are bounded, there exists a subsequence (denoted also by
{(ω(k), tk)} ⊂ Γω(0) ) such that

x(k) −→ x∗, λ(k) −→ λ∗,
∥
∥
∥u(k)

∥
∥
∥ −→ ∞, z(k) −→ z∗, tk −→ t∗, as k −→ ∞. (3.12)

By the third equation of (3.2), we have

g
(
x(k)

)
= tk

(
U(k)

)−1
U(0)g

(
x(0)

)
. (3.13)

Hence, the active index set B(x∗) is nonempty.
From the first equation of (3.2), it follows that

(1 − tk)
(
∇f

(
x(k)

)
λ(k) +∇g

(
x(k)

)
u(k) + tkη

(
x(k)

)(
u(k)

)2
)

+
[
∇h

(
x(k)

)
+ tk

(
β
(
x(k)

)
− ∇h

(
x(k)

))]
z(k) + tk

(
x(k) − x(0)

)
= 0.

(3.14)

(i)When t∗ = 1, rewrite (3.14) as

∑

j∈B(x∗)

(1 − tk)
(
∇gj

(
x(k)

)
u
(k)
j + tkηj

(
x(k)

)(
u
(k)
j

)2
)

+ tkβ
(
x(k)

)
z(k) + (1 − tk)∇h

(
x(k)

)
z(k) +

(
x(k) − x(0)

)

= −(1 − tk)

⎡

⎣
∑

j/∈B(x∗)

∇gj
(
x(k)

)
u
(k)
j + tkηj

(
x(k)

)(
u
(k)
j

)2

+∇f
(
x(k)

)
λ(k) −

(
x(k) − x(0)

)
⎤

⎦.

(3.15)

From the fact that u(k)
j is bounded for j /∈ B(x∗) and by the assumptions (C1) and (C2),

when k → ∞, we observe that

∑

j∈B(x∗)

(
∇gj(x∗) lim

k→∞
(1 − tk)u

(k)
j + ηj(x∗) lim

k→∞
(1 − tk)tk

(
u
(k)
j

)2
)

= −
(
β(x∗)z∗ + x∗ − x(0)

)
.

(3.16)
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It is easy to see that the right-hand side of the equation is bounded. By the assumption
(C2), we have

lim
k→∞

(1 − tk)u
(k)
j = 0, lim

k→∞
(1 − tk)tk

(
u
(k)
j

)2
= αj , j ∈ B(x∗), (3.17)

where αj ≥ 0.
Then, we have

x(0) = x∗ + β(x∗)z∗ +
∑

j∈B(x∗)

αjηj(x∗), (3.18)

which contradicts the assumption (C3).
(ii)When t∗ ∈ [0, 1), rewrite (3.14) as

∑

j∈B(x∗)

(1 − tk)
(
∇gj

(
x(k)

)
u
(k)
j + tkηj

(
x(k)

)(
u
(k)
j

)2
)

= −(1 − tk)

⎡

⎣
∑

j/∈B(x∗)

(
∇gj

(
x(k)

)
u
(k)
j + tkηj

(
x(k)

)(
u
(k)
j

)2
)
+∇f

(
x(k)

)
λ(k)

⎤

⎦

− tk
(
x(k) − x(0)

)
−
[
∇h

(
x(k)

)
+ tk

(
β
(
x(k)

)
− ∇h

(
x(k)

))]
z(k).

(3.19)

We know that, since Ω and u
(k)
j , j /∈ B(x∗) are bounded as k → ∞, the right-hand side

of (3.19) is bounded. But by the assumption (C2), if u
(k)
j → ∞ (j ∈ B(x∗)), then the left-hand

side of (3.19) is infinite; this is a contradiction.
As a conclusion, (a) is the only possible case, and ω∗ is a solution of the KKT system.
Let s be the arc-length of Γω(0) . We can parameterize Γω(0) with respect to s.

Theorem 3.4. The homotopy path Γω(0) is determined by the following initial-value problem for the
ordinary differential equation

DHω(0) (ω(s), t(s))

⎡

⎢⎢
⎣

·
ω
·
μ

⎤

⎥⎥
⎦ = 0,

ω(0) = ω(0), t(0) = 1.

(3.20)

The component ω∗ of the solution point (ω(s∗), t(s∗)), for t(s∗) = 0, is the solution of the KKT
system.

4. Algorithm and Numerical Example

Algorithm 4.1. MOP’s Euler-Newton method.
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Step 1. Give an initial point (ω(0), 1) ∈ Ω0 ×R
p+m
++ × {0} × {1}, an initial step length h0 > 0, and

three small positive numbers ε1, ε2, ε3. Let k := 0.

Step 2. Compute the direction γ (k) of the predictor step.

(a) Compute a unit tangent vector ξ(k) ∈ Rn+p+m+s+1 of Γω0 at (ω(0), tk).

(b) Determine the direction γ (k) of the predictor step.

If the sign of the determinant
∣
∣
∣
∣
DH

ω(0) (ω(k),tk)

ξ(k)
T

∣
∣
∣
∣ is (−1)p+m+s+pm+ps+ms+1, take γ (k) = ξ(k).

If the sign of the determinant
∣
∣
∣
∣
DH

ω(0) (ω(k),tk)

ξ(k)
T

∣
∣
∣
∣ is (−1)p+m+s+pm+ps+ms, take γ (k) = −ξ(k).

Step 3. Compute a corrector point (ω(k+1), tk+1):

(
(ω∗)(k), (t∗)k

)
=
(
ω(k), tk

)
+ hkγ

(k),

(
ω(k+1), tk+1

)
=
(
(ω∗)(k), (t∗)k

)
−DHω(0)

(
(ω∗)(k), (t∗)k

)+
Hω(0)

(
(ω∗)(k), (t∗)k

)
,

(4.1)

where

DHω(0) (ω, t)+ = DHω(0) (ω, t)T
(
DHω(0) (ω, t)DHω(0) (ω, t)T

)−1
(4.2)

is the Moore-Penrose inverse of DHω(0) (ω, t).

If ‖Hω(0) (ω(k+1), tk+1)‖ ≤ ε1, let hk+1 = min{h0, 2hk}, and go to Step 4.

If ‖Hω(0) (ω(k+1), tk+1)‖ ∈ (ε1, ε2), let hk+1 = hk, and go to Step 4.

If ‖Hω(0) (ω(k+1), tk+1)‖ ≥ ε2, let hk+1 = max{(1/2)h0, (1/2)hk}, and go to Step 3.

Step 4. If ω(k+1) ∈ Ω × R
p+m
+ × Rs and tk+1 > ε3, let k = k + 1 and go to Step 2.

If ω(k+1) ∈ Ω × R
p+m
+ × Rs and tk+1 < −ε3, let hk := hk(tk/(tk − tk+1)), go to Step 3, and

recompute (ω(k+1), tk+1) for the initial point (ω(k), tk).
If ω(k+1) /∈ Ω × R

p+m
+ × Rs, let hk := (hk/2)(tk/(tk − tk+1)), go to Step 3, and recompute

(ω(k+1), tk+1) for the initial point (ω(k), tk).
If ω(k+1) ∈ Ω × R

p+m
+ × Rs, and |tk+1| ≤ ε3, then stop.

Example 4.2 (see [9]). Consider

min f = min
{
x2
1 + x2

2 + x2
3 + x2

4 + x2
5, 3x1 + 2x2 − 1

3
x3 + 0.01(x4 − x5)3

}
;

s.t. g1(x) = x2
1 + x2

2 + x2
3 + x2

4 − 10 ≤ 0;

h1(x) = 4x1 − 2x2 + 0.8x3 + 0.6x4 + 0.5x2
5 = 0;

h2(x) = x1 + 2x2 − x3 − 0.5x4 + x5 − 2 = 0.

(4.3)

The results are shown in Table 1.
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Table 1: Results for Example 4.2.

x(0) x∗ f(x∗) ‖Hω∗ ‖
(1.0000, 2.0000, 0.0000, 1.0000, 1.0000) (−1.3074,−2.8605,−1.0470,

0.4103, 0.4475) (11.3566,−9.2942) 1.0e−012

(−1.0000, −2.0000, 1.0000, 1.0000, 1.0000) (−1.3073,−2.8603,−1.0470,
0.4102, 0.4476) (11.3550,−9.2936) 1.0e−013

Now, we compare the same example with the one in [9] under the same initial point.

x(0) x∗ f(x∗) ‖Hω∗ ‖
(1.0000, 2.0000, 0.0000, 1.0000, 1.0000) (0.3077, 0.5374,−0.2703,

−0.1336, 0.2804) (0.5330, 2.0873) 6.6e−016

(−1.0000, −2.0000, 1.0000, 1.0000, 1.0000) (−2.2124,−2.0383, 0.8241,
−0.5208, 8.8528) (88.3715,−19.2246) 4.1e−014

Table 2: Results for Example 4.3.

x(0) x∗ f(x∗) ‖Hω∗ ‖
(12.0000, 3.0000) (3.0004, 0.0000) (11.3566,−9.2942) 1.0e−012

(12.0000,−3.0000) (3.0003, 0.0000) (11.3550,−9.2936) 1.0e−013

Example 4.3. Consider

min f = min
{
x2
1 + x2

2, x1

}
;

s.t. g1(x) = −x2 − 6 ≤ 0;

g2(x) = x2 − 6 ≤ 0;

h1(x) = x1 − x2
2 − 3 = 0.

(4.4)

(1) Since ∇h(x) = (1,−2x2)
T , it is easy to see that the assumption (A3) in [14] and the

assumption (C3) in [15] are not satisfied at most points in feasible set. Hence, we introduce
the functions ηi(x) (i = 1, 2) and β(x).

(2) Let ηi(x) = ∇gi(x) (i = 1, 2) and β(x) = (10, 0)T . It is easily verified that the feasible
set satisfies the assumptions (C1)–(C4). The results are shown in Table 2.
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