
Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2012, Article ID 568120, 31 pages
doi:10.1155/2012/568120

Research Article
Existence Results for Quasilinear Elliptic Equations
with Indefinite Weight

Mieko Tanaka

Department of Mathematics, Tokyo University of Science, Kagurazaka 1-3, Shinjuku-ku 162-8601, Japan

Correspondence should be addressed to Mieko Tanaka, tanaka@ma.kagu.tus.ac.jp

Received 19 January 2012; Accepted 7 March 2012

Academic Editor: Juan J. Nieto

Copyright q 2012 Mieko Tanaka. This is an open access article distributed under the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

We provide the existence of a solution for quasilinear elliptic equation −div(a∞(x)|∇u|p−2∇u +
ã(x, |∇u|)∇u) = λm(x)|u|p−2u+f(x, u)+h(x) in Ω under the Neumann boundary condition. Here,
we consider the condition that ã(x, t) = o(tp−2) as t → +∞ and f(x, u) = o(|u|p−1) as |u| → ∞. As
a special case, our result implies that the following p-Laplace equation has at least one solution:
−Δpu = λm(x)|u|p−2u + μ|u|r−2u + h(x) in Ω, ∂u/∂ν = 0 on ∂Ω for every 1 < r < p < ∞, λ ∈ R,
μ/= 0 and m,h ∈ L∞(Ω) with

∫

Ω m dx/= 0. Moreover, in the nonresonant case, that is, λ is not an
eigenvalue of the p-Laplacian with weight m, we present the existence of a solution of the above
p-Laplace equation for every 1 < r < p < ∞, μ ∈ R and m,h ∈ L∞(Ω).

1. Introduction

In this paper, we consider the existence of a solution for the following quasilinear elliptic
equation:

−divA(x,∇u) = λm(x)|u|p−2u + f(x, u) + h(x) in Ω,

∂u

∂ν
= 0 on ∂Ω,

(P ;λ,m, h)

where Ω ⊂ R
N is a bounded domain with C2 boundary ∂Ω, ν denotes the outward

unit normal vector on ∂Ω, λ ∈ R, 1 < p < ∞ and m,h ∈ L∞(Ω). We assume that f is a
Carathéodory function on Ω × R satisfying

lim
|t|→∞

f(x, t)

|t|p−2t
= 0 uniformly in x ∈ Ω, (1.1)
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and that f(x, t) is bounded on a bounded set (admitting f ≡ 0 in the nonresonant case). Here,
A : Ω × R

N → R
N is a map which is strictly monotone in the second variable and satisfies

certain regularity conditions (see the following assumption (A)). The equation (P ;λ,m, h)
contains the corresponding p-Laplacian problem as a special case. Although the operatorA is
nonhomogeneous in the second variable in general, we assume thatA(x, y) is asymptotically
(p − 1)-homogeneous at infinity in the following sense (AH).

Throughout this paper, we assume that the mapA satisfies the following assumptions
(AH) and (A):

(AH) there exist a positive function a∞ ∈ C1(Ω,R) and a continuous function ã(x, t) on
Ω × R such that

A
(

x, y
)

= a∞(x)
∣

∣y
∣

∣

p−2
y + ã

(

x,
∣

∣y
∣

∣

)

y for every x ∈ Ω, y ∈ R
N,

lim
t→+∞

ã(x, t)
tp−2

= 0 uniformly in x ∈ Ω.
(1.2)

(A) A(x, y) = a(x, |y|)y, where a(x, t) > 0 for all (x, t) ∈ Ω × (0,+∞) and

(i) A ∈ C0(Ω × R
N,RN) ∩ C1(Ω × (RN \ {0}),RN);

(ii) there exists C1 > 0 such that

∣

∣DyA
(

x, y
)∣

∣ ≤ C1
∣

∣y
∣

∣

p−2 for every x ∈ Ω, y ∈ R
N \ {0}; (1.3)

(iii) there exists C0 > 0 such that

DyA
(

x, y
)

ξ · ξ ≥ C0
∣

∣y
∣

∣

p−2|ξ|2 for every x ∈ Ω, y ∈ R
N \ {0}, ξ ∈ R

N ; (1.4)

(iv) there exists C2 > 0 such that

∣

∣DxA
(

x, y
)∣

∣ ≤ C2

(

1 +
∣

∣y
∣

∣

p−1) for every x ∈ Ω, y ∈ R
N \ {0}. (1.5)

A similar hypothesis to (A) is considered in the study of quasilinear elliptic problems
(cf. [1, Example 2.2], [2–6]). It is easily seen that many examples as in the above references
satisfy the condition (AH). Also, the following example satisfies our hypotheses:

div
((

|∇u|p−2 + |∇u|q−2
)

(

1 + |∇u|q)(p−q)/q∇u
)

for 1 < p ≤ q < ∞. (1.6)

In particular, for A(x, y) = |y|p−2y, that is, divA(x,∇u) stands for the usual p-Laplacian Δpu,
we can take C0 = C1 = p−1 in (A). Conversely, in the case where C0 = C1 = p−1 holds in (A),
by the inequalities in Remark 1.4 (ii) and (iii), we see a(x, t) = |t|p−2 whenceA(x, y) = |y|p−2y.

Concerning the weight m, throughout this paper, we assume that

|{m > 0}| := |{x ∈ Ω; m(x) > 0}| > 0 (1.7)

holds, where |X| denotes the Lebesgue measure of a measurable set X.
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Because A(x, y) is asymptotically (p − 1)-homogeneous at infinity, the solvability of
our equation is related to the following homogeneous equation (see Theorem 1.1):

−div
(

a∞(x)|∇u|p−2∇u
)

= λm(x)|u|p−2u in Ω,

∂u

∂ν
= 0 on ∂Ω,

(EV ;m)

where a∞ is the positive function as in (AH). We say that λ ∈ R is an eigenvalue of (EV ;m)
if the equation (EV ;m) has a nontrivial solution.

There are few existence results of a solution to our equation (and also the p-Laplace
equation). For example, if λ < 0 and m ≡ 1 hold, then the standard argument guarantees the
existence of a solution. For the p-Laplacian as a special case of our problem, it is shown in [7]
that the equation

−Δpu = λm|u|p−2u + h in Ω
∂u

∂ν
= 0 on ∂Ω (1.8)

has a unique positive solution provided 0 < λ < λ∗(m),
∫

Ω mdx < 0 and 0/≡h ∈ L∞(Ω)+,
where λ∗(m) is the principal eigenvalue defined in Section 2.1 with a∞ ≡ 1. In [8], although
the resonant case where λ = λ1(m) or λ = λ2(m) is considered under the assumptions to
f(x, u) = f(u), its result does not cover the case of f(u) = |u|r−2u with 1 < r < p, where λi(m)
(i = 1, 2) is ith eigenvalue of the p-Laplacian with weight m. For the Laplace problem under
the Neumann boundary condition, we can refer to [9, 10]. Under the Dirichlet boundary con-
dition, the existence results for the Laplace problem are well known whenm ≡ 1 and λ is not
an eigenvalue of the Laplacian (cf. [11]). Moreover, under the Dirichlet (or blow-up) boun-
dary condition, many authors study various equations involving the p-Laplace (Laplace)
operator with (indefinite) weight. For example, we refer to [12] for boundary blow-up pro-
blems with Laplacian, [13] for periodic reaction-diffusion problems and [14, 15] for singular
quasilinear elliptic problems.

Recently, the present author shows the existence of a solution for our problem in the
case where λ is between the principal eigenvalue and the second eigenvalue in [6] (for f ≡ 0).
In addition, a similar situation is treated in [5]. However, existence results are not seen in
the case when λ is greater than the second eigenvalue for our problem. Therefore, the first
purpose of this paper is to present an existence result of a solution in the nonresonant case
where λ is not an eigenvalue of (EV ;m). Then, it studied the existence of at least one solution
in the resonant case under assumptions that cover the case f(u) = μ|u|r−2uwith 1 < r < p and
μ/= 0.

For the proof of our result, it is necessary to study the weighted eigenvalue problem
(EV ;m). Thus, in Section 2, we introduce two sequences {λn(m)}n and {μn(m)}n of an eigen-
value of (EV ;m) defined by Ljusternik-Schnirelman theory or Drábek-Robinson’s method
(cf. [16]), respectively. Then, we show several properties of above eigenvalues. In Section 3,
we give the proof in the nonresonant case by using {μn(m)}n. In Sections 4 and 5, we handle
the resonant case.



4 Abstract and Applied Analysis

1.1. Statements of Our Existence Results

First, we state the existence result of a solution in the nonresonant case.

Theorem 1.1. Assume that λ ∈ R is not an eigenvalue of (EV ;m). Then, (P ;λ,m, h) has at least
one solution.

To state our existence result in the resonant case, we introduce some conditions. Set

F(x, u) :=
∫u

0
f(x, s)ds, ˜G

(

x, y
)

:=
∫ |y|

0
ã(x, t)t dt, (1.9)

where ã is the function as in (AH).

(H+) there exist 0 ≤ q ≤ p − 1 and H0 > 0 such that

lim
|y|→∞

p ˜G
(

x, y
) − ã

(

x,
∣

∣y
∣

∣

)∣

∣y
∣

∣

2

∣

∣y
∣

∣

1+q
= +∞ uniformly in a.e. x ∈ Ω,

f(x, t)t − pF(x, t) ≥ −H0

(

1 + |t|1+q
)

for a.e. x ∈ Ω, every t ∈ R;

(1.10)

(H−) there exist 0 ≤ q ≤ p − 1 and H0 > 0 such that

lim
|y|→∞

p ˜G
(

x, y
) − ã

(

x,
∣

∣y
∣

∣

)∣

∣y
∣

∣

2

∣

∣y
∣

∣

1+q
= −∞ uniformly in a.e. x ∈ Ω,

f(x, t)t − pF(x, t) ≤ H0

(

|t|1+q + 1
)

for a.e. x ∈ Ω, every t ∈ R;

(1.11)

(HF+) there exist 0 ≤ q ≤ p − 1 and H0 > 0 such that

p ˜G
(

x, y
) − ã

(

x,
∣

∣y
∣

∣

)∣

∣y
∣

∣

2 ≥ −H0

(

1 +
∣

∣y
∣

∣

1+q
)

for every x ∈ Ω, y ∈ R
N,

lim
|t|→∞

f(x, t)t − pF(x, t)

|t|1+q
= +∞ uniformly in a.e. x ∈ Ω;

(1.12)

(HF−) there exist 0 ≤ q ≤ p − 1 and H0 > 0 such that

p ˜G
(

x, y
) − ã

(

x,
∣

∣y
∣

∣

)∣

∣y
∣

∣

2 ≤ H0

(

1 +
∣

∣y
∣

∣

1+q
)

for every x ∈ Ω, y ∈ R
N,

lim
|t|→∞

f(x, t)t − pF(x, t)

|t|1+q
= −∞ uniformly in a.e. x ∈ Ω.

(1.13)
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Theorem 1.2. Assume one of the following conditions:

(i) λ = 0 and (HF+) or (HF−) hold;
(ii) λ/= 0,

∫

Ω mdx/= 0 and one of (H+), (H−), (HF+) and (HF−) hold;
(iii) λ/= 0,

∫

Ω mdx = 0 and (H+) or (HF+) hold;

Then, (P ;λ,m, h) has at least one solution.

In the special case where ã(x, t) ≡ 0 and f(x, u) = μ|u|r−2u for 1 < r < p, we easily see
that (HF+) or (HF−) holds with 0 ≤ q < r−1 provided μ < 0 or μ > 0, respectively. Therefore,
the following result is proved according to Theorem 1.2.

Corollary 1.3. Let 1 < r < p < ∞, μ/= 0 and
∫

Ω mdx/= 0. Then, the following equation has at least
one solution:

−div
(

a∞(x)|∇u|p−2∇u
)

= λm(x)|u|p−2u + μ|u|r−2u + h(x) in Ω,

∂u

∂ν
= 0 on ∂Ω.

(1.14)

1.2. Properties of the Map A

Inwhat follows, the norm onW1,p(Ω) is given by ‖u‖p := ‖∇u‖pp+‖u‖pp, where ‖u‖q denotes the
norm of Lq(Ω) for u ∈ Lq(Ω) (1 ≤ q ≤ ∞). Setting G(x, y) :=

∫ |y|
0 a(x, t)t dt, then we can easily

see that

∇yG
(

x, y
)

= A
(

x, y
)

, G(x, 0) = 0 (1.15)

for every x ∈ Ω.

Remark 1.4. It is easily seen that the following assertions hold under condition (A):

(i) for all x ∈ Ω, A(x, y) is maximal monotone and strictly monotone in y;

(ii) |A(x, y)| ≤ (C1/(p − 1))|y|p−1 for every (x, y) ∈ Ω × R
N ;

(iii) A(x, y)y ≥ (C0/(p − 1))|y|p for every (x, y) ∈ Ω × R
N ;

(iv) G(x, y) is convex in y for all x and satisfies the following inequalities:

A
(

x, y
)

y ≥ G
(

x, y
) ≥ C0

p
(

p − 1
)

∣

∣y
∣

∣

p
, G

(

x, y
) ≤ C1

p
(

p − 1
)

∣

∣y
∣

∣

p
, (1.16)

for every (x, y) ∈ Ω × R
N , where C0 and C1 are the positive constants in (A).
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The following result is proved in [3]. It plays an important role for our poof.

Proposition 1.5 (see [3, Proposition 1]). Let A : W1,p(Ω) → W1,p(Ω)∗ be the map defined by

〈A(u), v〉 =
∫

Ω
A(x,∇u)∇v dx, (1.17)

for u, v ∈ W1,p(Ω). Then,A has the (S)+ property, that is, any sequence {un} weakly convergent to u
with lim supn→∞ 〈A(un), un − u〉 ≤ 0 strongly converges to u.

2. The Weighted Eigenvalue Problems

2.1. Preliminaries

The following lemmas can be easily shown by way of contradiction because
∫

Ω a∞|∇u|p dx is
equivalent to ‖∇u‖pp (note that a∞ is positive). Here, we omit the proofs (refer to [7]).

Lemma 2.1. Assume
∫

Ω mdx < 0. Then, there exists a constant c > 0 such that
∫

Ω a∞|∇u|p dx ≥
c‖u‖pp for every u ∈ W1,p(Ω) with

∫

Ω m|u|p dx > 0.

Lemma 2.2. Assume that
∫

Ω mdx/= 0 and ξ > 0. Then, there exists a constant b(m, ξ) > 0 such that

∫

Ω
a∞|∇u|p dx − ξ

∫

Ω
m|u|p dx ≥ b(m, ξ)

∫

Ω
|u|p dx (2.1)

for every u ∈ B(m) := {u ∈ W1,p(Ω);
∫

Ω m|u|p dx ≤ 0}.

Lemma 2.3. Assume that m ≥ 0 in Ω. Then, for every ξ > 0 there existed d(m, ξ) > 0 such that

∫

Ω
a∞|∇u|p dx − ξ

∫

Ω
m|u|p dx ≥ d(m, ξ)

∫

Ω
|u|p dx (2.2)

for every u ∈ W1,p(Ω).

First, we recall the following principle eigenvalue λ∗(m):

λ∗(m) := inf
{∫

Ω
a∞|∇u|p dx; u ∈ W1,p(Ω),

∫

Ω
m|u|p dx = 1

}

. (2.3)

Because of ∞ > supx∈Ω a∞(x) ≥ infx∈Ω a∞(x) > 0, we have the following result as the same
argument as in the case of the p-Laplacian.

Proposition 2.4 (see [7, Proposition 2.2]). The following assertions hold:

(i) If
∫

Ω mdx ≥ 0 holds, then λ∗(m) = 0;

(ii) If
∫

Ω mdx < 0 holds, then λ∗(m) > 0 is a simple eigenvalue and it admits a posi-
tive eigenfunction. In addition, the open interval (0, λ∗(m)) contains no eigenvalues of
(EV ;m).
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Lemma 2.5. Assume
∫

Ω mdx < 0. Then, one has λ∗(m + ε) < λ∗(m) < λ∗(m − ε′) for every ε > 0
and ε′ > 0 with |{m − ε′ > 0}| > 0.

Proof. We choose a minimizer u for λ∗(m) because Proposition 2.4 guarantees the existence of
it. Then, for every ε > 0, we have

λ∗(m + ε) ≤
∫

Ω a∞|∇u|p dx
∫

Ω(m + ε)|u|p dx <

∫

Ω a∞|∇u|p dx
∫

Ω m|u|p dx =
∫

Ω
a∞|∇u|p dx = λ∗(m) (2.4)

by the definition of λ∗(m + ε). By applying the same argument to a minimizer for λ∗(m − ε),
we obtain λ∗(m) < λ∗(m − ε′) for ε′ > 0 with |{m − ε′ > 0}| > 0.

2.2. Other Eigenvalues

Here, we introduce two unbounded sequences {λn(m)}n and {μn(m)}n as follows:

J(u) :=
∫

Ω
a∞|∇u|p dx for u ∈ W1,p(Ω), ˜J := J |S(m),

S(m) :=
{

u ∈ W1,p(Ω);
∫

Ω
m|u|p dx = 1

}

,

Sn(m) :=
{

X ⊂ S(m); compact, symmetric and γ(X) ≥ n
}

,

Fn(m) :=
{

g ∈ C
(

Sn−1, S(m)
)

; g is odd
}

,

λn(m) := inf
X∈Sn(m)

max
u∈X

˜J(u),

μn(m) := inf
g∈Fn(m)

max
z∈Sn−1

˜J
(

g(z)
)

,

(2.5)

where γ(X) denotes the Krasnoselskii genus of X (see [17, Definition 5.1] for the definition)
and Sn−1 denotes the usual unit sphere in R

n. We see that λn(m) is defined by Ljusternik-
Schnirelman theory and it is known that the definition of μn(m) is introduced by Drábek and
Robinson ([16]) under the p-Laplace Dirichlet problem with m ≡ 1.

Remark 2.6. The following assertions can be shown easily:

(i) λ1(m) = μ1(m) = λ∗(m);

(ii) Sn(m)/= ∅ and Fn(m)/= ∅ for every n ∈ N;

(iii) g(Sn−1) ⊂ Sn(m) for every g ∈ Fn(m);

(iv) μn(m) ≥ λn(m) for every n ∈ N;

(v) λn+1(m) ≥ λn(m) and μn+1(m) ≥ μn(m) for every n ∈ N,

see [18] for the proof of (ii).
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Define a C1 functional Φm on W1,p(Ω) by Φm(u) :=
∫

Ω m|u|p dx for u ∈ W1,p(Ω).
Because 1 ∈ R is a regular value of Φm, it is well known that the norm of the derivative
at u ∈ S(m) of the restriction of J to S(m) is defined as follows:

∥

∥

∥

˜J ′(u)
∥

∥

∥

∗
:= min

{

∥

∥J ′(u) − tΦ′
m(u)

∥

∥

W1,p(Ω)∗ ; t ∈ R

}

= sup
{〈

J ′(u), v
〉

; v ∈ Tu(S(m)), ‖v‖ = 1
}

,

(2.6)

where Tu(S(m)) denotes the tangent space of S(m) at u, that is, Tu(S(m)) = {v ∈ W1,p(Ω);
∫

Ω m|u|p−2uv dx = 0}. Here, we recall the definition of the Palais-Smale condition for ˜J .

Definition 2.7. ˜J is said to satisfy the bounded Palais-Smale condition if any bounded sequ-
ence un ∈ S(m) such that ‖˜J ′(un)‖∗ → 0 has a convergent subsequence. Moreover, we say
that ˜J satisfies the Palais-Smale condition at level c ∈ R if any sequence un ∈ S(m) such that
˜J(un) → c and ‖˜J ′(un)‖∗ → 0 as n → ∞ has a convergent subsequence. In addition, we say
that ˜J satisfies the Palais-Smale condition if ˜J satisfies the Palais-Smale condition for every
c ∈ R.

The following result can be proved by the same argument as in [19, Proposition 3.3]
(which treats the case of the p-Laplacian, i.e., a∞ ≡ 1) because of ∞ > supx∈Ω a∞(x) ≥
infx∈Ω a∞(x) > 0. Here, we omit the proof.

Lemma 2.8. The following assertions hold:

(i) ˜J satisfies the bounded Palais-Smale condition;

(ii) ˜J satisfies the Palais-Smale condition provided
∫

Ω mdx/= 0.

Proposition 2.9. λn(m) and μn(m) are eigenvalues of (EV ;m) such that

lim
n→∞

λn(m) = lim
n→∞

μn(m) = +∞. (2.7)

Proof. In the case of
∫

Ω mdx/= 0, since ˜J satisfies the Palais-Smale condition, we can apply the
first deformation lemma on C1 manifold (refer to [20]). Thus, by the standard argument, we
can prove that λn(m) and μn(m) are critical values of ˜J . This means that λn(m) and μn(m)
are eigenvalues of (EV ;m) by the Lagrange multiplier rule. In addition, we can easily show
limn→∞ λn(m) = +∞ by the standard argument via the first deformation lemma on C1

manifold (refer to [21, Proposition 3.14.7], [22] or [17] in the case of a Banach space). Hence,
limn→∞ μn(m) = +∞ holds because of μn(m) ≥ λn(m) for every n ∈ N.

In the case of
∫

Ω mdx = 0, by the same argument as in [18], our conclusion can be
proved. For readers’ convenience, we give a sketch of the proof. For ε > 0, we define Jε(u) :=
J(u) + ε‖u‖pp and ˜Jε := Jε|S(m). Moreover, we set minimax values λεn(m) and με

n(m) of ˜Jε by

λεn(m) := inf
X∈Sn(m)

max
u∈X

˜Jε(u), με
n(m) := inf

g∈Fn(m)
max
z∈Sn−1

˜Jε
(

g(z)
)

. (2.8)

Because any Palais-Smale sequence of ˜Jε is bounded, it is easily shown that ˜Jε satisfies the
Palais-Smale condition (refer to [19, Proposition 3.3]) Hence, it can be proved that λεn(m)
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and με
n(m) are critical values of ˜Jε. Furthermore, it follows from the argument as in [18,

Lemma 3.5] that λεn(m) → λn(m) and με
n(m) → μn(m) as ε → 0+. Therefore, by noting

that Jε is p-homogeneous, we can obtain a solution uε with ‖uε‖ = 1 for −div(a∞|∇u|p−2∇u) =
cεm|u|p−2u in Ω, ∂u/∂ν = 0 on ∂Ω, where cε = λεn(m) or με

n(m). Because of ‖uε‖ = 1, it follows
from the standard argument that uε has a subsequence strongly convergent to a solution u
for

−div
(

a∞|∇u|p−2∇u
)

= cm|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω, (2.9)

where c = limε→ 0+ cε. Thus, λn(m) and μn(m) are eigenvalues of (EV ;m). To prove
limn→∞ λn(m) = +∞, by considering a function mδ(x) := max{m(x), δ} for δ > 0, we have
λn(mδ) ≤ λn(m) (refer to Proposition 2.10). Because we can apply our fist assertion to mδ

(note
∫

Ω mδ dx > 0), we obtain limn→∞ μn(m) ≥ limn→∞ λn(m) ≥ limn→∞ λn(mδ) = +∞.

Proposition 2.10. Let 1 < r < ∞ if N ≤ p and p∗/(p∗ − p) ≤ r < ∞ if N > p. Then, the following
assertions hold:

(i) ifm′ ≥ m in Ω, then μk(m′) ≤ μk(m);

(ii) if limn→∞mn = m in Lr(Ω), then lim supn→∞ μk(mn) ≤ μk(m);

(iii) if
∫

Ω mdx/= 0 and limn→∞ mn = m in Lr(Ω), then limn→∞ μk(mn) = μk(m).

Moreover, the same conclusion holds for λk(m).

Proof. We only treat μk(m) because we can give the proof for λk(m) similarly.

(i) Let m′ ≥ m in Ω. Fix an arbitrary ε > 0. Then, by the definition of μk(m), there
exists a g ∈ Fk(m) such that maxz∈Sk−1 J(g(z)) < μk(m) + ε. Set g̃(z) := g(z)/
(
∫

Ω m′|g(z)|p dx)1/p for z ∈ Sk−1 (note
∫

Ω m′|g(z)|pdx ≥ ∫Ω m|g(z)|pdx = 1), then g̃ ∈
Fk(m′) holds. Therefore, by the definition of μk(m′), we have

μk

(

m′) ≤ max
z∈Sk−1

J
(

g̃(z)
)

= max
z∈Sk−1

J
(

g(z)
)

∫

Ω m′∣∣g(z)
∣

∣

p
dx

≤ max
z∈Sk−1

J
(

g(z)
)

< μk(m) + ε. (2.10)

because of
∫

Ω m′|g(z)|pdx ≥ ∫Ω m|g(z)|pdx = 1 for every z ∈ Sk−1. Since ε > 0 is arbi-
trary, we obtain μk(m′) ≤ μk(m).

(ii) Let limn→∞ mn = m in Lr(Ω) and fix an arbitrary ε > 0. By the definition of μk(m),
there exists a g ∈ Fk(m) such that maxz∈Sk−1 J(g(z)) < μk(m) + ε/2. Since g(Sk−1)
is compact and pr ′ := pr/(r − 1) ≤ p∗, we set M := maxu∈g(Sk−1) ‖u‖pr ′ . Then, due to
Hölder’s inequality and mn → m in Lr(Ω), there exists an n0 ∈ N such that

∫

Ω
mn|u|pdx = 1 +

∫

Ω
(mn −m)|u|pdx ≥ 1 − ‖mn −m‖rMp > 0 (2.11)

for every u ∈ g(Sk−1) and n ≥ n0. Therefore, by a similar argument to (i), we obtain

μk(mn) ≤ max
z∈Sk−1

J
(

g(z)
)

∫

Ω mn

∣

∣g(z)
∣

∣

p
dx

≤ μk(m) + ε/2
1 − ‖mn −m‖rMp

< μk(m) + ε (2.12)
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for sufficiently large n. Hence, lim supn→∞ μk(mn) ≤ μk(m) + ε follows. Since ε > 0
is arbitrary, our conclusion is proved.

(iii) Let limn→∞ mn = m in Lr(Ω) and
∫

Ω mdx/= 0. We fix an arbitrary ε > 0. Due to
our assertion (ii), there exists an n1 ∈ N such that μk(mn) ≤ μk(m) + ε/2. For
every n ≥ n1, by the definition of μk(mn), we can take gn ∈ Fk(mn) satisfying
maxz∈Sk−1 J(gn(z)) < μk(mn) + ε/2.

Here, we will prove

sup
n≥n1

max
{

‖u‖p; u ∈ gn
(

Sk−1
)}

< ∞. (2.13)

If u ∈ gn(Sk−1) satisfies
∫

Ω m|u|p dx ≤ 0, then we obtain

b(m, 1)‖u‖pp ≤ J(u) −
∫

Ω
m|u|p dx = J(u) −

∫

Ω
mn|u|p dx +

∫

Ω
(mn −m)|u|p dx

≤ μk(mn) +
ε

2
− 1 + ‖mn −m‖r‖u‖ppr ′

≤ μk(m) + ε + C‖mn −m‖r‖u‖pp +
CJ(u)‖mn −m‖r

infΩ a∞

≤
(

1 +
C‖mn −m‖r

infΩ a∞

)

(

μk(m) + ε
)

+ C‖mn −m‖r‖u‖pp

(2.14)

by Lemma 2.2 and Hölder’s inequality (note ‖∇u‖pp ≤ J(u)/infΩ a∞ and μk(mn) ≤ μk(m) +
ε/2), where C > 0 is a constant (independent of n and u) obtained by the continuity of
W1,p(Ω) into Lpr ′(Ω). Therefore, if we take an n2 ≥ n1 satisfying C‖mn −m‖r ≤ b(m, 1)/2 for
every n ≥ n2, then we obtain

‖u‖pp ≤ 2
b(m, 1)

(

1 +
b(m, 1)
2 infΩ a∞

)

(

μk(m) + ε
)

(2.15)

for every u ∈ gn(Sk−1) provided
∫

Ω m|u|p dx ≤ 0 and n ≥ n2. Similarly, in the case where m
changes sign, for every u ∈ gn(Sk−1) satisfying

∫

Ω m|u|p dx > 0, we have

b(−m, 1)‖u‖pp ≤ J(u) −
∫

Ω
(−m)|u|p dx

≤
(

1 +
C‖mn −m‖r

infΩ a∞

)

(

μk(m) + ε
)

+ 1 + C‖mn −m‖r‖u‖pp.
(2.16)

Hence, by taking a sufficiently large n3 ≥ n2, we get the inequality

‖u‖pp ≤ 2
b(−m, 1)

(

1 +
b(−m, 1)
2 infΩ a∞

)

(

μk(m) + ε + 1
)

, (2.17)
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for every u ∈ gn(Sk−1) with
∫

Ω m|u|p dx > 0 and n ≥ n3. In the case of m ≥ 0 in Ω, by using
Lemma 2.3 instead of Lemma 2.2, we have a similar inequality

‖u‖pp ≤ 2
d(m, 1)

(

1 +
d(m, 1)
2 infΩ a∞

)

(

μk(m) + ε + 1
)

, (2.18)

for every u ∈ gn(Sk−1) provided n ≥ n4 (some sufficiently large n4 ≥ n3). Consequently, our
claim follows from (2.15), (2.17), and (2.18).

Let us return to the proof of (iii). Because

sup
{

‖u‖pr ′ ; u ∈ gn
(

Sk−1
)

, n ≥ n1

}

=: R < +∞ (2.19)

holds by (2.13), J(u) ≤ μk(m) + ε/2 and the continuity of W1,p(Ω) into Lpr ′(Ω), we see the
inequality

∫

Ω
m|u|p dx = 1 −

∫

Ω
(mn −m)|u|p dx > 1 − ‖mn −m‖rRp > 0, (2.20)

for every u ∈ gn(Sk−1) and n ≥ n5 (some sufficiently large n5 ≥ n4). By considering g̃n(·) :=
gn(·)/(

∫

Ω m|gn(·)|pdx)1/p ∈ Fk(m), we obtain

μk(m) ≤ max
z∈Sk−1

J
(

g̃n(z)
) ≤ maxz∈Sk−1J

(

gn(z)
)

1 − ‖mn −m‖rRp
≤ μk(mn) + ε/2

1 − ‖mn −m‖rRp
. (2.21)

Because of ‖mn −m‖r → 0, we get μk(mn) ≥ μk(m) − ε for sufficiently large n, and hence our
conclusion holds.

Finally, we recall the second eigenvalue of (EV ;m) obtained by the mountain pass
theorem.

Σ(m) :=
{

η ∈ C([0, 1], S(m)); η(0) ∈ P, η(1) ∈ (−P)},

c(m) := inf
η∈Σ(m)

max
t∈[0,1]

˜J
(

η(t)
)

,
(2.22)

where P := {u ∈ W1,p(Ω);u(x) ≥ 0 for a.e. x ∈ Ω}.
Since ∞ > supx∈Ω a∞(x) ≥ infx∈Ω a∞(x) > 0 holds, the following result can be shown

by the same argument as in [19] (although they handle the asymmetry case, it is sufficient to
consider the case of m ≡ n in this paper). See [19, Theorem 3.2] for the proof.

Theorem 2.11. c(m) is an eigenvalue of (EV ;m) which satisfies λ∗(m) < c(m). Moreover, there is
no eigenvalues of (EV ;m) between λ∗(m) and c(m).
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Now, we have the following result.

Proposition 2.12.

λ2(m) = μ2(m) = c(m) (2.23)

holds, where c(m) is a minimax value defined by (2.22).

Proof. First, we prove the inequality c(m) ≥ μ2(m). Because c(m) is an eigenvalue (note that
the following equation is homogeneous), we can choose a solution u ∈ W1,p(Ω) with
∫

Ω m|u|p dx = 1 for

−div
(

a∞(x)|∇u|p−2∇u
)

= c(m)m(x)|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω. (2.24)

Note that u is a sign-changing function because any eigenfunction associated with any
eigenvalue greater than the principal eigenvalue changes sign (refer to [18, Proposition 4.3]).
Thus, we have

0 <

∫

Ω
a∞|∇u±|p dx = c(m)

∫

Ω
mu

p
± dx (2.25)

by taking ±u± as test function (recall that u± := max{±u, 0}). Hence, we may assume that
∫

Ω mu
p
± dx = 1 by the normalization. Set X := {su+ − tu−; |s|p + |t|p = 1} ⊂ S(m). Then, because

X is homeomorphic to S1, there exists g ∈ F2(m) such that g(S1) = X. Since the value of J is
equal to c(m) on X, we obtain

μ2(m) ≤ max
z∈S1

˜J
(

g(z)
)

= c(m) (2.26)

by the definition of μ2(m) and X.
Next, wewill prove the inequality c(m) ≤ λ2(m) by dividing into two cases:

∫

Ω mdx/= 0
and

∫

Ω mdx = 0.
Case of

∫

Ω mdx/= 0: by way of contradiction, we assume that λ2(m) < c(m). Then,
λ∗(m) = λ1(m) = λ2(m) follows from Theorem 2.11. Note that ˜J satisfies the Palais-Smale
condition in this case (see Lemma 2.8), and hence we can apply the first deformation lemma
to ˜J . Therefore, by the standard argument (cf. [22], [17, Lemma 5.6]), we see that γ(K) ≥ 2,
where K := {u ∈ S(m); ˜J ′(u) = 0, ˜J(u) = λ∗(m)}. This means that K is an infinite set, that is,
the following equation has infinite many solutions:

−div
(

a∞(x)|∇u|p−2∇u
)

= λ∗(m)m(x)|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω (2.27)

due to the Lagrange multiplier’s rule. This contradicts to the fact described as in
Proposition 2.4 that λ∗(m) is simple. As a result, we have shown that c(m) = λ2(m) = μ2(m)
holds in the case of

∫

Ω mdx/= 0 (note λn(m) ≤ μn(m)).
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Case of
∫

Ω mdx = 0: According to Proposition 2.10 (i) for λ2(m), we have λ2(m) ≥
λ2(m + ε) = c(m + ε) for every ε > 0 since we can apply the first result to m + ε. Because
we prove limε→ 0+ c(m + ε) = c(m) by the same argument as in [6, Lemma 2.9] (for the case
a∞ ≡ 1), our conclusion is proved by taking ε ↓ 0 in the inequality λ2(m) ≥ c(m + ε).

3. Proof of Theorem 1.1

We define a functional Iλ,m on W1,p(Ω) as follows:

Iλ,m(u) =
∫

Ω
G(x,∇u)dx − λ

p

∫

Ω
m|u|p dx −

∫

Ω
F(x, u)dx −

∫

Ω
hudx

=
1
p

∫

Ω
a∞|∇u|p dx +

∫

Ω

˜G(x,∇u)dx − λ

p

∫

Ω
m|u|p dx

−
∫

Ω
F(x, u)dx −

∫

Ω
hudx

(3.1)

for u ∈ W1,p(Ω) ((1.15) or (1.9) for the definition of G, ˜G, and F). It is easily seen that Iλ,m
is well defined and class of C1 on W1,p(Ω) by (1.1), (1.16) and the continuity of W1,p(Ω) ↪→
Lp(Ω).

Remark 3.1. Let u ∈ W1,p(Ω) be a critical point of Iλ,m, namely, u satisfies the equality

∫

Ω
A(x,∇u)∇ϕdx = λ

∫

Ω
m|u|p−2uϕdx +

∫

Ω
f(x, u)ϕdx +

∫

Ω
hϕdx (3.2)

for every ϕ ∈ W1,p(Ω). Then, u ∈ L∞(Ω) by theMoser iteration process (refer to Theorem C in
[4]). Therefore, u ∈ C1,α(Ω) (0 < α < 1) follows from the regularity result in [23]. Furthermore,
due to [24, Theorem 3], u satisfies (P ;λ,m, h) in the distribution sense and the boundary
condition

0 =
∂u

∂νA
= A(·,∇u)ν = a(·, |∇u|)∂u

∂ν
in W−1/q,q(∂Ω) (3.3)

for every 1 < q < ∞ (see [24] for the definition of W−1/q,q(∂Ω)). Since u ∈ C1,α(Ω) and
a(x, t) > 0 for every t /= 0, u satisfies the Neumann boundary condition, that is, (∂u/∂ν)(x) = 0
for every x ∈ ∂Ω.

3.1. The Palais-Smale Condition in the Nonresonant Case

First, we recall the definition of the Palais-Smale condition.

Definition 3.2. A C1 functional Ψ on a Banach space X is said to satisfy the Palais-Smale con-
dition at c ∈ R if a Palais-Smale sequence {un} ⊂ X at level c, namely,

Ψ(un) −→ c,
∥

∥Ψ′(un)
∥

∥

X∗ −→ 0 as n −→ ∞ (3.4)
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has a convergent subsequence. We say thatΨ satisfies the Palais-Smale condition ifΨ satisfies
the Palais-Smale condition at any c ∈ R. Moreover, we say that Ψ satisfies the bounded
Palais-Smale condition if any bounded sequence {un} such that {Ψ(un)} is bounded and
‖Ψ′(un)‖X∗ → 0 as n → ∞ has a convergent subsequence.

Concerning the Palais-Smale condition, we state the following result developed from
[6, Proposition 7].

Proposition 3.3. If λ is not an eigenvalue of (EV ;m), then Iλ,m satisfies the Palais-Smale condition.

Proof. Let {un} be a Palais-Smale sequence of Iλ,m, namely,

Iλ,m(un) −→ c,
∥

∥

∥I ′λ,m(un)
∥

∥

∥

W1,p(Ω)∗
−→ 0 as n −→ ∞ (3.5)

for some c ∈ R. It is sufficient to prove only the boundedness of ‖un‖ because the operator
A : W1,p(Ω) → W1,p(Ω)∗ described in Proposition 1.5 has the (S)+ property.

To prove the boundedness of ‖un‖, it suffices to show that ‖un‖p is bounded because of
the inequality |f(x, u)| ≤ C(|u|p−1 + 1) (obtained by (1.1)) and the following inequality:

〈

I ′λ,m(un), un

〉

+ λ

∫

Ω
m|un|p dx +

∫

Ω
f(x, un)un dx +

∫

Ω
hun dx,

=
∫

Ω
A(x,∇un)∇un dx ≥ C0

p − 1
‖∇un‖pp,

(3.6)

where we use Remark 1.4 (iii) in the last inequality. By way of contradiction, we may assume
that ‖un‖p → ∞ as n → ∞ by choosing a subsequence if necessary. Set vn := un/‖un‖p. Then,
since the inequality (3.6) guarantees that {vn} is bounded in W1,p(Ω), we may suppose, by
choosing a subsequence, that vn ⇀ v0 inW1,p(Ω) and vn → v0 in Lp(Ω) for some v0.

Here, we will prove that

lim
n→∞

∥

∥f(·, un)
∥

∥

p′

‖un‖p−1p

= 0, (3.7)

where p′ = p/(p−1). Fix an arbitrary ε > 0. It follows from (1.1) that there exists a Cε > 0 such
that

∣

∣f(x, u)
∣

∣ ≤ ε|u|p−1 + Cε for every u ∈ R, a.e. x ∈ Ω. (3.8)

Then, we obtain

∫

Ω

∣

∣f(x, un)
∣

∣

p′
dx ≤ 2p

′
∫

Ω

(

εp
′ |un|p + C

p′
ε

)

dx ≤ 2p
′
εp

′ ‖un‖pp + 2p
′
C

p′
ε |Ω|. (3.9)
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Since we are assuming that ‖un‖p → ∞ as n → ∞, there exists n0 ∈ N such that for every
n ≥ n0

∥

∥f(·, un)
∥

∥

p′

‖un‖p−1p

≤ 4ε (3.10)

holds. This shows that limn→∞ ‖f(·, un)‖p′/‖un‖p−1p = 0 because ε > 0 is arbitrary.
Here, we recall the following result proved in [6]:

lim
n→∞

∫

Ω

ã(x, |∇un|)∇un

‖un‖p−1p

∇(vn − v0)dx = lim
n→∞

∫

Ω

ã(x, |∇un|)∇un

‖un‖p−1p

∇ϕdx = 0, (3.11)

for every ϕ ∈ W1,p(Ω). Thus, by considering

o(1) =

〈

I ′
λ,m(un), vn − v0

〉

‖un‖p−1p

=
∫

Ω
a∞|∇vn|p−2∇vn∇(vn − v0)dx + o(1), (3.12)

we see that vn strongly converges to v0 in W1,p(Ω) (note that p-Laplacian has the (S)+ pro-
perty). Therefore, by taking a limit in o(1) = 〈I ′λ,m(un), ϕ〉/‖un‖p−1p for any ϕ ∈ W1,p(Ω) and
by noting (3.7) and (3.11), we know that v0 is a nontrivial solution (note ‖v0‖p = 1) of

−div
(

a∞|∇u|p−2∇u
)

= λm|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω. (3.13)

This means that λ is an eigenvalue of (EV ;m). This is a contradiction. Hence, ‖un‖p is
bounded.

3.2. Key Lemmas

To show the linking lemma, we define

Y
(

μ,m
)

:=
{

u ∈ W1,p(Ω);
∫

Ω
a∞|∇u|p dx ≥ μ

∫

Ω
m|u|p dx

}

(3.14)

for μ ∈ R.

Lemma 3.4. Let g0 ∈ C(Sk−1,W1,p(Ω) \ {0}) be odd and 0 < μ ≤ μk+1(m). Then, g(Sk
+) ∩

Y (μ,m)/= ∅ for every g ∈ C(Sk
+,W

1,p(Ω)) with g|Sk−1 = g0, where Y (μ,m) is the set introduced
in (3.14) and Sk

+ is the upper hemisphere in R
k+1 with boundary Sk−1.
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Proof. Fix any g ∈ C(Sk
+,W

1,p(Ω)) such that g|Sk−1 = g0. If u ∈ g(Sk
+) satisfies

∫

Ω m|u|p dx ≤ 0,
then u ∈ Y (μ,m) holds. So, we may assume that

∫

Ω m|u|pdx > 0 for every u ∈ g(Sk
+). Define

g̃ ∈ Fk+1(m) as follows:

g̃(z) :=

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

g(z)
(∫

Ω m
∣

∣g(z)
∣

∣

p
dx
)1/p

if z ∈ Sk
+,

− g(−z)
(∫

Ω m
∣

∣g(−z)∣∣p dx)1/p
if z ∈ Sk

−.
(3.15)

By the definition of μk+1(m), there exists z0 ∈ Sk such that ˜J(g̃(z0)) ≥ μk+1(m). Since g̃ is
odd and J is even, we may suppose z0 ∈ Sk

+. So, this yields the inequality J(g(z0)) ≥
μk+1(m)

∫

Ω m|g(z0)|pdx ≥ μ
∫

Ω m|g(z0)|p dx, whence g(z0) ∈ Y (μ,m) holds.

Lemma 3.5. Let μk(m) < λ. Then, there exists g0 ∈ Fk(m) such that

max
z∈Sk−1

J
(

g0(z)
)

< λ, max
z∈Sk−1

Iλ,m
(

Tg0(z)
) −→ −∞ as |T | −→ ∞, (3.16)

where μk(m) is defined by (2.5).

Proof. Choose ε0 > 0 such that μk(m) + ε0 < λ. By the definition of μk(m), there exists g0 ∈
Fk(m) such that

max
z∈Sk−1

J
(

g0(z)
)

< μk(m) + ε0. (3.17)

Due to the compactness of g0(Sk−1), we put M := maxz∈Sk−1 ‖g0(z)‖p. By the property of the
function ã as in (AH) and Young’s inequality, for every ε > 0 there exist constants Cε > 0 and
C′

ε > 0 such that

∣

∣

∣

˜G
(

x, y
)

∣

∣

∣ ≤ ε

2
∣

∣y
∣

∣

p + Cε

∣

∣y
∣

∣ ≤ ε
∣

∣y
∣

∣

p + C′
ε ≤

ε

infΩ a∞
a∞(x)

∣

∣y
∣

∣

p + C′
ε (3.18)

for every x ∈ Ω and y ∈ R
N . Moreover, the hypothesis (1.1) ensures that for every ε′ > 0 there

exist constants Dε′ > 0 satisfying

|F(x, u)| ≤ ε′

2
|u|p +Dε′ |u| ≤ ε′|u|p +D′

ε′ (3.19)

for every u ∈ R and a.e. x ∈ Ω. Hence, we have

Iλ,m(Tu) ≤ Tp

p

(

1 +
pε

a

)∫

Ω
a∞|∇u|pdx − Tp

(

λ − pε′Mp
)

p
+ T‖h‖∞‖u‖1 + C

≤ Tp

p

{(

1 +
pε

a

)

(

μk(m) + ε0
) − λ + pMpε′

}

+ TM‖h‖∞|Ω|(p−1)/p + C

(3.20)
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for every T > 0, u ∈ g0(Sk−1), ε > 0 and ε′ > 0 since g0(Sk−1) ⊂ S(m), (3.17), (3.18) and
(3.19), where C = (C′

ε +D′
ε′)|Ω| and a = infx∈Ω a∞(x) > 0. By taking ε > 0 and ε′ > 0 satisfying

(1+pε/a)(μk(m)+ε0)−λ+pMpε′ < 0, we show that maxz∈Sk−1 Iλ,m(Tg0(z)) → −∞ as T → +∞.
Thus, our conclusion follows because g0(Sk−1) is symmetric.

3.3. The Case
∫

Ωmdx/= 0

Lemma 3.6. Let
∫

Ω mdx < 0 and 0 < λ < λ∗(m). Then, Iλ,m is bounded from below, coercive and
weakly lower semicontinuous (w.l.s.c.) on W1,p(Ω).

Proof. Φ(u) :=
∫

Ω G(x,∇u)dx is w.l.s.c. on W1,p(Ω) because Φ is convex and continuous on
W1,p(Ω) (cf. [25, Theorem 1.2]). Thus, Iλ,m is also w.l.s.c. onW1,p(Ω) since the inclusion from
W1,p(Ω) to Lp(Ω) is compact.

Choose ε > 0 such that pε < a(1−λ/λ∗(m)), where a := infΩ a∞. By an easy estimation,
(3.18) and (3.19) as in Lemma 3.5, we have

Iλ,m(u) ≥
a − εp

pa

∫

Ω
a∞|∇u|p dx − λ

p

∫

Ω
m|u|pdx − ε′‖u‖pp

− ‖h‖∞‖u‖p|Ω|(p−1)/p − (C′
ε +D′

ε′
)|Ω|

(3.21)

for every u ∈ W1,p(Ω) and ε′ > 0.
Let u ∈ W1,p(Ω) satisfy

∫

Ω m|u|pdx ≤ 0. Then, the following inequality follows from
Lemma 2.2:

D0

∫

Ω
a∞|∇u|pdx − λ

∫

Ω
m|u|pdx ≥ D0

2

∫

Ω
a∞|∇u|pdx + b(m, ξ)‖u‖pp, (3.22)

where b(m, ξ) is a positive constant independent of u with ξ = 2λ/D0 and D0 = (a − εp)/a.
For every u ∈ W1,p(Ω) such that

∫

Ω m|u|pdx > 0, we obtain

D0

∫

Ω
a∞|∇u|pdx − λ

∫

Ω
m|u|pdx ≥

(

D0 − λ

λ∗(m)

)∫

Ω
a∞|∇u|pdx

≥ 1
2

(

D0 − λ

λ∗(m)

)∫

Ω
a∞|∇u|pdx +

c

2

(

D0 − λ

λ∗(m)

)

‖u‖pp
(3.23)

by the definition of λ∗(m), Lemma 2.1 and D0 − λ/λ∗(m) > 0, where c > 0 is a constant
obtained by Lemma 2.1.

Consequently, if we choose a ε′ > 0 satisfying ε′ < min{b(m, ξ)/p, c(D0 − λ/λ∗(m))/
(2p)}, then we obtain positive constants d1 and d2 (independent of u) such that

Iλ,m(u) ≥ d1

∫

Ω
a∞|∇u|pdx + d2‖u‖pp − ‖h‖∞‖u‖p|Ω|(p−1)/p − (C′

ε +D′
ε′
)|Ω|

≥ min
{

ad1, d2
}‖u‖p − ‖h‖∞‖u‖|Ω|(p−1)/p − (C′

ε +D′
ε′
)|Ω|

(3.24)
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for every u ∈ W1,p(Ω) by (3.21), (3.22), and (3.23). Because of p > 1, our conclusion is
shown.

Lemma 3.7. Let m ≥ 0 in Ω and m/≡ 0. If λ < 0 holds, then Iλ,m is bounded from below, coercive and
w.l.s.c. onW1,p(Ω).

Proof. First, as the same reason in Lemma 3.6, it follows that Iλ,m is w.l.s.c. on W1,p(Ω). By a
similar argument to Lemma 3.6, for every ε′ > 0 and 0 < ε < a/p where a = infΩ a∞, we
obtain

Iλ,m(u) ≥
a − εp

pa

∫

Ω
a∞|∇u|pdx +

|λ|
p

∫

Ω
m|u|pdx − ε′‖u‖pp

− ‖h‖∞‖u‖p|Ω|(p−1)/p − (C′
ε +D′

ε′
)|Ω|

(3.25)

for every u ∈ W1,p(Ω) (note λ < 0). Here, from Lemma 2.3,

D0

∫

Ω
a∞|∇u|pdx + |λ|

∫

Ω
m|u|pdx ≥ D0

2

∫

Ω
a∞|∇u|pdx +

D0

2
b(ξ,m)‖u‖pp (3.26)

for every u ∈ W1,p(Ω) follows, where D0 := (a − εp)/a, ξ := 2|λ|/D0 and b(ξ,m) is a constant
obtained in Lemma 2.3. Therefore, by choosing a ε′ such that 0 < ε′ < D0b(ξ,m)/2, we can
prove our conclusion.

Lemma 3.8. Let
∫

Ω mdx/= 0 and 0 < λ < μ. Then, Iλ,m is bounded from below on Y (μ,m), where
Y (μ,m) is the set introduced in (3.14).

Proof. Due to the same inequalities concerning G and F as in Lemma 3.5, for every ε > 0 and
ε′ > 0, there exists C = C(ε, ε′) > 0 such that

Iλ,m(u) ≥
a − pε

pa

∫

Ω
a∞|∇u|pdx − λ

p

∫

Ω
m|u|pdx − ε′‖u‖pp − ‖h‖∞‖u‖1 − C|Ω| (3.27)

for every u ∈ W1,p(Ω), where a := infx∈Ω a∞(x). Choose positive constants ε and δ such that
D0 := 1 − pε/a > δ > λ/μ (note λ/μ < 1).

First, we consider the case ofm ≥ 0 in Ω. For every u ∈ Y (μ,m), we obtain

D0

∫

Ω
a∞|∇u|pdx − λ

∫

Ω
m|u|pdx

≥ (D0 − δ)
∫

Ω
a∞|∇u|pdx +

(

δμ − λ
)

∫

Ω
m|u|pdx ≥ d(m, ξ1)(D0 − δ)‖u‖pp

(3.28)

by Lemma 2.3 with ξ1 = (δμ − λ)/(D0 − δ) (note δμ − λ > 0 and D0 − δ > 0).
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Next, we handle with the case where m changes sign. Let u ∈ W1,p(Ω) satisfy
∫

Ω m|u|p dx ≤ 0. Then, we have for such u

D0

∫

Ω
a∞|∇u|pdx − λ

∫

Ω
m|u|pdx ≥ b(m, ξ2)D0‖u‖pp (3.29)

by Lemma 2.2, where D0 = 1 − pε/a and ξ2 := λ/D0.
On the other hand, for u ∈ Y (μ,m) with

∫

Ω m|u|pdx > 0, the following inequality fol-
lows from Lemma 2.2:

D0

∫

Ω
a∞|∇u|pdx − λ

∫

Ω
m|u|pdx

≥ (D0 − δ)
∫

Ω
a∞|∇u|pdx − (δμ − λ

)

∫

Ω
(−m)|u|p dx

≥ b(−m, ξ1)(D0 − δ)‖u‖pp.

(3.30)

Consequently, by (3.27), (3.29), (3.28), and (3.30), there exists d > 0 independent of u such
that

Iλ,m(u) ≥
(

d − ε′
)‖u‖pp − ‖h‖∞‖u‖p|Ω|(p−1)/p − C|Ω| (3.31)

for every u ∈ Y (μ,m). Hence, our conclusion is shown by taking ε′ > 0 satisfying ε′ < d.

Proof of Theorem 1.1 in the Case
∫

Ω mdx/= 0. First, if either m ≥ 0 on Ω and λ < 0 or 0 < λ <
λ∗(m) = μ1(m) (i.e.,

∫

Ω mdx < 0) holds, then Lemma 3.7 or Lemma 3.6 guarantees the exis-
tence of a global minimizer of Iλ,m, respectively (cf. [25, Theorem 1.1]). Hence, (P ;λ,m, h) has
a solution.

Since λ is an eigenvalue of (EV ;m) if and only if −λ is one of (EV ;−m), it suffices to
consider the case of λ > λ∗(m) ≥ 0. Furthermore, by Proposition 2.9, Remark 2.6 (i), and our
hypothesis that λ is not an eigenvalue of (EV ;m), we may assume that there exists a k ∈ N

such that μk(m) < λ < μk+1(m). By Lemmas 3.5 and 3.8, we can choose T > 0 and g0 ∈ Fk(m)
satisfying

max
z∈Sk−1

Iλ,m
(

Tg0(z)
)

< inf
{

Iλ,m(u); u ∈ Y
(

μk+1(m), m
)}

=: α. (3.32)

Put

Σ :=
{

g ∈ C
(

Sk
+,W

1,p(Ω)
)

; g|Sk−1 = Tg0
}

,

c := inf
g∈Σ

max
z∈Sk

+

Iλ,m
(

g(z)
)

.
(3.33)

Then, it follows from Lemma 3.4 and (3.32) that c ≥ α > maxz∈Sk−1 Iλ,m(Tg0(z)) holds. Since
Iλ,m satisfies the Palais-Smale condition by Proposition 3.3, the minimax theorem guarantees
(cf. [25, Theorem 4.6]) that c is a critical value of Iλ,m. Hence, (P ;λ,m, h) has at least one
solution.
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3.4. The Case
∫

Ωmdx = 0

First, we introduce an approximate functional I+
λ,m,n

as follows:

I+λ,m,n(u) := Iλ,m(u) +
1
pn

‖u‖pp = Iλ,m−1/(λn)(u) for u ∈ W1,p(Ω). (3.34)

Lemma 3.9. Let 0 < λ < μ. Then, there exists an n0 ∈ N such that for each n ≥ n0, I+λ,m,n
is bounded

from below on Y (μ,m − 1/λn), where Y (μ,m − 1/λn) is the set introduced in (3.14).

Proof. Choose n0 ∈ N such that 1/n0 < λ ess supx∈Ω m(x)/2. Then, for every n ≥ n0,
Lemma 3.8 guarantees that I+

λ,m,n
= Iλ,m−1/(λn) bounded from below on Y (μ,m − 1/(λn))

because of
∫

Ω(m − 1/(λn))dx < 0 and |{m − 1/(λn) > 0}| > 0.

Proof of Theorem 1.1 in the Case
∫

Ω mdx = 0. By noting that λm = (−λ)(−m) and μ1(m) =
λ∗(m) = 0, we may assume that μk(m) < λ < μk+1(m) for some k ∈ N. Let n0 be a natural
number obtained by Lemma 3.9. Due to Proposition 2.10 (i) and (ii), there exists an n1 ≥ n0

such that

μk(m) ≤ μk

(

m − 1
nλ

)

≤ μk

(

m − 1
n1λ

)

< λ < μk+1(m) ≤ μk+1

(

m − 1
nλ

)

(3.35)

for every n ≥ n1. Thus, for every n ≥ n1, we can take Tn > 0 and gn ∈ Fk(m−1/(nλ)) satisfying

max
z∈Sk−1

I+λ,m,n

(

Tngn(z)
)

< inf
{

Iλ,m,n(u); u ∈ Y
(

μk+1

(

m − 1
(nλ)

)

, m − 1
(nλ)

)}

(3.36)

by applying Lemmas 3.5 and 3.9 to I+
λ,m,n

= Iλ,m−1/(nλ) (note (3.35)). Set

Σn :=
{

g ∈ C
(

Sk
+,W

1,p(Ω)
)

; g|Sk−1 = Tngn
}

,

cn := inf
g∈Σn

max
z∈Sk

+

I+λ,m,n

(

g(z)
)

(3.37)

for each n ≥ n1. Then, for each n ≥ n1, we can obtain un satisfying

∣

∣

∣I+λ,m,n(un) − cn
∣

∣

∣ <
1
n
,

∥

∥

∥

∥

(

I+λ,m,n

)′
(un)

∥

∥

∥

∥

W1,p(Ω)
<

1
n

(3.38)

by applying Ekeland’s variational principle to each I+
λ,m,n

(refer to [25, Theorem 4.3]). In addi-
tion, we can see that {un} is bounded in W1,p(Ω). Indeed, if there exists a subsequence {unl}l
satisfying ‖unl‖p → ∞ as l → ∞, then we can show that λ is an eigenvalue of (EV ;m) by
the same argument as in Proposition 3.3. This contradicts to our assumption that λ is not an
eigenvalue of (EV ;m). Moreover, the boundedness of ‖∇un‖p follows from a similar inequa-
lity to (3.6) as in Proposition 3.3 under the boundedness of ‖un‖p.
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Therefore, we may assume, by choosing a subsequence that {un} is a Palais-Smale
sequence of Iλ,m since Iλ,m is bounded on a bounded set and according to the following
inequality:

∥

∥

∥I ′λ,m(un)
∥

∥

∥

(W1,p(Ω))∗
≤
∥

∥

∥

∥

I ′λ,m(un) −
(

I+λ,m,n

)′
(un)

∥

∥

∥

∥

(W1,p(Ω))∗
+
1
n
≤ 1

n
‖un‖p−1p +

1
n
. (3.39)

Therefore, because Iλ,m satisfies the Palais-Smale condition by Proposition 3.3, Iλ,m has a cri-
tical point, whence (P ;λ,m, h) has at least one solution.

4. Proof of Theorem 1.2

First, we will prove the following result concerning the Palais-Smale condition under the
additional hypothesis (H±) or (HF±).

Proposition 4.1. Assume that one of the following conditions hold:

(i) λ = 0 and (HF+) or (HF−);
(ii) λ/= 0 and one of (H+), (H−), (HF+) and (HF−).

Then, Iλ,m satisfies the Palais-Smale condition.

Proof. As the same reason in Proposition 3.3, it suffices to prove the boundedness of a Palais-
Smale sequence {un} such that Iλ,m(un) → c (for some c ∈ R) and ‖I ′

λ,m
(un)‖W∗ → 0 as

n → ∞. By way of contradiction, we may assume that ‖un‖p → ∞ as n → ∞ by choosing a
subsequence. Set vn := un/‖un‖p. Then, by the same argument as in Proposition 3.3, {vn} has
a subsequence strongly convergent to v0 being a nontrivial solution of

−div
(

a∞(x)|∇u|p−2∇u
)

= λm(x)|u|p−2u in Ω,
∂u

∂ν
= 0 on ∂Ω. (4.1)

To simplify the notation, we denote the above subsequence strongly convergent to v0 by {vn},
again. Thus, |un(x)| → ∞ as n → ∞ for a.e. x ∈ Ω0 := {x′ ∈ Ω; v0(x′)/= 0} (note ‖v0‖p = 1).

Assume (HF+) or (HF−). Then, we can obtain

(I) :=
∫

Ω

f(x, un)un − pF(x, un)

‖un‖1+qp

dx −→ ±∞ if (HF±), respectively. (4.2)

Indeed, it follows from (HF+) that there exist R > 0 and C > 0 independent of n such that
f(x, t)t − pF(x, t) ≥ 0 if |t| ≥ R and a.e. x ∈ Ω, and |f(x, t)t − pF(x, t)| ≤ C for every |t| ≤ R and
a.e. x ∈ Ω. Therefore, since |un(x)| → ∞ a.e. x ∈ Ω0 and |Ω0| > 0 (note ‖v0‖p = 1), we have
(4.2) if (HF+) holds, by applying Fatou’s lemma to the following inequality:

(I) ≥
∫

Ω0

f(x, un)un − pF(x, un)

|un|1+q
|vn|1+qdx − C|Ω \Ω0|

‖un‖1+qp

. (4.3)
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In the case of (HF−), by considering −f instead of f as in the above argument, we can show
our claim (4.2).

Furthermore, by Hölder’s inequality, we have

(II) :=
∫

Ω

p ˜G(x,∇un) − ã(x, |∇un|)|∇un|2

‖un‖1+qp

dx

≤ H0

∫

Ω

⎛

⎝|∇vn|1+q + 1

‖un‖1+qp

⎞

⎠dx ≤ H0‖∇vn‖1+qp |Ω|(p−1−q)/p + o(1)

≤ H0‖∇v0‖1+qp |Ω|(p−1−q)/p + o(1)

(4.4)

in the case of (HF−) because vn → v0 inW1,p(Ω), where q ∈ [0, p−1] andH0 > 0 are constants
as in (HF−). Similarly, we obtain

(II) ≥ −H0‖∇v0‖1+qp |Ω|(p−1−q)/p + o(1) (4.5)

in the case of (HF+).
Hence, we have a contradiction because of (4.2), (4.4), or (4.5) by taking a limit inferior

or superior in the following equality:

o(1) =
pIλ,m(un) −

〈

I ′λ,m(un), un

〉

‖un‖1+qp

= (II) + (I) +
(

1 − p
)

∫

Ω

hvn

‖un‖qp
dx, (4.6)

where we use the fact that ‖un‖/‖un‖1+qp = ‖vn‖/‖un‖qp is bounded because of q ≥ 0.
Assume λ/= 0 and (H+) or (H−): because v0 is a nontrivial solution of (4.1)with λ/= 0,

v0 is not a constant function, that is, ‖∇v0‖p > 0. Therefore, we have |∇un(x)| → ∞ as n → ∞
for a.e. x ∈ ˜Ω0 := {x′ ∈ Ω; |∇v0(x′)|/= 0}. Because of | ˜Ω0| > 0, we can show

∫

Ω

p ˜G(x,∇un) − ã(x, |∇un|)|∇un|2

‖un‖1+qp

dx −→ ±∞ if (H±), respectively, (4.7)

by a similar argument to one for f in the above. In addition, we can easily obtain the following
inequality:

±
∫

Ω

f(x, un)un − pF(x, un)

‖un‖1+qp

dx ≥ −H0‖vn‖1+q1+q + o(1) = −H0‖v0‖1+q1+q + o(1) (4.8)

in the case of (H±), respectively. Hence, we have a contradiction by considering o(1) =
(pIλ,m(un) − 〈I ′

λ,m
(un), un〉)/‖un‖1+qp .
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By a similar way to the case
∫

Ω mdx = 0, we introduce the following approximate
functionals on W1,p(Ω):

I±λ,m,n(u) := Iλ,m(u) ± 1
pn

‖u‖pp for u ∈ W1,p(Ω). (4.9)

Note I±λ,m,n(u) = Iλ,m∓1/(λn)(u) on W1,p(Ω) provided λ/= 0.

Proposition 4.2. If either λ/= 0 and (H+) or (HF+) (resp., either λ/= 0 and (H−) or (HF−)) and
{un} satisfies

sup
n∈N

I+λ,m,n(un) < +∞, lim
n→∞

∥

∥

∥

∥

(

I+λ,m,n

)′
(un)

∥

∥

∥

∥

W1,p(Ω)∗
= 0, (4.10)

(

resp. inf
n∈N

I−λ,m,n(un) > −∞, lim
n→∞

∥

∥

∥

∥

(

I−λ,m,n

)′
(un)

∥

∥

∥

∥

W1,p(Ω)∗
= 0

)

, (4.11)

then {un} is bounded inW1,p(Ω).

Proof. First, we note that the boundedness of ‖un‖p guarantees that ‖un‖ is bounded by
limn→∞‖(I±λ,m,n

)′(un)‖W1,p(Ω)∗
= 0 (refer to (3.6) as in the proof of Proposition 3.3). Moreover,

because of the following equality:

pI±λ,m,n(un) −
〈

(

I±λ,m,n

)′
(un), un

〉

‖un‖1+qp

=
(

1 − p
)

∫

Ω

hvn

‖un‖qp
dx,

+
∫

Ω

p ˜G(x,∇un) − ã(x, |∇un|)|∇un|2

‖un‖1+qp

dx +
∫

Ω

f(x, un)un − pF(x, un)

‖un‖1+qp

dx,

(4.12)

we can prove the boundedness of ‖un‖p by the same argument as in Proposition 4.1.

Proof of Theorem 1.2. Because of λm = (−λ)(−m), we may assume λ ≥ 0. In the case where
∫

Ω mdx/= 0 and μk(m) < λ < μk+1(m) for some k ∈ N, the proof of Theorem 1.1 implies
the existence of a critical point of Iλ,m because Iλ,m satisfies the Palais-Smale condition by
Proposition 4.1. Concerning other cases, in the next section, we will prove the existence of a
bounded sequence {un} satisfying (I+

λ,m,n
)′(un) → 0 or (I−

λ,m,n
)′(un) → 0 in W1,p(Ω)∗ as n →

∞. Because Iλ,m is bounded on a bounded set, wemay assume that Iλ,m(un) converges to some
c ∈ R by choosing a subsequence. In addition, by noting the inequality ‖I ′

λ,m
(un)‖W1,p(Ω)∗

≤
‖(I±

λ,m,n
)′(un)‖W1,p(Ω)∗

+ ‖un‖p−1p /n, we easily see that {un} is a bounded Palais-Smale sequence
of Iλ,m. Therefore, Iλ,m has a critical point since Iλ,m satisfies the Palais-Smale condition by
Proposition 4.1.
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5. Construction of a Bounded Palais-Smale Sequence

In this section, due to the reason stated in the proof of Theorem 1.2, we will construct a
bounded sequence {un} satisfying (I+λ,m,n)

′(un) → 0 or (I−λ,m,n)
′(un) → 0 in W1,p(Ω)∗ as

n → ∞. It implies the existence of a bounded Palais-Smale sequence of Iλ,m.

5.1. The Case λ = 0

Assume (HF+)

In this c ase, we can show that for each n ∈ N, I+λ,m,n has a global minimizer un. Indeed, for
0 < ε < 1/(pn), there exists Cε > 0 such that I+

λ,m,n
(u) ≥ C0‖∇u‖pp/(p(p − 1)) + (1/(pn) −

ε)‖u‖pp −‖h‖∞‖u‖1−Cε for every u ∈ W1,p(Ω) by (1.1), (1.16) and λ = 0 (refer to the inequality
as in the proof of Lemma 3.5). This means that I+λ,m,n is coercive and bounded from below on
W1,p(Ω). Therefore, I+λ,m,n has a global minimizer un since I+λ,m,n is w.l.s.c. on W1,p(Ω) as the
same reason in Lemma 3.6.

Furthermore, because of (I+
λ,m,n

)′(un) = 0 in W1,p(Ω)∗ and I+
λ,m,n

(un) = minW1,p(Ω)

I+λ,m,n ≤ I+
λ,m,n

(0) = 0, it follows from Proposition 4.2 that {un} is bounded.

Assume (HF−)
Choose n0 ∈ N such that 1/n0 < c(1) = μ2(1), where c(1) is the second eigenvalue of (EV ; 1)
(so the weight function m ≡ 1 and see (2.22) for the definition). Then, by noting that I−0,m,n0

=
I1/n0,1, we have

α := inf
{

I−0,m,n0
(u); u ∈ Y (c(1), 1)

}

> −∞ (5.1)

by Lemma 3.8, where Y (c(1), 1) is a subset defined by (3.14) with the weight m ≡ 1, that is,

Y (c(1), 1) :=
{

u ∈ W1,p(Ω);
∫

Ω
a∞|∇u|pdx ≥ c(1)‖u‖pp

}

. (5.2)

Moreover, inf{I−0,m,n(u);u ∈ Y (c(1), 1)} ≥ α for every n ≥ n0 holds because I−0,m,n(u) ≥ I−0,m,n0
(u)

for every u ∈ W1,p(Ω). Since
∫

Ω F(x, u)dx = o(1)‖u‖pp as ‖u‖p → ∞ by (1.1), there exists Tn > 0
such that I−0,m,n(±Tn) = −Tp

n (|Ω|/(np) − o(1)) < α − 2.
Define

Σn :=
{

g ∈ C
(

[0, 1],W1,p(Ω)
)

; g(0) = Tn, g(1) = −Tn
}

,

cn := inf
g∈Σn

max
t∈[0,1]

I−0,m,n

(

g(t)
)

(5.3)

for n ≥ n0. By the definition of c(1), we easily see that g([0, 1])∩Y (c(1), 1)/= ∅ for every g ∈ Σn

(refer to [6] or Lemma 3.4). Hence,

cn ≥ inf
{

I−0,m,n(u);u ∈ Y (c(1), 1)
}

≥ α > I0,m,n(±Tn) (5.4)
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holds, whence cn is bounded from below. Moreover, by applying Ekeland’s variational
principle to each I−0,m,n, we can obtain a sequence {un} satisfying |I−0,m,n(un) − cn| < 1/n and
‖(I−0,m,n)

′(un)‖W1,p(Ω)∗
< 1/n. Since cn is bounded from below, it follows from Proposition 4.2

that {un} is bounded. As a result, we can construct a bounded sequence {un} satisfying
(I−0,m,n)

′(un) → 0 as n → ∞ inW1,p(Ω)∗.

5.2. The Case λ = λ∗(m) = μ1(m) with
∫

Ωmdx < 0

Assume (H+) or (HF+)

Since we see that I+
λ,m,n

= Iλ,m−1/(nλ) and λ∗(m − 1/(nλ)) > λ∗(m) = λ > 0 (according to
Lemma 2.5), I+λ,m,n is coercive, bounded from below and w.l.s.c. on W1,p(Ω) by Lemma 3.6.
Thus, we obtain a global minimizer un of I+λ,m,n

for sufficiently large n such that |{m−1/(nλ) >
0}| > 0. Because of I+

λ,m,n
(un) ≤ I+

λ,m,n
(0) = 0 for every n, Proposition 4.2 guarantees that {un}

is bounded.

Assume (H−) or (HF−)
First, we note that I−

λ,m,n
= Iλ,m+1/(nλ) and 0 < λ∗(m + 1/(nλ)) < λ∗(m) = λ by Lemma 2.5 for

sufficiently large n such that
∫

Ω(m+1/(nλ))dx < 0. Moreover, it follows from Proposition 2.10
and μ1(m) < μ2(m) that there exists an n0 ∈ N satisfying

∫

Ω m + 1/(n0λ)dx < 0 and

λ∗
(

m +
1
nλ

)

< λ = μ1(m) < μ2

(

m +
1

n0λ

)

≤ μ2

(

m +
1
nλ

)

≤ μ2(m) (5.5)

for every n ≥ n0. By applying Theorem 1.1 to each case of a weight m + 1/(nλ) (note that λ
is not an eigenvalue of (EV ;m + 1/(nλ)) by (5.5), there exists un satisfying (I−λ,m,n)

′(un) = 0
(note I−

λ,m,n
= Iλ,m+1/(nλ)) and

I−λ,m,n(un) = cn ≥ inf
{

I−λ,m,n(u); u ∈ Y
(

μ2(mn0), mn0

)

}

, (5.6)

where the last inequality follows from Lemma 3.4 with mn0 := m + 1/(n0λ). On the other
hand, because I−

λ,m,n
(u) ≥ I−

λ,m,n0
(u) = Iλ,mn0

(u) for every u ∈ W1,p(Ω) and n ≥ n0, we have

cn ≥ inf
{

Iλ,mn0
(u); u ∈ Y

(

μ2(mn0), mn0

)

}

> −∞ (5.7)

for every n ≥ n0, where the last inequality follows from Lemma 3.8. Thus, cn is bounded from
below. Hence, Proposition 4.2 guarantees the boundedness of {un}.
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5.3. The Case λ = μk+1(m) with
∫

Ωmdx/= 0

Assume (H+) or (HF+)

We may assume μk(m) < μk+1(m) = λ by taking k anew if necessary (note that we have
already proved the case of μk(m) < λ < μk+1(m) in Section 4). Here, we can choose an n0 ∈ N

such that
∫

Ω(m − 1/(nλ))dx /= 0, |{m − 1/(nλ) > 0}| > 0 and

μk

(

m − 1
nλ

)

≤ μk

(

m − 1
n0λ

)

< λ − 1
n‖m‖∞

< λ = μk+1(m) ≤ μk+1

(

m − 1
nλ

)

(5.8)

for every n ≥ n0 by
∫

Ω mdx/= 0 and Proposition 2.10 (i), (iii). Note the following inequality:

I+λ,m,n0
(u) ≥ I+λ,m,n(u) ≥ Iλ−1/(n‖m‖∞),m(u) (5.9)

for every u ∈ W1,p(Ω) and n ≥ n0, where the last inequality is obtained by ‖u‖pp ≥ ∫Ω m|u|pdx/
‖m‖∞. Let n ≥ n0. It follows from Lemma 3.8 and (5.8) that Iλ−1/(n‖m‖∞),m is bounded from
below on Y (λ,m). Hence, (5.9) yields that I+

λ,m,n
is also bounded from below on Y (λ,m),

namely,

αn := inf
{

I+λ,m,n(u); u ∈ Y (λ,m)
}

> −∞. (5.10)

On the other hand, because of μk(m−1/(n0λ)) < λ (see (5.8)), Lemma 3.5 guarantees the exis-
tence of g0 ∈ Fk(m − 1/(n0λ)) satisfying

max
z∈Sk−1

I+λ,m,n0

(

Tg0(z)
)

= max
z∈Sk−1

Iλ,m−1/(n0λ)
(

Tg0(z)
) −→ −∞ as |T | −→ ∞. (5.11)

Thus, for each n ≥ n0, we can take Tn > 0 such that

max
z∈Sk−1

I+λ,m,n

(

Tng0(z)
) ≤ max

z∈Sk−1
I+λ,m,n0

(

Tng0(z)
) ≤ αn − 1, (5.12)

(note (5.9) for the first inequality). Set

Σn :=
{

g ∈ C
(

Sk
+,W

1,p(Ω)
)

; g|Sk−1 = Tng0
}

,

c+n := inf
g∈Σn

max
z∈Sk

+

I+λ,m,n

(

g(z)
)

(5.13)

for n ≥ n0. Since g(Sk
+) ∩ Y (λ,m)/= ∅ for every g ∈ Σn by Lemma 3.4 and λ = μk+1(m), we

have c+n ≥ αn > maxz∈Sk−1I+
λ,m,n

(Tng0(z)). Therefore, Ekeland’s variational principle (refer
to [25, Theorem 4.3]) guarantees the existence of un satisfying |I+λ,m,n(un) − cn| < 1/n and
‖(I+λ,m,n)

′(un)‖W1,p(Ω)∗
< 1/n.
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Finally, to show the boundedness of {un} due to Proposition 4.2, we will prove that c+n
is bounded from above. For each n ≥ n0, we define a continuous map gn from Sk

+ to W1,p(Ω)
by

gn(z) :=

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − zk+1)Tng0

⎛

⎜

⎝

z′
√

1 − z2
k+1

⎞

⎟

⎠ for z = (z′, zk+1) ∈ Sk
+ with 0 ≤ zk+1 < 1,

0 for z = (z′, zk+1) ∈ Sk
+ with zk+1 = 1.

(5.14)

Then, gn ∈ Σn holds. This leads to

c+n ≤ sup
t≥0,z∈Sk−1

I+λ,m,n

(

tg0(z)
) ≤ sup

t≥0,z∈Sk−1
I+λ,m,n0

(

tg0(z)
)

< +∞ (5.15)

because of (5.9), (5.11), and the compactness of g0(Sk−1).

Assume (H−) or (HF−)
Because the case of μ1(m) = λ∗(m) is already shown (see Sections 5.1 and 5.2), We may
assume (0 <)μk(m) = λ < μk+1(m) for some k ≥ 2 by taking k anew if necessary. Here,
we can choose an n0 ∈ N such that

∫

Ω(m + 1/(nλ))dx /= 0 and

μk

(

m +
1
nλ

)

≤ μk(m) = λ < μk+1

(

m +
1

n0λ

)

≤ μk+1

(

m +
1
nλ

)

≤ μk+1(m) (5.16)

for every n ≥ n0 by
∫

Ω mdx/= 0 and Proposition 2.10 (i), (iii). Moreover, we note the following
inequality:

I−λ,m,n0
(u) ≤ I−λ,m,n(u) = Iλ,m+1/(nλ)(u) ≤ Iλ+1/(n‖m‖∞),m(u) (5.17)

for every u ∈ W1,p(Ω) and n ≥ n0. It follows from Lemma 3.8 and (5.16) (note (5.17) also)
that I−

λ,m,n0
= Iλ,m0 is bounded from below on Y (μk+1(m0), m0)withm0 := m+ 1/(n0λ). Hence,

(5.17) implies

inf
{

I−λ,m,n(u); u ∈ Y
(

μk+1(m0), m0
)

}

≥ inf
{

I−λ,m,n0
(u); u ∈ Y

(

μk+1(m0), m0
)

}

=: α0 > −∞
(5.18)

for every n ≥ n0. Because of λ + 1/(n‖m‖∞) > λ = μk(m), there exist gn ∈ Fk(m) and Tn > 0
such that

max
z∈Sk−1

I−λ,m,n

(

Tngn(z)
) ≤ max

z∈Sk−1
Iλ+1/(n‖m‖∞),m

(

Tngn(z)
)

< α0 − 1 (5.19)
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by Lemma 3.5. Define

Σn :=
{

g ∈ C
(

Sk
+,W

1,p(Ω)
)

; g|Sk−1 = Tngn
}

,

c−n := inf
g∈Σn

max
z∈Sk

+

I−λ,m,n

(

g(z)
)

(5.20)

for n ≥ n0. Then, c−n ≥ α0 occurs (see (5.18)) since g(Sk
+)∩Y (μk+1(m0), m0)/= ∅ for every g ∈ Σn

by Lemma 3.4. This means that c−n is bounded from below. Consequently, we can obtain a
desired bounded sequence by the same argument as in Sections 5.1 and 5.2.

5.4. The Case (iii) as in Theorem 1.2

First, note that we are assuming the hypothesis (H+) or (HF+) in this case (iii). In addition,
as the reason in the proof of Theorem 1.2, it suffices to handle with λ > 0.

Let k ∈ N satisfy μk(m) < λ ≤ μk+1(m). According to Proposition 2.10 (i) and (ii), we
can take an n0 ∈ N such that |{m − 1/(nλ) > 0}| > 0 and

μk

(

m − 1
2nλ

)

≤ μk

(

m − 1
n0λ

)

< λ − 1
2n‖m‖∞

< λ ≤ μk+1(m) ≤ μk+1

(

m − 1
2nλ

)

(5.21)

for every n ≥ n0. The following inequality follows from the easy estimates:

I+λ,m,n0
(u) ≥ I+λ,m,n(u) = Iλ,m−1/(nλ)(u) ≥ Iλ−1/(2n‖m‖∞),m−1/(2nλ)(u) (5.22)

for every u ∈ W1,p(Ω) and n ≥ n0. Let n ≥ n0 and set mn := m − 1/(2nλ). Because of (5.21),
Lemma 3.8 implies that Iλ−1/(2n‖m‖∞),mn is bounded from below on Y (μk+1(mn), mn)with (note
∫

Ω mndx /= 0). Hence, (5.22) yields that

αn := inf
{

I+λ,m,n(u); u ∈ Y
(

μk+1(mn), mn

)

}

> −∞ (5.23)

for each n ≥ n0. On the other hand, because of μk(m − 1/(n0λ)) < λ (see (5.21)), Lemma 3.5
guarantees the existence of g0 ∈ Fk(m − 1/(n0λ)) satisfying

max
z∈Sk−1

I+λ,m,n0

(

Tg0(z)
)

= max
z∈Sk−1

Iλ,m−1/(n0λ)
(

Tg0(z)
) −→ −∞ as T −→ ∞. (5.24)

Therefore, for each n ≥ n0, we can choose Tn > 0 such that

max
z∈Sk−1

I+λ,m,n

(

Tng0(z)
) ≤ max

z∈Sk−1
I+λ,m,n0

(

Tng0(z)
) ≤ αn − 1, (5.25)
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(note (5.22) for the first inequality). Set

Σn :=
{

g ∈ C
(

Sk
+,W

1,p(Ω)
)

; g|Sk−1 = Tng0
}

,

c+n := inf
g∈Σn

max
z∈Sk

+

I+λ,m,n

(

g(z)
)

(5.26)

for n ≥ n0. Since g(Sk
+) ∩ Y (μk+1(mn), mn)/= ∅ for every g ∈ Σn by Lemma 3.4, we have c+n ≥

αn > maxz∈Sk−1I+λ,m,n(Tng0(z)). Moreover, by the same argument as in Section 5.3 (note (5.24)),
we have

c+n ≤ sup
t≥0,z∈Sk−1

I+λ,m,n

(

tg0(z)
) ≤ sup

t≥0,z∈Sk−1
I+λ,m,n0

(

tg0(z)
)

< +∞, (5.27)

and hence our conclusion is shown.

Remark 5.1. If
∫

Ω mdx = 0 holds, then we can not show the continuity of μk(m) with respect
to m (refer to Proposition 2.10). Hence, we are not able to construct a bounded Palais-Smale
sequence under (H−) or (HF−). However, if we have the additional information about the
existence of a suitable m′ ∈ L∞(Ω) such that m′ ≥ m in Ω,

∫

Ω m′dx /= 0 and μk(m) ≤ λ <
μk+1(m′) when μk(m) ≤ λ < μk+1(m) occurs, then we can still easily prove that equation
(P ;λ,m, h) has a solution in the case also where λ/= 0,

∫

Ω mdx = 0 and (H−) or (HF−). In
fact, let 0 < μk(m) ≤ λ < μk+1(m′) for some k ≥ 2. Note the following inequality:

Iλ+1/(n‖m‖∞),m(u) ≥ I−λ,m,n(u) ≥ Iλ,m′(u) − 1
np

‖u‖pp = Iλ,m′−1/(nλ)(u) (5.28)

for every u ∈ W1,p(Ω) and n. Fix n0 ∈ N such that
∫

Ω m′ − 1/(n0λ)dx > 0 and |{m′ − 1/(n0λ) >
0}| > 0. Set m′

0 := m′ − 1/(n0λ). Because of λ < μk+1(m′) ≤ μk+1(m′
0) (the last inequality

follows from Proposition 2.10 (i)), Lemma 3.8 implies that Iλ,m′
0
is bounded from below on

Y (μk+1(m′
0), m

′
0) (note

∫

Ω m′
0 dx > 0). By combining this fact and (5.28), we have

inf
n≥n0

inf
{

I−λ,m,n(u); u ∈ Y
(

μk+1
(

m′
0
)

, m′
0
)

}

≥ inf
{

Iλ,m′
0
(u); u ∈ Y

(

μk+1
(

m′
0
)

, m′
0
)

}

> −∞.

(5.29)

Because of λ + 1/(n‖m‖∞) > λ ≥ μk(m), for each n ≥ n0, we can take a gn ∈ Fk(m) satisfying

max
z∈Sk−1

I−λ,m,n

(

Tgn(z)
) ≤ max

z∈Sk−1
Iλ+1/(n‖m‖∞),m

(

Tgn(z)
) −→ −∞ (5.30)

as T → ∞ by Lemma 3.5.
Since any extension g ∈ C(Sk

+,W
1,p(Ω)) of Tgn (T > 0) links Y (μk+1(m′

0), m
′
0) by

Lemma 3.4, we can construct a desired sequence by the same argument as in Section 5.3 under
(H−) or (HF−).
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