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We provide the existence of a solution for quasilinear elliptic equation —div(a, (x)|Vu[P2Vu +
a(x, |Vul)Vu) = dm(x)|[ulP2u+ f(x,u) + h(x) in Qunder the Neumann boundary condition. Here,
we consider the condition that @(x,t) = o(t*2) ast — +oo and f(x,u) = o(|u|’™") as |u| — . As
a special case, our result implies that the following p-Laplace equation has at least one solution:
—Apu = dm(x)|[ulPu + plulu + h(x) in Q,0u/dv = 0on dQ forevery 1 <r <p < oo, A € R,
u#0and m,h € L*(Q) with fg m dx #0. Moreover, in the nonresonant case, that is, A is not an
eigenvalue of the p-Laplacian with weight m, we present the existence of a solution of the above
p-Laplace equation for every 1 <r <p < oo, y € Rand m, h € L*(Q).

1. Introduction

In this paper, we consider the existence of a solution for the following quasilinear elliptic
equation:

—div A(x, Vu) = Am(x)[ulPu+ f(x,u) + h(x) inQ,

ou
e =0 on 09Q,

(P; A, m, h)

where Q ¢ RY is a bounded domain with C2 boundary 0Q, v denotes the outward
unit normal vector on 02, A € R, 1 < p < oo and m,h € L*(Q). We assume that f is a
Carathéodory function on Q x R satisfying

flxt)

m >
oo |HP2¢

=0 uniformly in x € Q, (1.1)
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and that f(x, t) is bounded on a bounded set (admitting f = 0 in the nonresonant case). Here,
A: QxRN — RN is a map which is strictly monotone in the second variable and satisfies
certain regularity conditions (see the following assumption (A)). The equation (P; A, m, h)
contains the corresponding p-Laplacian problem as a special case. Although the operator A is
nonhomogeneous in the second variable in general, we assume that A(x, y) is asymptotically
(p — 1)-homogeneous at infinity in the following sense (AH).

Throughout this paper, we assume that the map A satisfies the following assumptions
(AH) and (A):

(AH) there exist a positive function a,, € CY(Q,R) and a continuous function @(x, f) on
Q x R such that

A(x,y) = ag () |y["y +a(x, |y|)y for every x € Q,y e RN,

a(x, b) (12)

t—+oo P2

=0 uniformly in x € Q.

(A) A(x,y) = a(x,|y|)y, where a(x,t) > 0 for all (x,t) € Q x (0,+00) and

(i) A e COQ xRN, RN)NnCHQ x (RN \ {0}),RN);
(ii) there exists C; > 0 such that

ID,A(x,y)| < Ci|y|' forevery x e Q, y e RN\ {0}; (1.3)
(iii) there exists Cp > 0 such that
D, A(x,y)é-é> Coly|" 2> for every x €Q, y e RN\ {0}, ¢ € RY; (1.4)
(iv) there exists C, > 0 such that

|DA(x,y)| < C2<1 + |y|p_1> for every x € Q,y € RN \ {0}. (1.5)

A similar hypothesis to (A) is considered in the study of quasilinear elliptic problems
(cf. [1, Example 2.2], [2-6]). It is easily seen that many examples as in the above references
satisfy the condition (AH). Also, the following example satisfies our hypotheses:

div<(|Vu|P-2 + |Vu|’7_2> (1+ |Vu|‘7)"’*‘7)/"Vu) for 1<p<q<oo. (1.6)

In particular, for A(x,y) = |y|’ %y, thatis, div A(x, Vu) stands for the usual p-Laplacian Apu,

we can take Cyp = C; = p—11in (A). Conversely, in the case where Cy = C; = p—1holds in (A),

by the inequalities in Remark 1.4 (i) and (iii), we see a(x, t) = [t|/"> whence A(x, y) = [y["y.
Concerning the weight m, throughout this paper, we assume that

[{m >0} :=|{x e Q; m(x)>0}|>0 (1.7)

holds, where |X| denotes the Lebesgue measure of a measurable set X.
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Because A(x,y) is asymptotically (p — 1)-homogeneous at infinity, the solvability of
our equation is related to the following homogeneous equation (see Theorem 1.1):

—div(aw (x)|Vu|P*2vu) = Am(x)|uf?u inQ,
(EV;m)
ou

5:0 on 09,

where a,, is the positive function as in (AH). We say that A € R is an eigenvalue of (EV;m)
if the equation (EV;m) has a nontrivial solution.

There are few existence results of a solution to our equation (and also the p-Laplace
equation). For example, if A < 0 and m = 1 hold, then the standard argument guarantees the
existence of a solution. For the p-Laplacian as a special case of our problem, it is shown in [7]
that the equation

—Apu = Am|u|p_2u +h inQ g—: =0 on 0Q (1.8)

has a unique positive solution provided 0 < A < A*(m), [ymdx < 0and 0#h € L*(Q),,
where A*(m) is the principal eigenvalue defined in Section 2.1 with a,, = 1. In [8], although
the resonant case where A = A(m) or A = Ay(m) is considered under the assumptions to
f(x,u) = f(u), its result does not cover the case of f(u) = |u|r_2u with 1 < r < p, where \;(m)
(i =1, 2) is ith eigenvalue of the p-Laplacian with weight m. For the Laplace problem under
the Neumann boundary condition, we can refer to [9, 10]. Under the Dirichlet boundary con-
dition, the existence results for the Laplace problem are well known when m =1 and \ is not
an eigenvalue of the Laplacian (cf. [11]). Moreover, under the Dirichlet (or blow-up) boun-
dary condition, many authors study various equations involving the p-Laplace (Laplace)
operator with (indefinite) weight. For example, we refer to [12] for boundary blow-up pro-
blems with Laplacian, [13] for periodic reaction-diffusion problems and [14, 15] for singular
quasilinear elliptic problems.

Recently, the present author shows the existence of a solution for our problem in the
case where A is between the principal eigenvalue and the second eigenvalue in [6] (for f = 0).
In addition, a similar situation is treated in [5]. However, existence results are not seen in
the case when  is greater than the second eigenvalue for our problem. Therefore, the first
purpose of this paper is to present an existence result of a solution in the nonresonant case
where A is not an eigenvalue of (EV;m). Then, it studied the existence of at least one solution
in the resonant case under assumptions that cover the case f(u) = p|u|"*u with 1 < r < p and
1 #0.

For the proof of our result, it is necessary to study the weighted eigenvalue problem
(EV;m). Thus, in Section 2, we introduce two sequences {\,(m)}, and {u,(m)}, of an eigen-
value of (EV;m) defined by Ljusternik-Schnirelman theory or Drébek-Robinson’s method
(cf. [16]), respectively. Then, we show several properties of above eigenvalues. In Section 3,
we give the proof in the nonresonant case by using {p,(m)},,. In Sections 4 and 5, we handle
the resonant case.
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1.1. Statements of Our Existence Results
First, we state the existence result of a solution in the nonresonant case.

Theorem 1.1. Assume that A € R is not an eigenvalue of (EV;m). Then, (P;\,m, h) has at least
one solution.

To state our existence result in the resonant case, we introduce some conditions. Set

\
0

u ~ vl
F(x,u) := J‘o f(x,s)ds, G(x,y) :=J- a(x, ttdt, (1.9)

where 4 is the function as in (AH).

(H+) there exist 0 < g < p -1 and Hy > 0 such that

~ ~ 2
i PEGey) —a(x |y)]y]
ly|™

=+oo uniformly in a.e. x € Q,
|y| -

(1.10)
f(x,t)t —pF(x,t) > —Hy (1 + |t|1+‘7) for a.e. x €Q, every t € R;
(H-) there exist 0 < g < p — 1 and Hy > 0 such that
é 7 -a 7 :
lim ? (. y) al(j; lvDIvl = —oo uniformly in a.e. x € Q,
vl =0 |y (1.11)
f(x,t)t —pF(x,t) < H0<|t|1+q + 1> fora.e. x € Q,every t € R;
(HF+) there exist 0 < g < p—1and Hy > 0 such that
pG(x,y) - a(x, [y |y|* > —H0<1 + |y|1+q> for every x € Q, y € RN,
1.12)
Ot —pF(x,t (
lim flh 129 (x. ) =+oo uniformly in a.e. x € Q;
It = oo |t
(HF-) there exist 0 < g < p—1and Hy > 0 such that
pG(x,y) - a(x, y|)|y|2 < Ho(l + |y|1+q> for every x € Q, y € RV,
(1.13)

)t —pF(x,t . .
lim flxh 1;9 () =—oo uniformly in a.e. x € Q.
e
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Theorem 1.2. Assume one of the following conditions:
(i) A =0and (HF+) or (HF-) hold;
(i) A #0, fQ mdx #0 and one of (H+), (H-), (HF+) and (HF-) hold;
(iii) A#0, [, mdx = 0 and (H+) or (HF+) hold;
Then, (P; A, m, h) has at least one solution.

In the special case where a(x,t) =0 and f(x,u) = ‘u|u|r_2u for1 < r < p, we easily see
that (HF+) or (HF~-) holds with 0 < g < r—1 provided p < 0 or y > 0, respectively. Therefore,
the following result is proved according to Theorem 1.2.

Corollary 1.3. Let 1 <7 < p < oo, p#0 and [, mdx #0. Then, the following equation has at least

one solution:

- diV(uw(x)Wulp_‘zVu) = Am () [ul’2u+ plul 2u+ h(x)  in Q,

5 (1.14)
a_ 0 on 0Q.
ov

1.2. Properties of the Map A

In what follows, the norm on W#(Q) is given by ||u]|? := ||Vu||§+||u||§, where ||u||q denotes the

norm of L9(Q) for u € LI(Q) (1 < g < o0). Setting G(x, y) = (I)y\ a(x, )t dt, then we can easily
see that

V,G(x,y) = A(x,y), G(x,0)=0 (1.15)

for every x € Q.

Remark 1.4. 1t is easily seen that the following assertions hold under condition (A):

(i) forall x € Q, A(x,y) is maximal monotone and strictly monotone in y;
(i) |AG, ) < (C1/ (p =~ D)yl forevery (x,y) € Qx RY;
(iif) A(x,y)y > (Co/ (p—1))lyl? for every (x,y) € Q x RN;

(iv) G(x,y) is convex in y for all x and satisfies the following inequalities:

G

p(p-1)

Co

P
- T) , (1.16)

P, G(xy)<

A(x,y)y >2G(xy) > ly ly

for every (x,y) € Q x RN, where Cy and C; are the positive constants in (A).
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The following result is proved in [3]. It plays an important role for our poof.

Proposition 1.5 (see [3, Proposition 1]). Let A : WP(Q) — WP (Q)* be the map defined by

(A(u),v) = fg A(x,Vu)Vudx, (1.17)

foru, v € WP (Q). Then, A has the (S), property, that is, any sequence {u, } weakly convergent to u
with limsup, _,  (A(un), u, —u) <0 strongly converges to u.

2. The Weighted Eigenvalue Problems
2.1. Preliminaries

The following lemmas can be easily shown by way of contradiction because [, a.|Vul|’ dx is
equivalent to ||Vu||5 (note that a, is positive). Here, we omit the proofs (refer to [7]).

Lemma 2.1. Assume [, mdx < 0. Then, there exists a constant ¢ > 0 such that [, ac|VulP dx >
c||u||£for every u € W' (Q) with [, mlul’ dx > 0.

Lemma 2.2. Assume that fQ mdx+#0and ¢ > 0. Then, there exists a constant b(m, &) > 0 such that
j Ao | VulP dx —§I mlul|’ dx > b(m,g)I |u|? dx (2.1)
Q Q Q

for every u € B(m) := {u € W (Q); [, m|ul’ dx < 0}.

Lemma 2.3. Assume that m > 0 in Q. Then, for every & > 0 there existed d(m, &) > 0 such that
J’ Ao |VulP dx —§f mlulP dx > d(m,g)J’ [ulP dx (2.2)
Q Q Q

for every u € WP(Q).

First, we recall the following principle eigenvalue A*(m):
X (m) = inf{j Ao |VulP dx; u € WLP(Q),I mlul dx = 1}. (2.3)
Q Q

Because of oo > sup, g e (X) > inficq a(x) > 0, we have the following result as the same
argument as in the case of the p-Laplacian.

Proposition 2.4 (see [7, Proposition 2.2]). The following assertions hold:

(i) If [, m dx > 0 holds, then \* (m) = 0;

(i) If [mdx < O holds, then \*(m) > 0 is a simple eigenvalue and it admits a posi-
tive eigenfunction. In addition, the open interval (0, A*(m)) contains no eigenvalues of
(EV; m).
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Lemma 2.5. Assume fQ mdx < 0. Then, one has \*(m + ) < X*(m) < A*(m - ¢€') for every € > 0
and € > 0 with |[{m - ¢ > 0}| > 0.

Proof. We choose a minimizer u for A*(m) because Proposition 2.4 guarantees the existence of
it. Then, for every ¢ > 0, we have

| Vulf d | Vul” d
Jo Aol V| Px Jo sl ’:J x:f o |VulP dx = \* (m) (2.4)
jg(m+s)|u| dx ij|u| dx Q

M(m+e) <

by the definition of A*(m + ¢). By applying the same argument to a minimizer for A*(m — ¢),
we obtain A*(m) < A*(m — €’) for ¢ > 0 with [{m — ¢ > 0}| > 0. O

2.2, Other Eigenvalues

Here, we introduce two unbounded sequences {\,(m)}, and {u,(m)}, as follows:

J(u) := j ae|VulP dx for u e W7(Q), J = J1s(my»
Q

S(m) = {u € W (Q); J;) mlulf dx = 1},

S,(m) = {X c S(m); compact, symmetric and y(X) > n},

(2.5)
Fn(m) := {g € C<S”_1,S(m)>;g is odd},
alm) = ot max T,
pn(m) = inf max f(g(z)),

§E€Fn(m) zeSr1

where y(X) denotes the Krasnoselskii genus of X (see [17, Definition 5.1] for the definition)
and S"! denotes the usual unit sphere in R"”. We see that A, (m) is defined by Ljusternik-
Schnirelman theory and it is known that the definition of y,,(m) is introduced by Drébek and
Robinson ([16]) under the p-Laplace Dirichlet problem with m = 1.

Remark 2.6. The following assertions can be shown easily:

(i) A1 (m) = pr(m) = A*(m);
(ii) Su(m)#0 and F,(m) #0 for everyn € N;

)
)
(iii) g(S™™') C S, (m) for every g € Fn(m);
(iv) pn(m) > A, (m) for every n € N;

)

(V -)‘n+1 (m) 2 -/\n (m) and HUn+1 (m) 2 Hn (m) for every n € N/

see [18] for the proof of (ii).
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Define a C' functional ®,, on W'?(Q) by ®,,(u) = [,mlul’ dx for u € W'P(Q).

Because 1 € R is a regular value of @, it is well known that the norm of the derivative
at u € S(m) of the restriction of ] to S(m) is defined as follows:

||7’(u)”* = min{ |7/ () = t@5, (1) || 15 t € R}

= sup{(J'(w),v); v € Tu(S(m)), |lo]| =1},

(2.6)

where T, (S(m)) denotes the tangent space of S(m) at u, that is, T,(S(m)) = {v € WP(Q);
fg m|ulP2uv dx = 0}. Here, we recall the definition of the Palais-Smale condition for J.

Definition 2.7. T is said to satisfy the bounded Palais-Smale condition if any bounded sequ-
ence u, € S(m) such that ||f’ (un)|l, — 0 has a convergent subsequence. Moreover, we say
that J satisfies the Palais-Smale condition at level ¢ € R if any sequence u, € S(m) such that
T (un) — cand ||] ’(un)ll — 0asn — oo has a convergent subsequence. In addition, we say
that ] satisfies the Palais-Smale condition if ] satisfies the Palais-Smale condition for every
ceR.

The following result can be proved by the same argument as in [19, Proposition 3.3]
(which treats the case of the p-Laplacian, i.e., a, = 1) because of oo > sup, .o dw(x) >
infyeq a,(x) > 0. Here, we omit the proof.

Lemma 2.8. The following assertions hold:

(i) fsatisﬁes the bounded Palais-Smale condition;
(ii) J satisfies the Palais-Smale condition provided Jomdx#0.

Proposition 2.9. A, (m) and p,(m) are eigenvalues of (EV; m) such that

lim A, (m) = hm yn(m) = +00. (2.7)

n— oo

Proof. In the case of |, mdx #0, since ] satisfies the Palais-Smale condition, we can apply the
first deformation lemma on C! manifold (refer to [20]). Thus, by the standard argument, we
can prove that A, (m) and p,(m) are critical values of J. This means that A, (m) and p,(m)
are eigenvalues of (EV;m) by the Lagrange multiplier rule. In addition, we can easily show
lim, o Ay(m) = +oo by the standard argument via the first deformation lemma on C!
manifold (refer to [21, Proposition 3.14.7], [22] or [17] in the case of a Banach space). Hence,
lim,, _, o, pt,,(m) = +o0 holds because of y,,(m) > A, (m) for every n € N.

In the case of [, mdx = 0, by the same argument as in [18], our conclusion can be
proved. For readers’ convenience, we give a sketch of the proof. For ¢ > 0, we define J.(u) :=
J(u) + s||u||£ and fg := Je|s(m)- Moreover, we set minimax values A7 (m) and pj(m) of fg by

A8 = f £ f, = f €
n(m):= inf max Je(w),  pi(m) janf | max Je(8(2))- (2.8)

Because any Palais-Smale sequence of J, is bounded, it is easily shown that J, satisfies the
Palais-Smale condition (refer to [19, Proposition 3.3]) Hence, it can be proved that A% (m)
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and pf(m) are critical values of J.. Furthermore, it follows from the argument as in [18,
Lemma 3.5] that A5(m) — A,(m) and p,(m) — p,(m) as e — 0+. Therefore, by noting
that J. is p-homogeneous, we can obtain a solution u, with |Ju.|| = 1 for — div(a.|Vul’ 2Vu) =
cem|ulP?uin Q, 0u/0v = 0 on 0Q, where ¢, = A% (m) or pf,(m). Because of ||u,|| = 1, it follows
from the standard argument that u, has a subsequence strongly convergent to a solution u
for

—div<aw|Vu|P_2Vu> =cemufu inQ, Z_Z =0 on 0Q, (2.9)

where ¢ = lim,_ ;.. Thus, A,(m) and u,(m) are eigenvalues of (EV;m). To prove
lim,,_, o, Ay (M) = +o0, by considering a function ms(x) := max{m(x),6} for &6 > 0, we have
An(ms) < Ay(m) (refer to Proposition 2.10). Because we can apply our fist assertion to s
(note fQ mg dx > 0), we obtain lim,, _, o ptn(m) > limy, _, o A, (1) > limy, oo Ay (m5) = +00. O

Proposition 2.10. Let 1 <r < w if N < pand p*/(p* —p) <r < w0 if N > p. Then, the following
assertions hold:

(i) if m' > min Q, then p(m') < px(m);
(i) if limy, _ omy, = min L"(Q), then lim sup, _,  pux(m,) < px(m);
(iii) szQ mdx #0and lim,, , . m,, = m in L"(Q), then lim,,_, o, px(m,,) = pr(m).

Moreover, the same conclusion holds for \i(m).

Proof. We only treat py (m) because we can give the proof for Ay (m) similarly.

(i) Let m' > m in Q. Fix an arbitrary € > 0. Then, by the definition of u(m), there
exists a § € ¥r(m) such that max,cs1 J(g(2)) < pr(m) + €. Set g(z) = g(z)/
(Jomg(2)P dx)"" for z € S (note Jom'|g(z)Pdx > [, m|g(z)[Pdx =1),then g €
¥« (m’) holds. Therefore, by the definition of p (m'), we have

pi(m') < max J(Z(2)) = max fg"i’(li% < max J(g(2) <px(m) +e. (2.10)

because of fg m'|g(z)[Pdx > fg m|g(z)[Pdx = 1 for every z € Sk, Since € > 0 is arbi-
trary, we obtain pi(m') < pi(m).

(ii) Let lim, o, m, = m in L"(Q) and fix an arbitrary ¢ > 0. By the definition of p (m),
there exists a ¢ € Fx(m) such that max_cg1 J(g(z)) < pr(m) + /2. Since g(S¥1)
is compact and pr' := pr/(r - 1) < p*, we set M := max,c(s-1) ||u||p,,. Then, due to
Holder’s inequality and m,, — min L"(Q), there exists an ny € N such that

f my|ulPdx =1 +f (my, — m)|ulPdx >1 - |\m, —m||,MP >0 (2.11)
Q Q

forevery u € g(Sk‘l) and n > ny. Therefore, by a similar argument to (i), we obtain

Hi(my,) < max J(8(2) < pim) + €/2 < pr(m) +e€ (2.12)

zesk [ my|g(z)|Pdx — 1 - |lmy —ml|, MP
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for sufficiently large n. Hence, lim sup,, ,  px(m,) < px(m) + € follows. Since € > 0
is arbitrary, our conclusion is proved.

(iii) Let limy,_, o, m, = m in L"(Q) and fg mdx#0. We fix an arbitrary ¢ > 0. Due to
our assertion (ii), there exists an n; € N such that ux(m,) < ur(m) + €/2. For
every n > ny, by the definition of p(m,), we can take g, € Fi(m,) satisfying
maxzesk-1 J(8n(2)) < pi(mn) + €/2.

Here, we will prove

sup max{ llell,; u € gn <5k71>} < co. (2.13)

n>m;

If u € g,(S*) satisfies fg m|u|f dx <0, then we obtain

b(m, 1)||u||z < J(u) - J; mlulf dx = J(u) - L} my|ulf dx + fg(mn - m)|ul|f dx
p
pr'

CJ(u)|m, —m||,
info ag

£
< p(my) + 51+ Iy, — ml|, [l
(2.14)
< p(m) + & + Cllmy, — ml|, [|ull; +

Cllm, — m||, p
< - _
< (1 + info o >(yk(m) +¢) + Cllmy, — m||, |lull,

by Lemma 2.2 and Holder’s inequality (note ||Vu||£ < J(u)/infg ag, and pi(m,) < pr(m) +
€/2), where C > 0 is a constant (independent of n and u) obtained by the continuity of
WP (Q) into LP" (Q). Therefore, if we take an n, > 13 satisfying C||m, —m||, < b(m,1)/2 for
every n > 1, then we obtain

2 b(m,1)
Il < 55 (1+ 5o e ) (i) +2) (2.15)

for every u € g,(Sk!) provided jQ mlul’ dx < 0and n > n,. Similarly, in the case where m
changes sign, for every u € g,(Sk!) satisfying fQ mlulF dx > 0, we have

b(=m, 1) |lullp < J(u) - IQ(—m)Iul” dx

cl | (2.16)
m, —ml|, p
< _— - .
< (1+ ) Guomy +.) + 1+ Cli, = il
Hence, by taking a sufficiently large n3 > n,, we get the inequality
2 b(-m,1)
P (14 ot 1 2.17
lullp < b(—m,1)< " 2infg am)(‘uk(m) texl), 2.17)
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for every u € g,(Sk!) with fg mlul|’ dx > 0 and n > n3. In the case of m > 0 in Q, by using
Lemma 2.3 instead of Lemma 2.2, we have a similar inequality

2 <1+ d(m,1)

Il < s (14 e ) (sl +e-41), (2.18)

for every u € g,(Sk!) provided n > ns (some sufficiently large ny > n3). Consequently, our
claim follows from (2.15), (2.17), and (2.18).
Let us return to the proof of (iii). Because

sup{||u||pr,; ue gn<5k*1>, n> nl} = R< 400 (2.19)

holds by (2.13), J(u) < px(m) + £/2 and the continuity of W'?(Q) into LP"(Q), we see the
inequality

I mlulP dx =1 - I (my, —m)ulf dx >1 - ||m, —m||,RF >0, (2.20)
Q Q

for every u € ¢,(S¥!) and n > ns (some sufficiently large ns > n4). By considering g,(-) =
§1()/ (o mlgu()Pdx)'" € F(1m), we obtain

aXzeS’H](gn(z)) < Hk (mn) +e/2

. 2.21
= llmp —m||,RP- = 1 —[[m, —m||, R 221

_ m
pic(m) < max J(gu(2)) < 5

Because of ||m, — m||, — 0, we get ur(m,) > pr(m) — € for sufficiently large n, and hence our
conclusion holds. O

Finally, we recall the second eigenvalue of (EV;m) obtained by the mountain pass
theorem.

Z(m) = {n € C([0,1], S(m)); n(0) € P, (1) € (-P)},
(2.22)

= inf T
= dng gy ()

where P := {u € WP (Q);u(x) >0 for a.e. x € Q}.

Since 0o > sUp, g Ao (X) > infreq s (x) > 0 holds, the following result can be shown
by the same argument as in [19] (although they handle the asymmetry case, it is sufficient to
consider the case of m = n in this paper). See [19, Theorem 3.2] for the proof.

Theorem 2.11. c(m) is an eigenvalue of (EV; m) which satisfies \*(m) < c(m). Moreover, there is
no eigenvalues of (EV ; m) between \*(m) and c(m).
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Now, we have the following result.

Proposition 2.12.
Aa(m) = pa(m) = c(m) (2.23)

holds, where c(m) is a minimax value defined by (2.22).

Proof. First, we prove the inequality c(m) > p»(m). Because c(m) is an eigenvalue (note that
the following equation is homogeneous), we can choose a solution u € WP(Q) with
o mlulP dx =1 for

~div (a0 ()| Vil Vi) = c(m)m()lul’?u  in Q, 2_:; -0 on dQ. (2.24)

Note that u is a sign-changing function because any eigenfunction associated with any
eigenvalue greater than the principal eigenvalue changes sign (refer to [18, Proposition 4.3]).
Thus, we have

0< f Ao | VuslP dx = c(m)f mul, dx (2.25)
Q Q

by taking +u. as test function (recall that u, := max{+u,0}). Hence, we may assume that
Jo mul, dx = 1 by the normalization. Set X := {su, —tu_; |s|’ + |t|’ = 1} C S(m). Then, because
X is homeomorphic to S, there exists g € F2(m) such that g(S') = X. Since the value of J is
equal to c¢(m) on X, we obtain

pa(m) < maxJ(g(2)) = e(m) (2.26)

by the definition of y,(m) and X.

Next, we will prove the inequality c(m) < A, (m) by dividing into two cases: fQ mdx#0
and [, mdx =0.

Case of [, mdx#0: by way of contradiction, we assume that 1;(m) < c(m). Then,
M (m) = A(m) = Ay(m) follows from Theorem 2.11. Note that f satisfies the Palais-Smale
condition in this case (see Lemma 2.8), and hence we can apply the first deformation lemma
to f Therefore, by the standard argument (cf. [22], [17, Lemma 5.6]), we see that y(K) > 2,
where K := {u € S(m); J'(u) = 0, J(u) = A*(m)}. This means that K is an infinite set, that is,
the following equation has infinite many solutions:

—div <aoo (x)|Vu|p_2Vu> = M (m)m(x)|ulffu in Q, g—z =0 on 0Q (2.27)

due to the Lagrange multiplier’s rule. This contradicts to the fact described as in
Proposition 2.4 that 1*(m) is simple. As a result, we have shown that c(m) = A,(m) = pp(m)
holds in the case of fg mdx #0 (note A, (m) < p,(m)).
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Case of jgmdx = 0: According to Proposition 2.10 (i) for A,(m), we have A,(m) >
Ao(m +¢€) = c(m + ¢) for every € > 0 since we can apply the first result to m + £. Because
we prove lim, o, c(m + €) = c¢(m) by the same argument as in [6, Lemma 2.9] (for the case
a, = 1), our conclusion is proved by taking ¢ | 0 in the inequality A;(m) > c(m + ). O

3. Proof of Theorem 1.1

We define a functional I ,, on W'?(Q) as follows:

I)L,m(u):j G(x,Vu)dx—&J‘ m|u|pdx—'[ F(x,u)dx—f hu dx
Q PJa Q Q
1 ~ A
== | ax|Vulfdx+| G(x,Vu)dx-=| mul’ dx (3.1)
PJa Q PJa
—I F(x,u)dx—f hudx
Q Q

for u € W»(Q) ((1.15) or (1.9) for the definition of G, G,and F ). It is easily seen that I, ,,
is well defined and class of C! on W'?(Q) by (1.1), (1.16) and the continuity of W1 (Q) —
Q).

Remark 3.1. Let u € W?(Q) be a critical point of I, ,,, namely, u satisfies the equality
f A(x, Vu)Vepdx = )LJ‘ mlulPup dx + J f(x,u)pdx+ J‘ he dx (3.2)
Q Q Q Q

for every ¢ € W7 (Q). Then, u € L*(Q2) by the Moser iteration process (refer to Theorem C in
[4]). Therefore, u € C1*(Q) (0 < a < 1) follows from the regularity result in [23]. Furthermore,
due to [24, Theorem 3], u satisfies (P; A, m, h) in the distribution sense and the boundary
condition

ou ou /44
= — — A(- =al(- — ' 3.3
0 3o A(-, Vu)v = a(-,|Vul) 5, I w (0Q2) (3.3)

for every 1 < q < oo (see [24] for the definition of W~/44(8Q)). Since u € C'*(Q) and
a(x,t) > 0 for every t #0, u satisfies the Neumann boundary condition, that is, (0u/0v)(x) =0
for every x € 0Q.

3.1. The Palais-Smale Condition in the Nonresonant Case

First, we recall the definition of the Palais-Smale condition.

Definition 3.2. A C' functional ¥ on a Banach space X is said to satisfy the Palais-Smale con-
dition at ¢ € R if a Palais-Smale sequence {u,} C X at level ¢, namely,

¥(u,) — c, |% (un)||x. — 0 asn— oo (3.4)
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has a convergent subsequence. We say that ¥ satisfies the Palais-Smale condition if ¥ satisfies
the Palais-Smale condition at any ¢ € R. Moreover, we say that ¥ satisfies the bounded
Palais-Smale condition if any bounded sequence {u,} such that {¥(u,)} is bounded and
¥ (1,)|lx- — Oasn — oo has a convergent subsequence.

Concerning the Palais-Smale condition, we state the following result developed from
[6, Proposition 7].

Proposition 3.3. If A is not an eigenvalue of (EV; m), then I, ,, satisfies the Palais-Smale condition.

Proof. Let {u,} be a Palais-Smale sequence of I} ,,, namely,

Lom(un) — ¢, ”I}L,m(un) —0 asn— oo (3.5)

Wir(Q)*

for some ¢ € R. It is sufficient to prove only the boundedness of ||u,| because the operator
A:WP(Q) — WP(Q)" described in Proposition 1.5 has the (S), property.
To prove the boundedness of ||u,||, it suffices to show that [[u, ||, is bounded because of

the inequality |f (x,u)| < C(lul’"' + 1) (obtained by (1.1)) and the following inequality:

<I}L,m(un), un> +1 L; mlu,|P dx + ’[Q f(x, up)uy, dx + J‘Q hu, dx,

3.6
Cy (3.6)

p-1

= f A(x, Vi)V, dx > IVaullp,
Q

where we use Remark 1.4 (iii) in the last inequality. By way of contradiction, we may assume
that [[us|, — coasn — oo by choosing a subsequence if necessary. Set v, := uy /||ty ||,,- Then,
since the inequality (3.6) guarantees that {v,} is bounded in W7 (Q), we may suppose, by
choosing a subsequence, that v, — vy in WP (Q) and v, — vy in LP(Q) for some vy.

Here, we will prove that

Il

im =)
l[unllp

n— oo

(3.7)

where p’ = p/(p—1). Fix an arbitrary € > 0. It follows from (1.1) that there exists a C, > 0 such
that

|f(x,u)| <eluf™ +C. foreveryueR, ae x€Q. (3.8)

Then, we obtain

JQ |f (x, un) | dx < 2V JQ <sr”|un|P + c@") dx < 277 |l |[h + 27 CY |2, (3.9)
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Since we are assuming that ||u,,||p — oo asn — oo, there exists ny € N such that for every
n 2> np

el

(3.10)
1
ol
holds. This shows that limy, . [ f (-, tn)l,, / IIunllg_1 = 0 because ¢ > 0 is arbitrary.
Here, we recall the following result proved in [6]:
lim f alx [Vitn|) Vit |Vu;[)1Vun V (v, —vy) dx = lim alx [Vin) Vit |Vu,;|7)1Vun Vpdx =0, (3.11)
Ele eda luallp
for every ¢ € W'?(Q). Thus, by considering
<1’A (Un), On = vo>
m 2
o(1) = = = f Ao | VOR[P V0,V (v, — vg)dx + 0(1), (3.12)
[l Q

we see that v, strongly converges to vy in W#(Q) (note that p-Laplacian has the (S), pro-
perty). Therefore, by taking a limit in o(1) = (I;L,m(u,,),(p)/||un||’,f,71 for any ¢ € W'?(Q) and
by noting (3.7) and (3.11), we know that vy is a nontrivial solution (note [|vgl|, = 1) of

—div<aw|Vu|p_2Vu> = \muf2u inQ, g_:j =0 on 0Q. (3.13)

This means that A is an eigenvalue of (EV;m). This is a contradiction. Hence, ||un||p is
bounded. O

3.2. Key Lemmas

To show the linking lemma, we define
Y (p,m) := {u € Wl”’(Q);f Ao |VulP dx > ﬂf mlul? dx} (3.14)
Q Q

for p e R.

Lemma 3.4. Let gy € C(SK', W'P(Q) \ {0}) be odd and 0 < p < pgs1(m). Then, g(S¥) N
Y (u, m) #0 for every g € C(SK, W' (Q)) with g|lge: = o, where Y (u, m) is the set introduced
in (3.14) and Sk is the upper hemisphere in R**! with boundary Sk,
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Proof. Fix any g € C(Sk, W'#(Q)) such that g|g1 = go. If u € g(S¥) satisfies [, m|ul’ dx <0,
then u € Y (u, m) holds. So, we may assume that fg mlul’dx > 0 for every u € g(S¥). Define
g € Fis1(m) as follows:

8() if z € Sk,
=y ) Jomlg@] dx)"”
8@ 8= if z € S, 19

(Jgmlg-2)[ dx)"”?

By the definition of py.1(m), there exists zg € S¥ such that f(g(zo)) > pis1(m). Since g is
odd and J is even, we may suppose zo € Sk. So, this yields the inequality J(g(zo)) >
p (m) [ m|g(zo)Pdx > p [ m|g(zo)P dx, whence g(zo) € Y (p, m) holds. O

Lemma 3.5. Let py(m) < A. Then, there exists gy € ¥ (m) such that
max J(go(z)) <A, max Iy, (Tgo(z)) — —o0 as |T| — oo, (3.16)
zeSk-1 zeSk-1

where py(m) is defined by (2.5).

Proof. Choose ¢y > 0 such that pi(m) + &9 < A. By the definition of p(m), there exists gy €
Fi(m) such that

ngsgzg](gO(Z)) < pic(m) + &. (3.17)

Due to the compactness of go(S*1), we put M := max.cs1 ||g0(2) || p- By the property of the
function a as in (AH) and Young's inequality, for every ¢ > 0 there exist constants C, > 0 and
C. > 0 such that

o (x)|y|" + C. (3.18)

£ =

~ £ ’
|Gexy)| <5yl +Celyl <ely|"+ €. <

ian A

for every x € Q and y € RN. Moreover, the hypothesis (1.1) ensures that for every ¢ > 0 there
exist constants D, > 0 satisfying

6/
IF(x, )| < Slul? + Dolul < &'uf” + D, (3.19)
for every u € R and a.e. x € Q. Hence, we have

’ TP (A — pe' MP
tntr < (1 [ v - TTEZPEMD oy g, 4
] ) ’ (3.20)
< _{ (1 + %) (#k(m) + 80) -1+ pMpgl} + TM”h”oo|Q|(p—1)/p L C
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for every T > 0, u € g(S¥!), e > 0 and & > 0 since go(S*') ¢ S(m), (3.17), (3.18) and
(3.19), where C = (C, + D.,)|Q| and a = inf,cq a.(x) > 0. By taking £ > 0 and ¢’ > 0 satisfying
(1+pe/a)(ur (m)+eo) —A+pMPe' < 0, we show that max,ege1 Iy n (Tgo(z)) — —casT — +oo.
Thus, our conclusion follows because go(S*™!) is symmetric. O

3.3. The Case [, mdx#0

Lemma 3.6. Let fQ mdx < 0and 0 < A < X*(m). Then, I, ,,, is bounded from below, coercive and
weakly lower semicontinuous (w.l.s.c.) on WP (Q).

Proof. ®(u) := fQ G(x, Vu) dx is w.l.s.c. on WP (Q) because @ is convex and continuous on
WP(Q) (cf. [25, Theorem 1.2]). Thus, I, ,, is also w.l.s.c. on W'?(Q) since the inclusion from
WP(Q) to LP(Q) is compact.

Choose € > 0 such that pe < a(1-A/X*(m)), where a := infg a,,. By an easy estimation,
(3.18) and (3.19) as in Lemma 3.5, we have

a-—cep
s =
I)L,m(u) = pa

= Il llull,|QIPD7P = (CL+ DL) ||

f aoo|Vu|pdx—&J‘ mlulPdx — & ||ull}
Q PJa (3.21)

for every u € W#(Q) and ¢ > 0.
Let u € W'P(Q) satisfy [, mu[’dx < 0. Then, the following inequality follows from
Lemma 2.2:

Dy J Qoo | VulPdx — AJ‘ ml|uPdx > % f oo VulP dx + b(m, &)|[ullh, (3.22)
Q Q Q

where b(m, ¢) is a positive constant independent of u with ¢ = 2A/Dy and Dy = (a — ep)/a.
For every u € W (Q) such that fQ ml|ul|Pdx > 0, we obtain

DO.[ Ao |VulPdx — .)LJ‘ mlulPdx > (DO - %) j Ao | VulPdx
Q Q \(m) /) Ja

1 A ) ) (3.23)
23 (o ) [ 7+ (00 s 1

by the definition of A*(m), Lemma 2.1 and Dy — A/A*(m) > 0, where ¢ > 0 is a constant
obtained by Lemma 2.1.

Consequently, if we choose a ¢ > 0 satisfying ¢’ < min{b(m,¢)/p,c(Dy — A/A*(m))/
(2p)}, then we obtain positive constants d; and d, (independent of u) such that

Lm(u) > dy f oo | VuulP dox + da[ull} = ||l o[l | Q1P D77 = (CL+ DL) Q|
Q (3.24)

> min{ad;, da}[[ull” = ||kl lul|1 PP - (C. + D) ||
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for every u € WP(Q) by (3.21), (3.22), and (3.23). Because of p > 1, our conclusion is
shown. 0

Lemma 3.7. Let m > 0in Qand m#0. If A < 0 holds, then I, ,, is bounded from below, coercive and
w.ls.c.on WP (Q).

Proof. First, as the same reason in Lemma 3.6, it follows that I, ,, is w.Ls.c. on WP(Q). By a
similar argument to Lemma 3.6, for every ¢ > 0 and 0 < € < a/p where a = infg a,,, we
obtain

Bt > & [ awupdxs B [ - ealf
pa Jao P Ja (3.25)
= [|Bllg lull 12" = (C;. + D) 19
for every u € W (Q) (note A < 0). Here, from Lemma 2.3,
DOJ‘ Ao | VulP dx + |)L|f mlulPdx > Do f Ao |VulPdx + &b(g, m)||u||§ (3.26)
Q Q 2 )a 2

for every u € W7 (Q) follows, where Dy := (a — ep)/a, ¢ := 2|\|/Dy and b(¢, m) is a constant
obtained in Lemma 2.3. Therefore, by choosing a ¢’ such that 0 < ¢ < Dyb(¢, m)/2, we can
prove our conclusion. O

Lemma 3.8. Let fQ mdx#0and 0 < A < . Then, I, ,, is bounded from below on Y (u, m), where
Y (u, m) is the set introduced in (3.14).

Proof. Due to the same inequalities concerning G and F as in Lemma 3.5, for every € > 0 and
g > 0, there exists C = C(g, €') > 0 such that

a-—pe A ,
L) 2 27 f Ao| VP dx — —f mfulPdx — €|[ull, ~ [1hll,,llull; - CI& (3.27)
pa Jao PJa

for every u € wlr (), where a := inf,cq a (x). Choose positive constants € and 6 such that
Dy:=1-pe/a>6>L/pu (note A/pu<1).
First, we consider the case of m > 0 in Q. For every u € Y (u, m), we obtain

Dy J Ao |VulPdx — .)Lj mulPdx
¢ ¢ (3.28)
> (Do - 6) f Ao |VulPdx + (6 — A) f mlulPdx > d(m, &) (Do - 6)|lull,
Q Q

by Lemma 2.3 with ¢; = (6u — 1) /(Do — 6) (note 6y — A >0and Dy — 6 > 0).



Abstract and Applied Analysis 19

Next, we handle with the case where m changes sign. Let u € W (Q) satisfy
fQ mlul? dx < 0. Then, we have for such u

Dy J‘ Ao | VulPdx — AI mlulPdx > b(m, gz)D0||u||f7 (3.29)
Q Q

by Lemma 2.2, where Dy =1 - pe/a and & := A/ Dsy.
On the other hand, for u € Y (u, m) with jg m|ul’dx > 0, the following inequality fol-
lows from Lemma 2.2:

Dy f Ao |VulPdx — AJ mlulP dx
Q Q

> (Dp - 06) L} Ao |VulPdx — (6 — 1) IQ (=m)|ul’ dx (3.30)

> b(~m, &) (Do — 6)[ull’.

Consequently, by (3.27), (3.29), (3.28), and (3.30), there exists d > 0 independent of u such
that

Ly () > (d = &) Jullp = k]l llull,|QP "7 - ClQ)| (331)

for every u € Y (u, m). Hence, our conclusion is shown by taking ¢’ > 0 satisfying ¢’ <d. [

Proof of Theorem 1.1 in the Case [, m dx #0. First, if either m > Oon Qand A < 0or0 < A <
A (m) = py(m) (ie, _fQ mdx < 0) holds, then Lemma 3.7 or Lemma 3.6 guarantees the exis-
tence of a global minimizer of I, ,,,, respectively (cf. [25, Theorem 1.1]). Hence, (P; A, m, h) has
a solution.

Since A is an eigenvalue of (EV;m) if and only if —1 is one of (EV; —m), it suffices to
consider the case of A > A*(m) > 0. Furthermore, by Proposition 2.9, Remark 2.6 (i), and our
hypothesis that \ is not an eigenvalue of (EV;m), we may assume that there exists a k € N
such that p(m) < A < pgsq (m). By Lemmas 3.5 and 3.8, we can choose T > 0 and gy € ¥« (m)
satisfying

max Lim(Tgo(2)) <inf{I)m(u); u €Y (prn(m), m)} =: a. (3.32)

Put

S = {g € c(s’j,W”’(Q)); 8lser = TgO}r
| (3.33)
c:= éIelg Izrg? Lim(g(2)).

Then, it follows from Lemma 3.4 and (3.32) that ¢ > a > maX,csk-1 I} (T go(z)) holds. Since
I\ 1 satisfies the Palais-Smale condition by Proposition 3.3, the minimax theorem guarantees
(cf. [25, Theorem 4.6]) that ¢ is a critical value of I, ,,. Hence, (P; A, m, h) has at least one
solution. O
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3.4. The Case [,mdx =0

First, we introduce an approximate functional I} as follows:
1
I} () = Ty () + ’;Ilullﬁ = Lum-1/an (w) - for ue W'P(Q). (3.34)

Lemma 3.9. Let 0 < A < y. Then, there exists an ny € N such that for each n > ny, Ixmn is bounded
from below on' Y (u, m —1/An), where Y (u, m — 1/ An) is the set introduced in (3.14).

Proof. Choose ny € N such that 1/ny < A ess sup, ., m(x)/2. Then, for every n > ny,
Lemma 3.8 guarantees that I;m’n = Iy m-1/0n) bounded from below on Y (u,m — 1/(An))

because of [,(m —1/(An))dx <0and |{m —-1/(An) > 0}| > 0. O

Proof of Theorem 1.1 in the Case fQ mdx = 0. By noting that \m = (-\)(-m) and p(m) =
A*(m) = 0, we may assume that pr(m) < A < pyi1(m) for some k € N. Let ny be a natural
number obtained by Lemma 3.9. Due to Proposition 2.10 (i) and (ii), there exists an n; > ny
such that

1 1 1
petom) < pi (= o) < pue(m =) <A <palm) < (m- ) 639)
for every n > n;. Thus, for every n > nj, we can take T, > 0 and g, € ¥r(m—1/(n\)) satisfying
max I (T,g.(2)) <inf{I)L (u)'u€Y<ﬂk+1<m—L> m—L>} (3.36)

ekl MmmATISn I (nd) )’ (nd)

by applying Lemmas 3.5 and 3.9 to I}

Amn

= I m-1/(m) (note (3.35)). Set

Spi= {8 € C(S5EW(Q));8lser = Tugn ),

. . (3.37)
Cn = glé’lan gé%’j)_( IJ\,m,n (g(z))
for each n > n;. Then, for each n > n;, we can obtain u, satisfying
1 '
Iy o (n) = Cn| < e “ (I;m,n> (Un) . < (3.38)

by applying Ekeland’s variational principle to each I}~ (refer to [25, Theorem 4.3]). In addi-
tion, we can see that {u,} is bounded in W'7(Q). Indeed, if there exists a subsequence {u,, },
satisfying [|uy|| p — ®asl — oo, then we can show that 1 is an eigenvalue of (EV;m) by
the same argument as in Proposition 3.3. This contradicts to our assumption that A is not an
eigenvalue of (EV;m). Moreover, the boundedness of ||Vun||p follows from a similar inequa-
lity to (3.6) as in Proposition 3.3 under the boundedness of ||un||p.
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Therefore, we may assume, by choosing a subsequence that {u,} is a Palais-Smale
sequence of I, ,, since I,,, is bounded on a bounded set and according to the following
inequality:

, , ! 1 1 11
||IA,m(u7l) I)L,m(un) - (I)t,m,n> (un) + " < EHun”Z + o (3.39)

. <
(Wl,p(g)) (Wlp(Q))*

Therefore, because I, ,, satisfies the Palais-Smale condition by Proposition 3.3, I ,, has a cri-
tical point, whence (P; A, m, h) has at least one solution. O

4. Proof of Theorem 1.2

First, we will prove the following result concerning the Palais-Smale condition under the
additional hypothesis (H=+) or (HF+).

Proposition 4.1. Assume that one of the following conditions hold:

(i) A = 0and (HF+) or (HF-);
(ii) A #0 and one of (H+), (H-), (HF+) and (HF-).

Then, 1) ,, satisfies the Palais-Smale condition.

Proof. As the same reason in Proposition 3.3, it suffices to prove the boundedness of a Palais-
Smale sequence {u,} such that I),,(#,) — c (for some ¢ € R) and ||I ’Am (un) ||W* — 0 as
n — co. By way of contradiction, we may assume that [|u,||, — coasn — oo by choosing a
subsequence. Set v, = u, / ||un||p. Then, by the same argument as in Proposition 3.3, {v,,} has
a subsequence strongly convergent to vy being a nontrivial solution of

—div(aw(x)|Vu|p_2Vu> = Am(X)|ufu in Q, 2—3 =0 on 0Q. (4.1)

To simplify the notation, we denote the above subsequence strongly convergent to vy by {v,},
again. Thus, |u,(x)| — cocasn — oo forae. x € Q= {x' € Q; vo(x') #0} (note [lvol, = 1).
Assume (HF+) or (HF-). Then, we can obtain

f(x/ un)un - PF(x/ un)

1+g
Q llnllp

(I) := dx — +oo if (HF+), respectively. (4.2)

Indeed, it follows from (HF+) that there exist R > 0 and C > 0 independent of n such that
f(x,t)t—pF(x,t) >0if [t| > Rand a.e. x € Q, and |f (x, t)t — pF(x,t)| < C for every |f| < R and
a.e. x € Q. Therefore, since |u,(x)| — oo a.e. x € Q and || > 0 (note [[vol, = 1), we have
(4.2) if (HF+) holds, by applying Fatou’s lemma to the following inequality:

Cl€2\ Qo
T (4.3)
P

f(x; Up) Uy — PP(JC, Uy) |vn|1+qu _

(I) > -
Q 2 [[uan |
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In the case of (HF-), by considering —f instead of f as in the above argument, we can show
our claim (4.2).
Furthermore, by Holder’s inequality, we have

é /V n -a ,V n \ n2
- 2 CALRLCANLH LN
Q 24l

(4.4)

1
< Hy j Vo, + e dx < H0||an||;+q|Q|(P—1—Q)/P +0o(1)
Q [
< Hol[Vooll, QP77 4 o(1)

in the case of (HF-) because v, — v in W'#(Q), where g € [0,p—1] and Hy > 0 are constants
as in (HF-). Similarly, we obtain

(IT) > —Ho||Vooll, |QI P77 + o(1) (4.5)

in the case of (HF+).
Hence, we have a contradiction because of (4.2), (4.4), or (4.5) by taking a limit inferior
or superior in the following equality:

Lom(un) = (I, (un), tn
plun(tt) <f’m(u o >=(II)+(1)+(1—p)f Fon g (4.6)
+q Q

o(1) =
”un”p ”u””Z

where we use the fact that ||un||/||un||;,+q = ||vn||/||un||?, is bounded because of g > 0.
Assume A #0 and (H+) or (H-): because vy is a nontrivial solution of (4.1) with A #0,
vy is not a constant function, that is, ||Vvo||][J > (. Therefore, we have |Vu,(x)| - ccasn — oo

fora.e. x € Q= {x' € Q; Voo ()] #0}. Because of |Qo| > 0, we can show

é /V n) a ’ \ n \Y n :
J‘ PCL, Vitn) = A%, [Vitn | Vit dx — +oo if (H%), respectively, (4.7)
Q

1+
7]

by a similar argument to one for f in the above. In addition, we can easily obtain the following
inequality:

f(x/ un)un - PF(XI un)

1+g
Q ”un”p

1 1
dxc > ~Hylloall}2 + o(1) = ~Holleoll} 1 + o) (48)

in the case of (H+), respectively. Hence, we have a contradiction by considering o(1) =

(Lo (1) = (T}, 1t), 10)) / ],
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By a similar way to the case [,mdx = 0, we introduce the following approximate
functionals on W7 (Q):

Iy (1) = Ty (1) £ —||u||,, for u e W (Q). (4.9)

Note I/:{:,m,n(u) = Iy ms1/(im) (1) on WP (Q) provided A #0.

Proposition 4.2. If either A #0 and (H+) or (HF+) (resp., either A #0 and (H-) or (HF-)) and
{un} satisfies

sup Iy, (un) < +0o, hm “ A (un) =0, (4.10)
neN WP (Q)"

. — . — !
resp. inf I}, (1) > ~oo, lim ‘ () (24) ey =) (4.11)

then {u,} is bounded in WP (Q).

Proof. First, we note that the boundedness of ||un||p guarantees that ||u,| is bounded by
lim, o [|(I},, )’ @)l 1, @ =0 (refer to (3.6) as in the proof of Proposition 3.3). Moreover,
because of the following equality:

1+q

PI3 0 () = <<Ifmn> (un)/un> _a )J— hvn
=-p

[l

+J‘ p(NS(x, Vu,) - ﬁ(x,qun|)|Vun| J‘ f(x, uy)uy, — pF(x,un)
o el ol
we can prove the boundedness of ||u,||, by the same argument as in Proposition 4.1. O

Proof of Theorem 1.2. Because of Am = (-1)(-m), we may assume A > 0. In the case where
[omdx#0 and px(m) < A < pge1(m) for some k € N, the proof of Theorem 1.1 implies
the existence of a critical point of I, ,, because I,,, satisfies the Palais-Smale condition by
Proposition 4.1. Concerning other cases, in the next section, we will prove the existence of a
bounded sequence {u,} satisfying ( ).mn) (un) — Oor ( Mnn) (uy) — 0in WP(Q)* asn —
oo. Because I ,,, is bounded on a bounded set, we may assume that I, ,, (1) converges to some

¢ € R by choosing a subsequence. In addition, by noting the inequality ||I ;L,m(u")llwl,p @ S
I(If m, n) (un) || wir@y ||u,,||,’f1 /n, we easily see that {u,} is a bounded Palais-Smale sequence

of I),,. Therefore, I ,, has a critical point since I, ,, satisfies the Palais-Smale condition by
Proposition 4.1. O
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5. Construction of a Bounded Palais-Smale Sequence

In this section, due to the reason stated in the proof of Theorem 1.2, we will construct a
bounded sequence {u,} satisfying (I}, ) (un) — 0 or (I):,m,n),(u") — 0 in W7(Q)" as
n — oo. It implies the existence of a bounded Palais-Smale sequence of I ,,.

5.1. The Case A =0
Assume (HF+)

In this ¢ ase, we can show that for each n € N, Ij\-,m,n has a global minimizer u,. Indeed, for
0 < & < 1/(pn), there exists C; > 0 such that I} (1) > C0||Vu||§/(p(p -1)+ (1/(pn) -
£)||u||§ = |kl llull, — Ce for every u € WP (Q) by (1.1), (1.16) and A = 0 (refer to the inequality
as in the proof of Lemma 3.5). This means that I} is coercive and bounded from below on
WP (Q). Therefore, I)tm,n has a global minimizer u, since I)tm,n is w.L.s.c. on W'?(Q) as the
same reason in Lemma 3.6.

Furthermore, because of (II,m,n)/(u") = 0 in W(Q)* and Iy, . (un) = minyi, g

I };,m,n < I)tm,n (0) =0, it follows from Proposition 4.2 that {u,} is bounded.

Assume (HF—)

Choose ny € N such that 1/n < ¢(1) = pp(1), where c(1) is the second eigenvalue of (EV;1)
(so the weight function m =1 and see (2.22) for the definition). Then, by noting that I oy =
I /n,1, we have

a= inf{[&mrnn(u); ue Y(c(l),l)} > —o (5.1)
by Lemma 3.8, where Y(c(1), 1) is a subset defined by (3.14) with the weight m =1, that is,

Y(c(1),1) := {u e WP (Q); IQ Ao |VulPdx > c(1)||u||5}. (5.2)

Moreover, inf{I(;,m,n(u);u €Y(c(1),1)} > afor every n > ng holds because I(;,m,n(u) > I(;,m,ng(u)

for every u € W'#(Q). Since [, F(x, u)dx = o(1)||u||§ as|lul|, — coby (1.1), there exists T, > 0

such that I(;,m,n(:l:Tn) = —T,f(lQl/(np) —o(1) <a-2.
Define

s, = {geC([0,1, W'*(@)); 8(0) = T,, g(1) = -T, },
(5.3)

= inf I: "
cn:= Inf maxl;,,,(3()

for n > ny. By the definition of ¢(1), we easily see that g([0,1])NY (c(1),1) #0 for every g € %,
(refer to [6] or Lemma 3.4). Hence,

cn > inf{l(;,m,n(u);u € Y(c(l),l)} > o> Iy mn(£T,) (5.4)
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holds, whence ¢, is bounded from below. Moreover, by applying Ekeland’s variational
principle to each I, we can obtain a sequence {u,} satisfying |I,,  (un) — cn| < 1/n and
||(I&m,n)’(un)||wllp(g)* < 1/n. Since ¢, is bounded from below, it follows from Proposition 4.2

that {un} is bounded. As a result, we can construct a bounded sequence {u,} satisfying
(Ig ) () = Oasn — oo in WP(Q)".

5.2. The Case \ = \*(m) = p1(m) with [, mdx <0
Assume (H+) or (HF+)

Since we see that I}~ = Iim-1/m) and A*(m —1/(n1)) > A*(m) = A > 0 (according to
Lemma 2.5), I} Lmn 18 COercive, bounded from below and w.l.s.c. on W1?(Q) by Lemma 3.6.
Thus, we obtain a global minimizer u, of I} for sufficiently large n such that [{m~1/(n\) >

0} > 0. Because of I}, (u,) <I}  (0)= 0 for every n, Proposition 4.2 guarantees that {u,}
is bounded. o o

Assume (H-) or (HF-)

First, we note that Iy = Lume/ o) and 0 < A*(m +1/(nl)) < A*(m) = A by Lemma 2.5 for

sufficiently large n such that _[Q(m+ 1/(n)))dx < 0. Moreover, it follows from Proposition 2.10
and p (m) < pz(m) that there exists an ny € N satisfying [, m +1/(ngA)dx < 0 and

/\*<m+ %) <\ =p(m) <y2<m+ %) §y2<m+ nl> < po(m) (5.5)

for every n > ny. By applying Theorem 1.1 to each case of a weight m + 1/(n) (note that A
is not an eigenvalue of (EV;m + 1/(n\)) by (5.5), there exists u,, satisfying (Ix_mn),(”") =0
(note I;m n= I ma1/(nyy) and

I itn) = Cn > mf{ I w); w €Y (pa(may), m,,o)} (5.6)

where the last inequality follows from Lemma 3.4 with m,, = m + 1/(ngA). On the other
hand, because Iy (u) 21, " (1) = Lim,, (u) for every u € WP (Q) and n > ng, we have

Cp > inf{I)L,mnO (u); ue Y(‘uz(mno),mno)} > -0 (5.7)

for every n > ng, where the last inequality follows from Lemma 3.8. Thus, ¢, is bounded from
below. Hence, Proposition 4.2 guarantees the boundedness of {u,}.
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5.3. The Case \ = i1 (m) with [ mdx#0
Assume (H+) or (HF+)

We may assume p(m) < pri1(m) = A by taking k anew if necessary (note that we have
already proved the case of pi(m) < A < pys1(m) in Section 4). Here, we can choose an np € N
such that [, (m - 1/(n1))dx#0,|{m—-1/(n)) > 0}| > 0 and

1 1 1 1
yk<m n)u) < pk (m Tlo)t) <A il <A = prr1(m) < prs (m n)») (5.8)

for every n > ng by [, m dx #0 and Proposition 2.10 (i), (iii). Note the following inequality:
Ix,m,no (u) 2 I)T,m,n (u) 2 I)L—l/(n||m||m),m (u) (59)

for every u € WP(Q) and n > no, where the last inequality is obtained by ||u||£ > fQ mlulPdx/
lm]|,. Let n > ng. It follows from Lemma 3.8 and (5.8) that I)_1/(n|m|_),m is bounded from
below on Y (A, m). Hence, (5.9) yields that I} is also bounded from below on Y(\,m),
namely,

Hy = inf{I)tm,n(u); ueY(, m)} > —c0. (5.10)

On the other hand, because of i (m—-1/(npl)) < A (see (5.8)), Lemma 3.5 guarantees the exis-
tence of gy € Fr(m —1/(np))) satistying

max 1y, . (Tg(2)) = maxLym-1/(m) (T (2)) — —co  as [T| — co. (5.11)
zeSk-1 zeSk-1

Thus, for each n > ny, we can take T,, > 0 such that

glsakﬁl}:m,n (TngO (Z)) < gsakz(]]:{—,m,no (TngO(Z)) <ap-1, (5.12)

(note (5.9) for the first inequality). Set

3= {g € C<S’j,W1”’(Q)>; Qlgra = TngO}r
(5.13)

+
Cn

= inf max I} z
2€% zesk l,m,n(g( ))

for n > ny. Since g(S) N Y(\,m) #0 for every ¢ € =, by Lemma 3.4 and A = py.1(m), we
have ¢} > a, > max,cgt I)tm,n (T»80(2)). Therefore, Ekeland’s variational principle (refer
to [25, Theorem 4.3]) guarantees the existence of u, satistying |I}, (4x) = ca| < 1/n and

”(II,m,n)’(”n)kup(gy <1/n.
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Finally, to show the boundedness of {u,} due to Proposition 4.2, we will prove that c;,
is bounded from above. For each n > 1, we define a continuous map g, from Sk to W'#(Q)

by

!

(1= zk41)Tugo _z for z = (Z, zks1) € SK with 0 <z, < 1,

gn(2) = i (5.14)

0 for z = (2, zks1) € SK with zg,q = 1.
Then, g, € %, holds. This leads to

ey < sup If, (t0(2)) < sup Iy, (£g0(2)) < +oo (5.15)

+>0,zeSk-1 t>0,z€Sk-1

because of (5.9), (5.11), and the compactness of go(Sk™!).

Assume (H-) or (HF-)
Because the case of pi(m) = A*(m) is already shown (see Sections 5.1 and 5.2), We may

assume (0 <)ur(m) = A < pps1(m) for some k > 2 by taking k anew if necessary. Here,
we can choose an ng € N such that [, (m +1/(n1))dx #0 and

1 1 1
(e o) <pwtm) =t <pea(m —0) < (mos ) Spatm) - G16)

for every n > ng by [, m dx #0 and Proposition 2.10 (i), (iii). Moreover, we note the following
inequality:

I)T,m,no (u) < Ix,m,n (u) = I);,m+1/(n);) (u) < I)L+1/(n||m||w),m (u) (517)

for every u € W'(Q) and n > ny. It follows from Lemma 3.8 and (5.16) (note (5.17) also)
that I;/m,no = I m, is bounded from below on Y (p.1(myp), mo) with mg := m+1/(nod). Hence,
(5.17) implies

inf{ILmln(u); uEe Y(‘ukﬂ(mo),mo)}
(5.18)

> inf{IA‘,m,no(u); ue Y(yk+1(m0),mo)} = ay > —o0

for every n > ny. Because of A + 1/(n||m||,,) > A = px(m), there exist g, € Fx(m) and T, > 0
such that

max Iy, (Tugn(2)) < max L/t m(Tagn(2)) < a0 =1 (5.19)
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by Lemma 3.5. Define

Suo= {5 € C(SEWP(Q)); gl = Tugn ),
(5.20)

¢, = inf maxI, z
n €%, zesk Amn (g( ))

for n > ng. Then, ¢, > ap occurs (see (5.18)) since g(S¥) NY (px+1(mo), mo) # @ for every g € =,
by Lemma 3.4. This means that ¢, is bounded from below. Consequently, we can obtain a
desired bounded sequence by the same argument as in Sections 5.1 and 5.2.

5.4. The Case (iii) as in Theorem 1.2

First, note that we are assuming the hypothesis (H+) or (HF+) in this case (iii). In addition,
as the reason in the proof of Theorem 1.2, it suffices to handle with A > 0.

Let k € N satisfy pi(m) < A < pps1(m). According to Proposition 2.10 (i) and (ii), we
can take an ny € N such that [{m - 1/(n\) > 0}| > 0 and

1 1 1 1
/lk<m— m) S[lk(ﬂ’l— m) <A- m < .)LS/lk+1(m) S#k+1<m— 211__)L) (521)

for every n > ng. The following inequality follows from the easy estimates:
Iy g @) 2 17 () = Lmer /) () 2 Licay@nlim), ) m-1/2ny (1) (5.22)

for every u € W(Q) and n > ng. Let n > ng and set m,, := m — 1/(2n). Because of (5.21),
Lemma 3.8 implies that I)_1/@n|m|._),m, is bounded from below on Y (px+1(m,), m,) with (note
[ mndx #0). Hence, (5.22) yields that

ay, = inf{I;mln(u),' ue Y(yk+1(mn),mn)} > —c0 (5.23)

for each n > ny. On the other hand, because of pi(m —1/(ngl)) < A (see (5.21)), Lemma 3.5
guarantees the existence of gy € ¥x(m — 1/(ng))) satisfying

max Iy (Tgo(z)) = max Lim-1/(mn) (Tg0(2)) — —0 as T — oo. (5.24)
zeSk-1 zeSk-1

Therefore, for each n > ngy, we can choose T,, > 0 such that

max I} (Tugo(2)) < max I{ ne (Tngo(2)) <an -1, (5.25)



Abstract and Applied Analysis 29

(note (5.22) for the first inequality). Set

= {g € C(Sli, Wl’p(9)>}g|sk*1 = TngO}/

= mf maxI)fmn(g(z))
8€Z, zeS

(5.26)

for n > ny. Since 2(S%) N Y (pis1(my), my) #0 for every g € 3, by Lemma 3.4, we have ¢}, >
a, > maxyege1 )t o (T 80(2)). Moreover, by the same argument as in Section 5.3 (note (5. 24))
we have

¢y < sup I;m,n(tgo(z))ﬁ sup I;rmno(tgo(z))<+oo, (5.27)

t>0,z€Sk-1 t>0,z€Sk-1

and hence our conclusion is shown.

Remark 5.1. If {, mdx = 0 holds, then we can not show the continuity of yi(m) with respect
to m (refer to Proposition 2.10). Hence, we are not able to construct a bounded Palais-Smale
sequence under (H-) or (HF-). However, if we have the additional information about the
existence of a suitable m' € L*(Q) such that m' > m in Q, J‘Q m'dx#0 and pr(m) < A <
Urs1(m') when p(m) < A < pgi(m) occurs, then we can still easily prove that equation
(P; A, m, h) has a solution in the case also where A #0, [, mdx = 0 and (H-) or (HF-). In
fact, let 0 < p(m) < A < pyes1 (') for some k > 2. Note the following inequality:

1
Loyl )m(u) 2 Iy, () 2 D () = n—p||u||£ = Iym-1/ ) () (5.28)

for every u € W'?(Q) and n. Fix ng € N such that [, m' -1/ (ngA)dx > 0 and |{m' -1/ (noA) >
0}| > 0. Set m := m' —1/(npd). Because of A < pr1(m') < pis1(my) (the last inequality
follows from Proposition 2.10 (i)), Lemma 3.8 implies that I, ,,; is bounded from below on
Y (pr+1(my), my) (note [, my dx > 0). By combining this fact and (5.28), we have

inf 1nf{ I} (W) u €Y (pisr (my), mo)}

n>ngp

(5.29)
> inf{I,\,mb(u); u €Y (prn (mé),ma)} > —0o0.

Because of A +1/(n||m]||,) > A > px(m), for each n > ny, we can take a g, € Fi(m) satisfying

max I, (Tgn(2)) < max I/ pmi)m(Tgn(2)) — —o0 (5.30)

as T — oo by Lemma 3.5.

Since any extension ¢ € C(SK, W'?(Q)) of Tg, (T > 0) links Y (px+1(my), my) by
Lemma 3.4, we can construct a desired sequence by the same argument as in Section 5.3 under
(H-) or (HF-).
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