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1 Mathematical Institute of The Serbian Academy of Sciences and Arts, Knez, Mihailova 36/III,
11000 Beograd, Serbia

2 Department of Mathematics and Descriptive Geometry, Faculty of Civil Engineering,
Brno University of Technology, 60200 Brno, Czech Republic

3 Department of Mathematics, Faculty of Electrical Engineering and Communication,
Brno University of Technology, 61600 Brno, Czech Republic

4 Faculty of Electrical Engineering, Belgrade University, Bulevar Kralja Aleksandra 73,
11000 Beograd, Serbia

Correspondence should be addressed to Stevo Stević, sstevic@ptt.rs
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The behavior of well-defined solutions of the difference equation xn = anxn−k/(bn +
cnxn−1 · · ·xn−k), n ∈ N0, where k ∈ N is fixed, the sequences an, bn and cn are real, (bn, cn)/= (0, 0),
n ∈ N0, and the initial values x−k, . . . , x−1 are real numbers, is described.

1. Introduction

Recently there has been a huge interest in studying nonlinear difference equations and
systems (see, e.g., [1–33] and the references therein). Here we study the difference equation

xn =
xn−k

bn + cnxn−1 · · ·xn−k
, n ∈ N0, (1.1)

where k ∈ N is fixed, the sequences bn and cn are real, (bn, cn)/= (0, 0), n ∈ N0, and the initial
values x−k, . . . , x−1 are real numbers. Equation (1.1) is a particular case of the equation

xn =
ânxn−k

̂bn + ĉnxn−1 · · ·xn−k
, n ∈ N0, (1.2)
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with real sequences ân, ̂bn and ĉn. For ân = 0, n ∈ N0, the equation is trivial, and, for ân /= 0, n ∈
N0, it is reduced to equation (1.1)with bn = ̂bn/ân and cn = ĉn/ân.

Equation

xn =
xn−k

b + cxn−1 · · ·xn−k
, n ∈ N0, (1.3)

where b, c ∈ R, which was treated in [32], is a particular case of equation (1.1).
As in [32], here, we employ our idea of using a change of variables in equation (1.1)

which extends the one in our paper [21] and is later also used, for example, in [4]. For similar
methods see also [22, 25]. Equation (1.3) in the case k = 2 was also studied in [1, 2], in
a different way. The case when the sequences bn and cn are two-periodic was studied in
[31] (some related results are also announced in talk [3]). For related symmetric systems
of difference equations, see [27, 29]. For some other recent results on difference equations
and systems which can be solved, see, for example, [6, 7, 20–22, 30, 31, 33]. Some classical
results can be found, for example, in [11].

Equation (1.1) is a particular case of the equation

yn = f
(

yn−1, . . . , yn−k, n
)

yn−k, n ∈ N0, (1.4)

where f : R
k+1 → R is a continuous function. Numerous particular cases of (1.4) have

been investigated, for example, in [9, 21, 23]. In this paper we adopt the customary notation
∏k

i=k+1gi = 1 and
∑k

i=k+1 gi = 0.

2. Case cn = 0, n ∈ N0

Here we consider the case cn = 0, n ∈ N0. In this case equation (1.1) becomes

xn =
xn−k
bn

, n ∈ N0, (2.1)

bn /= 0,n ∈ N0, from which it follows that for each i ∈ {1, . . . , k}

xkm−i =
x−i

∏m
j=1bkj−i

, m ∈ N0. (2.2)

Using formula (2.2) the following theorem can be easily proved.
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Theorem 2.1. Consider equation (1.1) with cn = 0, bn /= 0,n ∈ N0. Then the following statements
are true:

(a) if

lim inf
m→∞

|bkm−i| = pi > 1, (2.3)

for some i ∈ {1, . . . , k}, then xkm−i → 0 as m → ∞;

(b) if, for each i ∈ {1, . . . , k}, the limits pi in (2.3) are greater than 1, then xn → 0 as n → ∞;

(c) if bkm−i = 1, for everym ∈ N and for some i ∈ {1, . . . , k}, then xkm−i = x−i,m ∈ N0;

(d) if bkm−i = −1, for every m ∈ N and for some i ∈ {1, . . . , k}, then xkm−i = (−1)mx−i,
m ∈ N0;

(e) if

lim sup
m→∞

|bkm−i| = qi ∈ [0, 1), (2.4)

and x−i /= 0, for some i ∈ {1, . . . , k}, then |xkm−i| → ∞, as m → ∞;

(f) if, for each i ∈ {1, . . . , k}, the limits qi in (2.4) belong to the interval [0, 1) and x−i /= 0, then
|xn| → ∞ as n → ∞.

3. Case bn = 0, n ∈ N0

In this section we consider the case bn = 0, n ∈ N0. Note that in this case equation (1.1)
becomes

xn =
xn−k

cnxn−1 · · ·xn−k+1xn−k
, n ∈ N0, (3.1)

where cn /= 0, n ∈ N0. If xn is a well-defined solution of equation (3.1) (i.e., a solution with
initial values x−i /= 0, i = 1, . . . , k, which implies xn /= 0, n ∈ N0), then

xn =
1

cnxn−1(xn−2 · · ·xn−k+1)
=

cn−1xn−2 · · ·xn−k
cnxn−2 · · ·xn−k+1

=
cn−1
cn

xn−k, n ∈ N. (3.2)

Hence for each i ∈ {0, 1, . . . , k − 1}

xkm−i = x−i
m
∏

j=1

ckj−i−1
ckj−i

, m ∈ N0. (3.3)

Using formula (3.3)we easily prove the next theorem.
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Theorem 3.1. Consider equation (1.1) with bn = 0, cn /= 0, n ∈ N0. Then the following statements
are true:

(a) if

lim inf
m→∞

∣

∣

∣

∣

ckm−i
ckm−i−1

∣

∣

∣

∣

= p̂i > 1, (3.4)

for some i ∈ {0, 1, . . . , k − 1}, then xkm−i → 0 as m → ∞;

(b) if, for each i ∈ {0, 1, . . . , k − 1}, the limits p̂i in (3.4) are greater than 1, then xn → 0 as
n → ∞;

(c) if ckm−i−1 = ckm−i, for every m ∈ N and for some i ∈ {0, 1, . . . , k − 1}, then xkm−i = x−i,
m ∈ N0;

(d) if ckm−i−1 = −ckm−i, for every m ∈ N and for some i ∈ {0, 1, . . . , k − 1}, then xkm−i =
(−1)mx−i, m ∈ N0;

(e) if

lim sup
m→∞

∣

∣

∣

∣

ckm−i
ckm−i−1

∣

∣

∣

∣

= q̂i ∈ [0, 1), (3.5)

and x−i /= 0 for some i ∈ {0, 1, . . . , k − 1}, then |xkm−i| → ∞, as m → ∞;

(f) if, for each i ∈ {0, 1, . . . , k − 1}, x−i /= 0 and the limits q̂i in (3.5) belong to the interval
[0, 1), then |xn| → ∞ as n → ∞.

4. Case bn /= 0 and cn /= 0

The case when bn /= 0 and cn /= 0 for every n ∈ N0 is considered in this section.
If x−i0 = 0 for some i0 ∈ {1, . . . , k}, then from (1.1) we have that

xkm−i0 = 0, for m ∈ N0. (4.1)

From (4.1) and (1.1) we have that for each i ∈ {1, . . . , k} \ {i0}

xkm−i =
xk(m−1)−i
bkm−i

=
x−i

∏m
j=1bkj−i

, m ∈ N0. (4.2)

From (4.1) we see that, for i = i0, (4.2) also holds. Hence Theorem 2.1 can be applied in this
case. Note that if xn = 0 for some n ∈ N0, then (1.1) implies that there is an i0 ∈ {1, . . . , k} such
that x−i0 = 0, and by the previous consideration we have that (4.2) also holds.

If x−i /= 0, for each i ∈ {1, . . . , k}, then for every well-defined solution we have xn /= 0
for n ≥ −k (note that there are solutions which are not well defined, that is, those for which
xn−1 · · ·xn−k = −bn/cn, for some n ∈ N0).
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Multiplying equation (1.1) by xn−1 · · ·xn−k+1 and using the transformation

yn =
1

xnxn−1 · · ·xn−k+1
, n ≥ −1, (4.3)

we obtain equation

yn = bnyn−1 + cn, n ∈ N0. (4.4)

Note that from (4.3), for every well-defined solution (xn)n≥−k of equation (1.1) such that
x−i /= 0, for each i ∈ {1, . . . , k}, it follows that yn /= 0, n ≥ −1.

Since bn /= 0, n ∈ N0, we have that

yn =

(

n
∏

i=0

bi

)

⎛

⎝y−1 +
n
∑

j=0

cj
∏j

i=0bi

⎞

⎠, n ∈ N0. (4.5)

From (4.3) and (4.5) we have that

xn =
1

ynxn−1 · · ·xn−k+1
=

yn−1
yn

xn−k =
y−1 +

∑n−1
j=0

(

cj/
∏j

i=0bi
)

bn
(

y−1 +
∑n

j=0

(

cj/
∏j

i=0bi
))xn−k, (4.6)

for every n ∈ N0.
Hence, from (4.6), we obtain that

xmk−i = x−i
m
∏

l=1

1/α +
∑kl−i−1

j=0

(

cj/
∏j

i=0bi
)

bkl−i
(

1/α +
∑kl−i

j=0

(

cj/
∏j

i=0bi
)) , (4.7)

for every m ∈ N0 and each i = 1, 2, . . . , k, where

α =
k
∏

l=1

x−l. (4.8)

5. Case bn = 1, n ∈ N0

Here we consider the case bn = 1, n ∈ N0. In this case, from (4.7) we have that for each
i ∈ {1, . . . , k}

xmk−i = x−i
m
∏

l=1

1 + α
∑kl−i−1

j=0 cj

1 + α
∑kl−i

j=0 cj
, m ∈ N0. (5.1)

Note that this formula includes also the case when x−i0 = 0 for some i0 ∈ {1, . . . , k}.
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Now we formulate and prove a result in this case by using formula (5.1).

Theorem 5.1. Consider equation (1.1) with bn = 1, n ∈ N0, sign cn = sign c0, n ∈ N, α/= 0, and

α
n
∑

j=0

cj /= − 1, n ∈ N0. (5.2)

Then the following statements hold:

(a) if for some i ∈ {1, . . . , k}

∞
∑

l=1

αckl−i
1 + α

∑kl−i
j=0 cj

= +∞, (5.3)

lim
l→∞

αckl−i
1 + α

∑kl−i
j=0 cj

= 0, (5.4)

then xmk−i → 0 as m → ∞;

(b) if (5.3) and (5.4) hold for every i ∈ {1, . . . , k}, then xn → 0 as n → ∞;

(c) if for some i ∈ {1, . . . , k} the sum

∞
∑

l=1

αckl−i
1 + α

∑kl−i
j=0 cj

(5.5)

converges, then the sequence xmk−i is also convergent;

(d) if the sum in (5.5) is finite for every i ∈ {1, . . . , k}, then the sequences xkm−i are convergent.

Proof. Let (xn)n≥−k be a solution of equation (1.1). Using condition sign cn = sign c0, n ∈ N,
it is easy to see that if (5.4) holds for some i ∈ {1, . . . , k}, there is an m0 ∈ N such that for
j ≥ m0 + 1 the terms in the product in (5.1) are positive and that the following asymptotic
formula

ln(1 + x) = x +O
(

x2
)

(5.6)
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can be used with x being the fraction in the limit (5.4). From (5.1) and (5.6) we have that

|xkm−i| = |x−i|
m
∏

l=1

∣

∣

∣

∣

∣

∣

1 + α
∑kl−i−1

j=0 cj

1 + α
∑kl−i

j=0 cj

∣

∣

∣

∣

∣

∣

= |x−i|c(m0) exp

⎛

⎝

m
∑

l=m0+1

ln
1 + α

∑kl−i−1
j=0 cj

1 + α
∑kl−i

j=0 cj

⎞

⎠

= |x−i|c(m0) exp

⎛

⎝

m
∑

l=m0+1

ln

⎛

⎝1 − αckl−i
1 + α

∑kl−i
j=0 cj

⎞

⎠

⎞

⎠

= |x−i|c(m0) exp

⎛

⎝−
m
∑

l=m0+1

αckl−i(1 + o(1))

1 + α
∑kl−i

j=0 cj

⎞

⎠,

(5.7)

where

c(m0) =
m0
∏

l=1

∣

∣

∣

∣

∣

∣

1 + α
∑kl−i−1

j=0 cj

1 + α
∑kl−i

j=0 cj

∣

∣

∣

∣

∣

∣

. (5.8)

Using formula (5.7), the assumptions regarding the sum
∑∞

j=m0+1(αckl−i/(1+α
∑kl−i

j=0 cj))
and the comparison test for the series whose terms are of eventually the same sign, the results
in the theorem easily follow.

6. Case bn = −1, n ∈ N0

Here we consider the case bn = −1, n ∈ N0. In this case from (4.7) we have

xmk−i = (−1)mx−i
m
∏

l=1

1 + α
∑kl−i−1

j=0 (−1)j+1cj
1 + α

∑kl−i
j=0 (−1)j+1cj

, (6.1)

for every m ∈ N0 and each i = 1, 2, . . . , k, where α is defined by (4.8).
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Theorem 6.1. Consider equation (1.1) with α/= 0, bn = −1, n ∈ N0, and

α
n
∑

j=0
(−1)j+1cj /= − 1, n ∈ N0. (6.2)

Then the following statements hold:

(a) if for some i ∈ {1, . . . , k}

∞
∑

l=1

α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

= +∞, (6.3)

lim
l→∞

α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

= 0, (6.4)

∞
∑

l=1

c2kl−i
(

1 + α
∑kl−i

j=0 (−1)j+1cj
)2

< +∞, (6.5)

then xmk−i → 0 as m → ∞;

(b) if for every i ∈ {1, . . . , k}, (6.3), (6.4), and (6.5) hold, then xn → 0 as n → ∞;

(c) if for some i ∈ {1, . . . , k}

∞
∑

l=1

α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

= −∞, (6.6)

conditions (6.4) and (6.5) hold, and x−i /= 0, then |xmk−i| → ∞ as m → ∞;

(d) if for every i ∈ {1, . . . , k}, conditions (6.4), (6.5), and (6.6) hold, and x−i /= 0, i ∈
{1, . . . , k}, then |xn| → ∞ as n → ∞;

(e) if for some i ∈ {1, . . . , k} the sum

∞
∑

l=1

α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

(6.7)

converges and condition (6.5) holds, then the sequences x2mk−i and x(2m+1)k−i are also
convergent;

(f) if for every i ∈ {1, . . . , k} the sum in (6.7) converges and condition (6.5) holds, then the
sequences x2km−j , j = 1, . . . , 2k are convergent.
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Proof. Let (xn)n≥−k be a solution of equation (1.1). By (6.4) we see that irrespectively on i ∈
{1, . . . , k}, there is an m1 ∈ N such that for j ≥ m1 + 1 the terms in the product in (6.1) belong
to the interval (1/2, 3/2) and that asymptotic formulae

ln(1 + x) = x − x2

2
+O
(

x3
)

(6.8)

can be used with −x being the fraction in (6.4). From this and (6.1)we have that

|xkm−i| = |x−i|
m
∏

l=1

∣

∣

∣

∣

∣

∣

1 + α
∑kl−i−1

j=0 (−1)j+1cj
1 + α

∑kl−i
j=0 (−1)j+1cj

∣

∣

∣

∣

∣

∣

= |x−i|c1(m1) exp

⎛

⎝

m
∑

l=m1+1

ln
1 + α

∑kl−i−1
j=0 (−1)j+1cj

1 + α
∑kl−i

j=0 (−1)j+1cj

⎞

⎠

= |x−i|c1(m1) exp

⎛

⎝

m
∑

l=m1+1

ln

⎛

⎝1 − α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

⎞

⎠

⎞

⎠

= |x−i|c1(m1) exp

⎛

⎜

⎝−
m
∑

l=m1+1

⎛

⎜

⎝

α(−1)kl−i+1ckl−i
1 + α

∑kl−i
j=0 (−1)j+1cj

+
α2c2kl−i(1 + o(1))

2
(

1 + α
∑kl−i

j=0 (−1)j+1cj
)2

⎞

⎟

⎠

⎞

⎟

⎠,

(6.9)

where

c1(m1) =
m1
∏

l=1

∣

∣

∣

∣

∣

∣

1 + α
∑kl−i−1

j=0 (−1)j+1cj
1 + α

∑kl−i
j=0 (−1)j+1cj

∣

∣

∣

∣

∣

∣

. (6.10)

Using formula (6.9), the assumptions of the theorem and some well-known
convergence tests for series, the results in (a)–(f) easily follow.

7. Case bn = bn+k, cn = cn+k, n ∈ N0

In this section we consider equation (1.1) for the case bn = bn+k, cn = cn+k, n ∈ N0, that is,
when the sequences bn and cn are k-periodic.

First we show the existence of k-periodic solutions of equation (4.4). If

(

y0, y1, . . . , yk−1
)

(7.1)

is such a solution, then we have that

y1 = b1y0 + c1, y2 = b2y1 + c2, . . . , y0 = bkyk−1 + ck. (7.2)
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By successive elimination, or by Kronecker theorem (note that system (7.2) is linear), we get

yi =

∑k−1
j=0 cσ[j](i)

∏j−1
s=0bσ[s](i)

1 −∏k
j=1bj

, i = 1, k, (7.3)

if
∏k

j=1bj /= 1, where σ is the permutation defined by

σ(i) = i − 1, i = 2, k, σ(1) = k, (7.4)

and σ[i] = σ ◦ σ[i−1], σ[0] = Id, where Id denotes the identity.
It is easy to see that (4.4) along with k periodicity of sequences bn and cn implies

ykm+i =

⎛

⎝

k
∏

j=1

bj

⎞

⎠yk(m−1)+i +
k−1
∑

j=0

cσ[j](i)

j−1
∏

s=0

bσ[s](i), (7.5)

for every m ∈ N0 and i ∈ {1, 2, . . . , k}, such that k(m − 1) + i ≥ −1.
Since (7.5) is a linear first-order difference equation, we have that when

∏k
j=1bj /= 1, its

general solution is

ykm+i =

⎛

⎝

k
∏

j=1

bj

⎞

⎠

m

yi +
1 −
(

∏k
j=1bj

)m

1 −∏k
j=1bj

k−1
∑

j=0

cσ[j](i)

j−1
∏

s=0

bσ[s](i). (7.6)

By letting m → ∞ in (7.6) we obtain the following corollary.

Corollary 7.1. Consider equation (4.4) with bn = bn+k, cn = cn+k, n ∈ N0. Assume that

∣

∣

∣

∣

∣

∣

k
∏

j=1

bj

∣

∣

∣

∣

∣

∣

< 1. (7.7)

Then for every solution yn of the equation we have that

lim
m→∞

ykm+i = yi, (7.8)

for every i ∈ {1, 2, . . . , k}, that is, yn converges to the k-periodic solution in formula (7.3).

Let

Li :=
k−1
∑

j=0

cσ[j](i)

j−1
∏

s=0

bσ[s](i), i = 1, k, q :=
k
∏

j=1

bj . (7.9)
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From now on we will use the following convention: if i, j ∈ N0, then we regard that
Lj = Li, if i ≡ j (mod k). Also if a sequence (mj)j∈N0

is defined by the relation mj = f(Lj),
where f is a real function, then we will assume thatmj = mi, if i ≡ j (mod k).

Using (7.6) and notation (7.9) in the relation xn = (yn−1/yn)xn−k (see (4.6)), for the
case q /= 1, we have that

xkm+i = xi−k
m
∏

j=0

(

yi−1 − Li−1/
(

1 − q
))

qj + Li−1/
(

1 − q
)

(

yi − Li/
(

1 − q
))

qj + Li/
(

1 − q
)

= xi−k
m
∏

j=0

Li−1
Li

· 1 +
((

1 − q
)

yi−1/Li−1 − 1
)

qj

1 +
((

1 − q
)

yi/Li − 1
)

qj
,

(7.10)

for every m ∈ N0 and each i ∈ {2, . . . , k}, and

xkm+1 = x1−k
m
∏

j=0

(

yk − Lk/
(

1 − q
))

qj−1 + Lk/
(

1 − q
)

(

y1 − L1/
(

1 − q
))

qj + L1/
(

1 − q
)

= x1−k
m
∏

j=0

Lk

L1
· 1 +

((

1 − q
)

yk/Lk − 1
)

qj−1

1 +
((

1 − q
)

y1/L1 − 1
)

qj
.

(7.11)

Now we present some results, which are applications of formulae (7.10) and (7.11).

7.1. Case q = −1
If q = −1, then by (7.5)we get

ykm+i = −yk(m−1)+i + Li = Li −
(

Li − yk(m−2)+i
)

= yk(m−2)+i, m ∈ N, (7.12)

for k(m − 2) + i ≥ −1; that is, ykm+i is two-periodic for each i ∈ {1, . . . , k}. Hence yn is a
2k-periodic solution of equation (4.4), in this case.

Hence from the relation xn = (yn−1/yn)xn−k (see (4.6)), for each i ∈ {1, 2, . . . , k}, we
have

xkm−i =
ykm−i−1
ykm−i

xkm−i−k =
ykm−i−1
ykm−i

yk(m−1)−i−1
yk(m−1)−i

xkm−i−2k, (7.13)

for k(m − 1) ≥ i.
From (7.13) and by 2k periodicity of yn, we get

x2kl+j =

(

yj−1yj+k−1
yjyj+k

)l

xj , l ∈ N0, (7.14)

for each j ∈ {−k + 1, . . . ,−1, 0, 1, . . . , k}.
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From (7.14), the behavior of solutions of equation (1.1), in this case, easily follows. For
example, if

pj :=
yj−1yj+k−1
yjyj+k

= 1, (7.15)

for each j ∈ {−k + 1, . . . ,−1, 0, 1, . . . , k}, then the solution (xn)n≥k of (1.1) is 2k-periodic.

7.2. Case q = 1

If q = 1 and α/= 0, then from (7.5) we obtain

ykm+i = yk(m−1)+i + Li, m ∈ N0, i = 1, k, (7.16)

when k(m − 1) + i ≥ −1, from which along with (4.6), it follows that

xkm+i = xi

m
∏

j=1

yi−1 + jLi−1
yi + jLi

, m ∈ N, i = 2, k,

xkm+1 = x1

m
∏

j=1

yk +
(

j − 1
)

Lk

y1 + jL1
, m ∈ N.

(7.17)

Corollary 7.2. Consider equation (1.1). Let q = 1, α/= 0, and p̂i := Li−1/Li, i ∈ {1, . . . , k}. Then the
following statements hold true.

(a) If |p̂i| < 1, for some i ∈ {1, . . . , k}, then xkm+i → 0 as m → ∞.

(b) If |p̂i| > 1, or Li = 0 and Li−1 /= 0, for some i ∈ {1, . . . , k}, then |xkm+i| → ∞ as m → ∞,
if xi /= 0.

(c) If p̂i = 1, for some i ∈ {2, . . . , k}, and (yi−1 − yi)/Li > 0, then |xkm+i| → ∞ as m → ∞,
if xi /= 0.

(d) If p̂i = 1, for some i ∈ {2, . . . , k}, and (yi−1 − yi)/Li < 0, then xkm+i → 0 as m → ∞.

(e) If p̂i = 1, for some i ∈ {2, . . . , k}, and yi−1 = yi, then the sequence (xkm+i)m∈N0
is

convergent.

(f) If p̂1 = 1, and (yk − L1 − y1)/ L1 > 0, then |xkm+1| → ∞ as m → ∞, if x1 /= 0.

(g) If p̂1 = 1, and (yk − L1 − y1)/L1 < 0, then xkm+1 → 0 as m → ∞.

(h) If p̂1 = 1, and yk = L1 + y1, then the sequence (xkm+1)m∈N0
is convergent.

Proof. The statements in (a) and (b) follow from the facts that

lim
j→∞

∣

∣

∣

∣

yi−1 + jLi−1
yi + jLi

∣

∣

∣

∣

=
∣

∣p̂i
∣

∣, i ∈ {2, . . . , k} (7.18)
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if Li /= 0,

lim
j→∞

∣

∣

∣

∣

yi−1 + jLi−1
yi + jLi

∣

∣

∣

∣

= +∞, i ∈ {2, . . . , k} (7.19)

if Li = 0 and Li−1 /= 0,

lim
j→∞

∣

∣

∣

∣

∣

yk +
(

j − 1
)

Lk

y1 + jL1

∣

∣

∣

∣

∣

=
∣

∣p̂1
∣

∣, (7.20)

if L1 /= 0, and

lim
j→∞

∣

∣

∣

∣

∣

yk +
(

j − 1
)

Lk

y1 + jL1

∣

∣

∣

∣

∣

= +∞, (7.21)

if L1 = 0 and Lk /= 0.
Now assume that p̂i = 1 and let (xn)n≥−k be a solution of equation (1.1). It is easy to see

that there is anm2 ∈ N such that for j ≥ m2 + 1 the terms in the products in (7.17) are positive
and that the following asymptotic formulae

(1 + x)−1 = 1 − x +O
(

x2
)

, ln(1 + x) = x +O
(

x2
)

(7.22)

can be applied with x = (yi−1 −yi)/(jLi), when i ∈ {2, . . . , k} or with x = (yk −L1 −y1)/(jL1).
Using these formulae, for the case i ∈ {2, . . . , k}, we have that

xkm+i = xi

m
∏

j=1

yi−1 + jLi−1
yi + jLi

= xic(m2) exp

⎛

⎝

m
∑

j=m2+1

ln
yi−1 + jLi−1
yi + jLi

⎞

⎠

= xic(m2) exp

⎛

⎝

m
∑

j=m2+1

ln
(

1 +
yi−1 − yi

jLi
+O

(

1
j2

))

⎞

⎠

= xic(m2) exp

⎛

⎝

m
∑

j=m2+1

(

yi−1 − yi

jLi
+O

(

1
j2

))

⎞

⎠,

(7.23)

where

c(m2) =
m2
∏

j=1

yi−1 + jLi−1
yi + jLi

. (7.24)
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Letting m → ∞ in (7.23), using the facts that

m
∑

j=m2+1

1
j
−→ +∞ as m −→ ∞ (7.25)

and that the series
∑∞

j=m2+1 O(1/j2) converges, we get statements (c)–(e).
If p̂1 = 1, that is L1 = Lk /= 0, then by using (7.22) we get

xkm+1 = x1

m
∏

j=1

yk +
(

j − 1
)

Lk

y1 + jL1

= x1d(m2) exp

⎛

⎝

m
∑

j=m2+1

ln
yk +

(

j − 1
)

Lk

y1 + jL1

⎞

⎠

= x1d(m2) exp

⎛

⎝

m
∑

j=m2+1

ln
(

1 +
yk − L1 − y1

jL1
+O

(

1
j2

))

⎞

⎠

= x1d(m2) exp

⎛

⎝

m
∑

j=m2+1

(

yk − L1 − y1

jL1
+O

(

1
j2

))

⎞

⎠,

(7.26)

where

d(m2) =
m2
∏

j=1

yk +
(

j − 1
)

Lk

y1 + jL1
. (7.27)

Lettingm → ∞ in (7.26), using (7.25) and the fact that the series
∑∞

j=m2+1 O(1/j2) converges,
we get statements (f)–(h), as desired.

7.3. Case q /= ± 1

If q /= ± 1, then from (7.6)we get

ykm+i = qmsi + ti, m ∈ N0, (7.28)

where

si = yi +
Li

q − 1
, ti =

Li

1 − q
, i = 1, k, (7.29)

from (4.6) it follows that

xkm+i = xi

m
∏

j=1

qjsi−1 + ti−1
qjsi + ti

, m ∈ N0, (7.30)
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for i ∈ {2, . . . , k}, and

xkm+1 =
x1yk

qs1 + t1

m
∏

j=2

qj−1sk + tk

qjs1 + t1
, m ∈ N0. (7.31)

Note that ti = tj , if i ≡ j (mod k).

Corollary 7.3. If 0 < |q| < 1, α/= 0, and qjsi + ti /= 0, for every j ∈ N0 and i ∈ {1, . . . , k}, then the
following statements hold true.

(a) If |ti−1| < |ti|, for some i ∈ {1, . . . , k}, we have that xkm+i → 0 as m → ∞.

(b) If |ti−1| > |ti|, and si /= 0 if ti = 0 for some i ∈ {1, . . . , k}, we have that |xkm+i| → ∞ as
m → ∞, if xi /= 0.

(c) If ti−1 = ti /= 0, for some i ∈ {1, . . . , k}, then xkm+i is convergent.

(d) If ti−1 = ti = 0, and |si−1| < |si| for some i ∈ {2, . . . , k}, then |xkm+i| → 0 asm → ∞.

(e) If t1 = tk = 0, and |sk| < |qs1|, then xkm+1 → 0 as m → ∞.

(f) If ti−1 = ti = 0, and |si−1| > |si| for some i ∈ {2, . . . , k}, then |xkm+i| → ∞ as m → ∞, if
xi /= 0.

(g) If t1 = tk = 0, and |sk| > |qs1|, then |xkm+1| → ∞ as m → ∞, if x1 /= 0.

(h) If ti−1 = ti = 0, and si−1 = si /= 0 for some i ∈ {2, . . . , k}, then xkm+i is constant.

(i) If t1 = tk = 0, and sk = qs1 /= 0, then xkm+1 is constant.

(j) If ti−1 = ti = 0, and si−1 = −si /= 0 for some i ∈ {2, . . . , k}, then xkm+i = (−1)mxi.

(k) If t1 = tk = 0, and sk = −qs1 /= 0, then xkm+1 = x1yk(−1)m−1/(qs1).

(l) If ti−1 = −ti /= 0, for some i ∈ {1, . . . , k}, then the subsequences x2km+i and x2km+k+i are
convergent.

Proof. Since we have that

lim
j→∞

qjsi−1 + ti−1
qjsi + ti

=
ti−1
ti

, i ∈ {2, . . . , k} (7.32)

when ti /= 0,

lim
j→∞

∣

∣

∣

∣

∣

qjsi−1 + ti−1
qjsi + ti

∣

∣

∣

∣

∣

= +∞, i ∈ {2, . . . , k} (7.33)

when |ti−1| > ti = 0 and si /= 0,

lim
j→∞

qj−1sk + tk

qjs1 + t1
=

tk
t1
, (7.34)



16 Abstract and Applied Analysis

when t1 /= 0, and

lim
j→∞

∣

∣

∣

∣

∣

qj−1sk + tk

qjs1 + t1

∣

∣

∣

∣

∣

= +∞, (7.35)

when |tk| > t1 = 0 and s1 /= 0, the statements in (a) and (b) easily follow from (7.30)–(7.35).
(c) If ti−1 = ti /= 0, then

xkm+i = xi

m
∏

j=1

(

1 + qj
(

si−1 − si
ti

)

+ o
(

qj
)

)

, (7.36)

for i ∈ {2, . . . , k}, and if t1 = tk /= 0, then

xkm+1 =
x1yk

qs1 + t1

m
∏

j=2

(

1 + qj−1
(

sk − qs1
t1

)

+ o
(

qj
)

)

(7.37)

from which the statement in (c) easily follows.
(d)–(k) If ti−1 = ti = 0, then

xkm+i = xi

m
∏

j=1

si−1
si

, (7.38)

for i ∈ {2, . . . , k}, and if t1 = tk = 0, then

xkm+1 =
x1yk

qs1

m
∏

j=2

sk
qs1

(7.39)

from which the statements in (d)–(k) easily follow.
(l) If ti−1 = −ti /= 0, then we have that

xkm+i = xi

m
∏

j=1

[

−
(

1 − qj
(

si−1 + si
ti

)

+ o
(

qj
)

)]

(7.40)

for i ∈ {2, . . . , k}, and if t1 = −tk /= 0, then

xkm+1 =
x1yk

qs1 + t1

m
∏

j=2

[

−
(

1 − qj−1
(

sk + qs1
t1

)

+ o
(

qj
)

)]

(7.41)

from which the statement in (l) easily follows.
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Corollary 7.4. If |q| > 1 and α/= 0, and qjsi + ti /= 0, for every j ∈ N0 and i ∈ {1, . . . , k}, then the
following statements hold true.

(a) If |si−1| < |si|, for some i ∈ {2, . . . , k}, then xkm+i → 0 as m → ∞.

(b) If |sk| < |qs1|, then xkm+1 → 0 as m → ∞.

(c) If |si−1| > |si|, or si = 0, si−1 /= 0 and ti /= 0, for some i ∈ {2, . . . , k}, then |xkm+i| → ∞ as
m → ∞, if xi /= 0.

(d) If |sk| > |qs1|, or if s1 = 0, sk /= 0 and t1 /= 0, then |xkm+1| → ∞ as m → ∞, if x1 /= 0.

(e) If si−1 = si /= 0, for some i ∈ {2, . . . , k}, then the sequence (xkm+i)m∈N0
is convergent.

(f) If si−1 = si = 0 and |ti−1| < |ti| for some i ∈ {2, . . . , k}, then xkm+i → 0 as m → ∞.

(g) If s1 = sk = 0 and |tk| < |t1|, then xkm+1 → 0 asm → ∞.

(h) If si−1 = si = 0 and |ti−1| > |ti| for some i ∈ {2, . . . , k}, then |xkm+i| → +∞ as m → ∞, if
xi /= 0.

(i) If s1 = sk = 0 and |tk| > |t1|, then |xkm+1| → +∞ as m → ∞, if x1 /= 0.

(j) If si−1 = si = 0 and ti−1 = ti for some i ∈ {2, . . . , k}, then the sequence xkm+i is constant.

(k) If s1 = sk = 0 and t1 = tk, then the sequence xkm+1 is constant.

(l) If si−1 = si = 0 and ti−1 = −ti for some i ∈ {2, . . . , k}, then the sequence xkm+i is two-
periodic.

(m) If s1 = sk = 0 and t1 = −tk, then the sequence xkm+1 is two periodic.

(n) If sk = qs1 /= 0, then the sequence (xkm+1)m∈N0
is convergent.

(o) If si−1 = −si /= 0, for some i ∈ {2, . . . , k}, then the sequences (x2km+i)m∈N0
and

(x2km+k+i)m∈N0
, are convergent.

(p) If sk = −qs1 /= 0, then the sequences (x2km+1)m∈N0
and (x2km+k+1)m∈N0

, are convergent.

Proof. (a)–(d) These statements follow correspondingly from the next relations (which are
derived using formulae (7.30) and (7.31)):

lim
j→∞

qjsi−1 + ti−1
qjsi + ti

=
si−1
si

(7.42)

for i ∈ {2, . . . , k} if si /= 0, and

lim
j→∞

∣

∣

∣

∣

∣

qjsi−1 + ti−1
qjsi + ti

∣

∣

∣

∣

∣

= +∞ (7.43)

for i ∈ {2, . . . , k} if si = 0, si−1 /= 0 and ti /= 0;

lim
j→∞

qj−1sk + tk

qjs1 + t1
=

sk
qs1

, (7.44)
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if s1 /= 0, and

lim
j→∞

∣

∣

∣

∣

∣

qj−1sk + tk

qjs1 + t1

∣

∣

∣

∣

∣

= +∞ (7.45)

if s1 = 0, sk /= 0 and t1 /= 0.
(e) If si−1 = si /= 0, then from (7.30) we get

xkm+i = xi

m
∏

j=1

(

1 + q−j
(

ti−1 − ti
si−1

)

+ o
(

q−j
)

)

, (7.46)

for i ∈ {2, . . . , k}, from which (e) follows.
(f)–(m) If si−1 = si = 0 for some i ∈ {2, . . . , k}, then for i ∈ {2, . . . , k} we have

qjsi−1 + ti−1
qjsi + ti

=
ti−1
ti

(7.47)

while when s1 = sk = 0, we have

qj−1sk + tk

qjs1 + t1
=

tk
t1

(7.48)

from which the statements (f)–(i) easily follow.
(n) If sk = qs1 /= 0, then we have

xkm+1 =
x1yk

qs1 + t1

m
∏

j=2

(

1 + q−j
(

tk − t1
s1

)

+ o
(

q−j
)

)

, (7.49)

from which along with the assumption |q| > 1 the statement follows.
(o) and (p) If si−1 = −si /= 0, then

xkm+i = xi

m
∏

j=1

[

−
(

1 − q−j
(

ti−1 + ti
si

)

+ o
(

q−j
)

)]

(7.50)

for i ∈ {2, . . . , k}, and

xkm+1 =
x1yk

qs1 + t1

m
∏

j=2

[

−
(

1 − q−j
(

tk + t1
s1

)

+ o
(

q−j
)

)]

. (7.51)

From (7.50) and (7.51) the statements in (o) and (p) correspondingly follow.
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