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The Wick-type stochastic KP equation is researched. The stochastic single-soliton solutions
and stochastic multisoliton solutions are shown by using the Hermite transform and Darboux
transformation.

1. Introduction

In recent decades, there has been an increasing interest in taking random effects into account
in modeling, analyzing, simulating, and predicting complex phenomena, which have been
widely recognized in geophysical and climate dynamics, materials science, chemistry biology,
and other areas, see [1, 2]. If the problem is considered in random environment, the stochastic
partial differential equations (SPDEs) are appropriate mathematical models for complex
systems under random influences or noise. So far, we know that the random wave is an
important subject of stochastic partial differential equations.

In 1970, while studying the stability of the KdV soliton-like solutions with small
transverse perturbations, Kadomtsev and Petviashvili [3] arrived at the two-dimensional
version of the KdV equation:

utx = (uxxx + 6uux)x + 3α2uyy, (1.1)

which is known as Kadomtsev-Petviashvili (KP) equation. The KP equation appears in physical
applications in two different formswith α = 1 and α = i, usually referred to as the KP-I and the
KP-II equations. The number of physical applications for the KP equation is even larger than
the number of physical applications for the KdV equation. It is well known that homogeneous
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balance method [4, 5] has been widely applied to derive the nonlinear transformations and
exact solutions (especially the solitary waves) and Darboux transformation [6], as well as
the similar reductions of nonlinear PDEs in mathematical physics. These subjects have been
researched by many authors.

For SPDEs, in [7], Holden et al. gave white noise functional approach to research
stochastic partial differential equations in Wick versions, in which the random effects are
taken into account. In this paper, we will use their theory and method to investigate the
stochastic soliton solutions of Wick-type stochastic KP equation, which can be obtained in
the influence of the random factors.

The Wick-type stochastic KP equation in white noise environment is considered as the
following form:

Utx =
(
f(t)♦Uxxx + 6g(t)♦U♦Ux

)♦
x + 3α2f(t)♦Uyy +W(t)♦R♦(U,Ux,Uxx,Uxxxx,Uyy

)
,

(1.2)

which is the perturbation of the KP equation with variable coefficients:

utx =
(
f(t)uxxx + 6g(t)uux

)
x + 3α2f(t)uyy, (1.3)

by random force W(t)♦R♦(U,Ux,Uxx,Uxxxx,Uyy), where ♦ is the Wick product on the
Hida distribution space (S(Rd))∗ which is defined in Section 2, f(t) and g(t) are functions
of t, W(t) is Gaussian white noise, that is, W(t) = Ḃ(t) and B(t) is a Brownian motion,
R(u, ux, uxx, uxxxx, uyy) = βuxxxx+6γu2

x+6γuuxx+3α2βuyy is a function of u, ux, uxx, uxxxx, uyy

for some constants β, γ , and R♦ is the Wick version of the function R.
This paper is organized as follows. In Section 2, the work function spaces are given. In

Section 3, we present the single-soliton solutions of stochastic KP equation (1.2). Section 4 is
devoted to investigate the multisoliton solutions of stochastic KP equation (1.2).

2. SPDEs Driven by White Noise

Let (S(Rd)) and (S(Rd))∗ be the Hida test function and the Hida distribution space on R
d,

respectively. The collection ξn = e(−x
2/2)hn(

√
2x)/(π(n−1)!)1/2 , n ≥ 1 constitutes an orthogonal basis

for L2(R), where hn(x) is the d-order Hermite polynomials. The family of tensor products ξα =
ξα1,...,αd = ξα1 ⊗ · · · ⊗ ξα1 (α ∈ N

d) forms an orthogonal basis for L2(Rd), where α = (α1, . . . , αd)
is d-dimensional multi-indices with α1, . . . , αd ∈ N. The multi-indices α = (α1, . . . , αd) are
defined as elements of the space J = (NN

0 )c of all sequences α = (α1, α2, . . .) with elements
αi ∈ N0 and with compact support, that is, with only finite many αi /= 0. For α = (α1, α2, . . .),
we define

Hα(ω) =
∞∏

i=1

hαi

(〈
ω, ηi

〉)
, ω ∈

(
S
(
R

d
))∗

. (2.1)

If n ∈ N is fixed, let (S)n1 consist of those x =
∑

α cαHα ∈ ⊕n
k=1L

2(μ) with cα ∈ R
n

such that ‖x‖21,k =
∑

α c
2
α(α!)

2(2N)kα < ∞ for all k ∈ N with c2α = |cα|2 =
∑n

k=1(c
(k)
α )2 if cα =

(c(1)α , . . . , c
(n)
α ) ∈ R

n, where μ is the white noise measure on (S∗(R),B(S∗(R))), α! =
∏∞

k=1αk!
and (2N)α =

∏
j(2j)

αj

for α = (α1, α2, . . .) ∈ J. The space (S)n−1 can be regarded as the dual of
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(S)n1 . (S)
n
−1 consisting of all formal expansion X =

∑
α bαHα with bα ∈ R

n such that ‖X‖−1,−q =∑
α b

2
α(2N)−qα < ∞ for some q ∈ N, by the action 〈X, x〉 =

∑
α(bα, cα)α! and (bα, cα) is the usual

inner product in R
n.

X♦Y =
∑

α,β(aα, bβ)Hα+β is called the Wick product of X and Y , for X =
∑

α aαHα, Y =
∑

α bαHα ∈ (S)n−1 with aα, bα ∈ R
n. We can prove that the spaces (S(Rd)), (S(Rd))∗(S)n1 , and

(S)n−1 are closed under Wick products.
ForX =

∑
α aαHα ∈ (S)n−1 with aα ∈ R

n,H(X) or X̃ is defined as the Hermite transform
of X byH(X)(z) = X̃(z) =

∑
α aαz

α ∈ C
n (when convergent), where z = (z1, z2, . . .) ∈ C

N (the
set of all sequences of complex numbers) and zα = zα1

1 zα2
2 · · · zαn

n · · · for α = (α1, α2, . . .) ∈ J.
For X,Y ∈ (S)N−1, by this definition we have X̃♦Y (z) = X̃(z) · Ỹ (z) for all z such that X̃(z) and
Ỹ (z) exist. The product on the right-hand side of the above formula is the complex bilinear
product between two elements of C

N defined by (z11, . . . , z
1
n) · (z21, . . . , z2n) =

∑n
k=1 z

1
kz

2
k,where

zik ∈ C. Let X =
∑

α aαHα ∈ (S)n−1. Then the vector c0 = X̃(0) ∈ R
n is called the generalized

expectation of X denoted by E(X). Suppose that f : V → C
n is an analytic function, where

V is a neighborhood of E(X). Assume that the Taylor series of f around E(X) has coefficients
in R

n. Then the Wick version f♦(X) = H−1(f ◦ X̃) ∈ (S)n−1.
Suppose that modeling considerations lead us to consider the SPDE expressed

formally as A(t, x, ∂t,∇x,U,ω) = 0, where A is some given function, U = U(t, x, ω)
is the unknown generalized stochastic process, and the operators ∂t = ∂/∂t, ∇x =
(∂/∂x1 , . . . , ∂/∂xd) when x = (x1, . . . , cd) ∈ R

d. If we interpret all products as wick products
and all functions as their Wick versions, we have

A♦(t, x, ∂t,∇x,U,ω) = 0. (2.2)

Taking the Hermite transform of (2.2), the Wick product is turned into ordinary products
(between complex numbers), and the equation takes the form

Ã
(
t, x, ∂t,∇x, Ũ, z1, z2, . . .

)
= 0, (2.3)

where Ũ = H(U) is the Hermite transform ofU and z1, z2, . . . are complex numbers. Suppose
that we can find a solution u = u(t, x, z) of (2.3) for each z = (z1, z2, . . .) ∈ Kq(r) for some q, r,
where Kq(r) = z = (z1, z2, . . .) ∈ C

N and
∑

α/= 0 |zα|2(2N)qα < r2. Then under certain conditions,
we can take the inverse Hermite transform U = H−1u ∈ (S)−1 and thereby obtain a solution
U of the original Wick equation (2.2). We have the following theorem, which was proved by
Holden et al. in [7].

Theorem 2.1. Suppose that u(t, x, z) is a solution (in the usual strong, pointwise sense) of (2.3)
for (t, x) in some bounded open set G ⊂ R × R

d and z ∈ Kq(r) for some q, r. Moreover, suppose
that u(t, x, z) and all its partial derivatives, which are involved in (2.3), are bounded for (t, x, z) ∈
G × Kq(r), continuous with respect to (t, x) ∈ G for all z ∈ Kq(r), and analytic with respect to
z ∈ Kq(r) for all (t, x) ∈ G. Then there exists U(t, x) ∈ (S)−1 such that u(t, x, z) = (Ũ(t, x))(z) for
all (t, x, z) ∈ G × Kq(r) and U(t, x) solves (in the strong sense in (S)−1) (2.2) in (S)−1.
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3. Single-Soliton Solution of Stochastic KP Equation

In this section, we investigate the single-soliton solutions of the Wick-type stochastic KP
equation (1.2). Using the similar idea of the Darboux transformation about the determinant
nonlinear partial differential equations, we can obtain the soliton solutions of (1.2), which
can be seen in the following theorem.

Theorem 3.1. For the Wick-type stochastic KP equation (1.2) in white noise environment, one has
the single-soliton solution U[1] ∈ (S)−1 for KP-I:

U[1] =
λ2

2k

(

sech

(
Φ
2

))2

, when α = 1 (3.1)

and for KP-II:

U[1] =
2a2

k
sech2

(
Φ1

(
t, x, y

))
, when α = i, (3.2)

where Φ(t, x, y) = λx + λ2y + 4λ3
∫ t
0 f(s)ds + 4λ3βB(t) − 2λ3βt2 and

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4β

(
a3 − 3ab2

)(
B(t) − 1

2
t2
)
. (3.3)

Proof. Taking the Hermite transform of (1.2), the equation (1.2) can be changed into

Ũtx =
[
f(t) + βW̃(t, z)

]
Ũxxxx + 6

[
g(t) + γW̃(t, z)

](
ŨŨx

)

x
+ 3α2

[
f(t) + βW̃(t, z)

]
Ũyy,

(3.4)

where Ũ is the Hermite transform ofU; the Hermite transform ofW(t) is defined by W̃(t, z) =∑∞
k=1 ηk(t)zk where z = (z1, z2, . . .) ∈ (CN)c is parameter.

Suppose that g(t)+γW̃(t, z) = k[f(t)+βW̃(t, z)]. Let u = kŨ. From (3.4), we can obtain

utx =
[
f(t) + βW̃(t, z)

]
(uxxx + 6uux)x + 3α2

[
f(t) + βW̃(t, z)

]
uyy. (3.5)

Let F(t, z) = f(t) + βW̃(t, z); then (3.5) can be changed into

utx = F(t, z)(uxxx + 6uux)x + 3α2F(t, z)uyy. (3.6)

Now we consider the soliton solutions of (3.6) using Darboux transform. It is more
convenient to consider the compatibility condition of the following linear system of partial
differential equations, that is, Lax pair of (3.6):

φy = α−1φxx + α−1uφ,

φt = 4F(t, z)φxxx + 6F(t, z)uφx + 3F(t, z)
(
αvy + ux

)
φ.

(3.7)



Abstract and Applied Analysis 5

Then we can obtain the Wick-type Lax pair of (1.2):

φy = α−1φxx + α−1u♦φ,

φt = 4
(
f(t) + βW(t)

)
♦φxxx + 6

(
f(t) + βW(t)

)
♦u♦φx

+ 3
(
f(t) + βW(t)

)
♦
(
αvy + ux

)
♦φ.

(3.8)

Let φ1 be a given solution of (3.8). Using the idea of the Darboux transformation about
the determinant nonlinear partial differential equations, by direct computation, it is easy to
know that if supposing that φ[1] = φx − (φ1x♦φ1

♦(−1))♦φ, where φ is an arbitrary solution of
(3.8), then φ[1] satisfies the following equations:

φy[1] = α−1φxx[1] + α−1u[1]♦φ[1],

φt[1] = 4
(
f(t) + βW(t)

)
♦φxxx[1] + 6

(
f(t) + βW(t)

)
♦u[1]φx[1]

+ 3
(
f(t) + βW(t)

)
♦
(
αvy[1] + ux[1]

)
♦φ[1],

(3.9)

where u[1] = u + 2(φ1x♦φ1
♦(−1))

♦
x , v[1] = v + 2(φ1x♦φ1

♦(−1)).
Since (3.6) is nonlinear, it is difficult to solve it in general. In particular, taking u = 0

and v = 0, then from (3.8), we have

φy = α−1φxx,

φt = 4
(
f(t) + βW(t)

)
♦φxxx.

(3.10)

If α = 1, (3.10) have the exponential function solution

φ1
(
t, x, y, z

)
= exp♦{ϕ

(
t, x, y, z

)}
+ 1, (3.11)

where

ϕ = λx + λ2y + 4λ3
(∫ t

0
f(s)ds + βB(t)

)

, (3.12)

and λ is an arbitrary real parameter. Then we can obtain the single-soliton solution of (3.6).
By (3.11) and (3.12) there exists a stochastic single-solitary solution of (1.2) as following:

U[1] =
2
k

(
φ1x♦φ1

♦(−1)
)
♦φ =

λ2

2k

(
sech♦

(
Φ
2

))2

, (3.13)

where

Φ
(
t, x, y

)
= λx + λ2y + 4λ3

∫ t

0
f(s)ds + 4λ3βB(t). (3.14)
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Since exp♦{B(t)} = exp{B(t) − (1/2)t2} (see Lemma 2.6.16 in [7]), (1.2) has the single-soliton
solution

U[1] =
λ2

2k

(

sech

(
Φ
2

))2

, (3.15)

where

Φ
(
t, x, y

)
= λx + λ2y + 4λ3

∫ t

0
f(s)ds + 4λ3βB(t) − 2λ3βt2. (3.16)

In particular, when f(s) = 1 we can obtain the solution of (2.2), respectively, as follows:

U[1] =
λ2

2k
sech2

(
1
2

(
λx + λ2y + 4λ3t + 4λ3βB(t) − 2λ3βt2

))
. (3.17)

If α = i, (3.10) have the exponential function solution

φ1
(
t, x, y, z

)
= exp♦{ϕ1

(
t, x, y, z

)}
+ exp♦{−ϕ1

(
t, x, y, z

)}
, (3.18)

where

ϕ1
(
t, x, y, z

)
= λx + iλ2y + 4λ3

(∫ t

0
f(s)ds + βB(t)

)

, (3.19)

ϕ1 is the conjugation of ϕ1 and λ is an arbitrary complex parameter. Let λ = a+ib, according to
(3.9), from (3.18) and (3.19) there exists a stochastic single-solitary solution of (1.2) as follows:

U[1] =
2
k

(
φ1x♦φ1

♦(−1)
)
♦φ =

2a2

k

(
sech♦(Φ1

(
t, x, y

)))2
, (3.20)

where

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4

(
a3 − 3ab2

)
βB(t). (3.21)

Same as the former case, since exp♦{B(t)} = exp{B(t) − (1/2)t2}, (1.2) has the single-soliton
solution

U[1] =
2a2

k
sech2

(
Φ1

(
t, x, y

))
, (3.22)

where

Φ1
(
t, x, y

)
= ax − 2aby + 4

(
a3 − 3ab2

)∫ t

0
f(s)ds + 4β

(
a3 − 3ab2

)(
B(t) − 1

2
t2
)
. (3.23)
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In particular, when f(s) = 1 we can obtain the solution of (2.2) as follows:

U[1] =
2a2

k
sech2

(
ax − 2aby + 4

(
a3 − 3ab2

)(
t − β

2
t2 + βB(t)

))
. (3.24)

4. Multisoliton Solutions of Stochastic KP Equation

At the same time, the multisoliton solutions of stochastic KP equation can be also considered.
It is evident that the Darboux transformation can be applied to (3.9) again. This operation can
be repeated arbitrarily. For the second step of this procedure we have

φ[2] =
(

∂

∂x
− φ2x[1]

φ2[1]

)(
∂

∂x
− φ1x

φ1

)
φ, (4.1)

where φ2[1] is the fixed solution of (3.9), which is generated by some fixed solution φ2 of
(3.8) and independent of φ1. We know that

φ2[1] = φ2x −
φ1x

φ1
φ2, (4.2)

u[2] = u + 2
∂2

∂x2
lnW

(
φ1, φ2

)
. (4.3)

By using N-times Darboux transformation, the formula (4.3) can be generalized to obtain
the solutions of the initial equations (3.8) without any use of the solutions related to the
intermediate iterations of the process.

Let φ1, φ2, . . . , φN be different and independent solutions of (3.8). We define the
Wronski determinant W of functions f1, . . . , fm as

W
(
f1, . . . , fm

)
= detA, Aij =

di−1fj
dxi−1 , i, j = 1, 2, . . . , m. (4.4)

Theorem 4.1. For the Wick-type stochastic KP equation (1.2) in white noise environment, one has
theN-soliton solution U[N] ∈ (S)−1 satisfying

U[N] =
2
k

∂2

∂x2
ln♦W♦(φ1, . . . , φN

)
. (4.5)

Proof. From [6], it is easy to see that the function

φ[N] =
W

(
φ1, . . . , φN, φ

)

W
(
φ1, . . . , φN

) (4.6)
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satisfies the following equations:

φy[N] = α−1φxx[N] + α−1u[N]φ[N],

φt[N] = 4F(t, z)φxxx[N] + 6F(t, z)u[N]φx[N]

+ 3F(t, z)
(
αvy[N] + ux[N]

)
φ[N],

(4.7)

where u[N] = u + 2(∂2/∂x2) lnW(φ1, . . . , φN) and v[N] = v + 2(∂/∂x) lnW(φ1, . . . , φN).
Then we have the Wick-type form

φ[N] =
W♦(φ1, . . . , φN, φ

)

W♦(φ1, . . . , φN

) (4.8)

satisfying the following equations:

φy[N] = α−1φxx[N] + α−1u[N]♦φ[N],

φt[N] = 4
(
f(t) +W(t)

)
♦φxxx[N] + 6

(
f(t) +W(t)

)
♦u[N]♦φx[N]

+ 3
(
f(t) +W(t)

)
♦
(
αvy[N] + ux[N]

)
♦φ[N],

(4.9)

where u[N] = u + 2(∂2/∂x2)ln♦W♦(φ1, . . . , φN).
In particular, taking u = 0, v = 0, we can obtain theN-soliton solution of (1.2):

U[N] =
2
k

∂2

∂x2
ln♦W♦(φ1, . . . , φN

)
. (4.10)

When α = 1 and α = i, φ1, . . . , φN are represented by the corresponding forms (3.11) and
(3.18), where λ, a, b take the different constants.

Remark 4.2. However, in generally, in the view of the modeling point, one can consider the
situations where the noise has a different nature. It turns out that there is a close mathematical
connection between SPDEs driven by Gaussian and Poissonian noise at least for Wick-type
equations. It is well known that there is a unitary map to the solution of the corresponding
Gaussian SPDE, see [7]. Hence, if the coefficient f(t) is perturbed by Poissonian white noise
in (1.2), the stochastic single-soliton solution and stochastic multisoliton solutions also can be
obtained by the same discussion.
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