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We define a class ˜Tk [A, B, α, ρ] of analytic functions by using Janowski’s functions which
generalizes a number of classes studied earlier such as the class of strongly close-to-convex
functions. Some properties of this class, including arc length, coefficient problems, and a distortion
result, are investigated. We also discuss the growth of Hankel determinant problem.

1. Introduction

Let A be the class of analytic functions satisfying the condition f(0) = 0, f ′(0) − 1 = 0 in the
open unit disc E = {z : |z| < 1}. Let f(z) and g(z) be analytic in E. Then the function f(z) is
said to be subordinate to g(z), written as f(z) ≺ g(z) if there exists an analytic functionw(z)
in E with w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(z)) in E. If g(z) is univalent in E,
then f(z) ≺ g(z) is equivalent to f(0) = g(0) and f(E) ⊂ g(E).

A function p(z), analytic in E with p(0) = 1 is said to be in the class P[A,B, ρ], −1 ≤
B < A ≤ 1, 0 ≤ ρ < 1, if and only if

p(z) ≺ 1 +
[(

1 − ρ
)

A + ρB
]

z

1 + Bz
, z ∈ E. (1.1)

It is noted that for ρ = 0, the class P[A,B, ρ] reduces to the class P[A,B]whichwas introduced
by Janowski [1], and for ρ = 0, A = 1, and B = −1, we obtain the well-known class P
of functions with positive real part. Now, we consider the generalized class Pk[A,B, ρ] of
Janowski functions which is defined as follows.
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A function p(z) ∈ Pk[A,B, ρ] if and only if

p(z) =
(

k

4
+
1
2

)

p1(z) −
(

k

4
− 1
2

)

p2(z), (1.2)

where p1(z), p2(z) ∈ P[A,B, ρ], −1 ≤ B < A ≤ 1, k ≥ 2, and 0 ≤ ρ < 1. It is clear that
P2[A,B, ρ] ≡ P[A,B, ρ] and Pk[1,−1, 0] ≡ Pk, the well-known class given and studied by
Pinchuk [2].

We define the following classes as

Rk

[

A,B, ρ
]

=
{

f(z) : f(z) ∈ A,
zf ′(z)
f(z)

∈ Pk

[

A,B, ρ
]

, z ∈ E

}

,

Vk

[

A,B, ρ
]

=

{

f(z) : f(z) ∈ A,

(

zf ′(z)
)′

f ′(z)
∈ Pk

[

A,B, ρ
]

, z ∈ E

}

.

(1.3)

For A = 1, B = −1, and ρ = 0, we obtain the well-known classes of bounded boundary
rotation Vk and bounded radius rotation Rk, for details [3–8]. The classes Vk[A,B, 0] and
Rk[A,B, 0] have been extensively studied by Noor in [9–11]. Also V2[A,B, ρ] ≡ S∗[A,B, ρ]
and R2[A,B, ρ] ≡ C[A,B, ρ], where S∗[A,B, ρ] and C[A,B, ρ] are the classes studied by
Polatoğlu in [12].

Throughout in this paper, we assume that k ≥ 2, −1 ≤ B < A ≤ 1, and 0 ≤ ρ < 1 unless
otherwise mentioned.

Definition 1.1. Let f(z) ∈ A, then f(z) ∈ ˜Tk[A,B, α, ρ] if and only if, for α ≥ 0, there exists a
function g(z) ∈ Vk[A,B, ρ] such that

∣

∣

∣

∣

arg
f ′(z)
g ′(z)

∣

∣

∣

∣

≤ απ

2
, z ∈ E. (1.4)

For k = 2, ρ = 0, A = 1, and B = −1, ˜T2(1,−1, α, 0) is the class of strongly close-to-convex
functions of order α in the sense of Pommerenke [13]. Also ˜T2(1,−1, 1, 0) is the class of close-
to-convex functions, see [14].

In [15], the qth Hankel determinant Hq(n), q ≥ 1, n ≥ 1, for a function f(z) ∈ A is
stated by Noonan and Thomas as follows.

Definition 1.2. Let f(z) ∈ A, then the qth Hankel determinant of f(z) is defined for q ≥ 1, n ≥
1 by

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

an an+1 · · · an+q−1
an+1 an+2 · · · an+q−2
...

...
...

...
an+q−1 an+q−2 · · · an+2q−2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

. (1.5)

The Hankel determinant plays an important role, for instance, in the study of the singularities
by Hadamard, see [16, page 329], Edrei [17] and in the study of power series with integral
coefficients by Pólya [18, page 323], Cantor [19], and many others.
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In this paper, we will determine the rate of growth of the Hankel determinant Hq(n)
for f(z) ∈ ˜Tk[A,B, α, ρ], as n → ∞. This determinant has been considered by several authors.
That is, Noor [20] determined the rate of growth of Hq(n) as n → ∞ for a function f(z)
belongs to the class Vk. Pommerenke in [21] studied the Hankel determinant for starlike
functions. The Hankel determinant problem for other interesting classes of analytic functions
was discussed by Noor [22–24].

Lemma 1.3. Let f(z) ∈ A. Let the qth Hankel determinant of f(z) for q ≥ 1, n ≥ 1 be defined by
(1.5). Then, writting Δj(n) = Δj(n, z1, f(z)), we have

Hq(n) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

Δ2q−2(n) Δ2q−3(n + 1) · · · Δq−1
(

n + q − 1
)

Δ2q−3(n + 1) Δ2q−4(n + 2) · · · Δq−2
(

n + q − 2
)

...
...

...
...

Δq−1
(

n + q − 1
)

Δq−2
(

n + q − 2
) · · · Δq

(

n + 2q − 2
)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (1.6)

where with Δ0(n) = an, one defines, for j ≥ 1,

Δj

(

n, z1, f(z)
)

= Δj−1
(

n, z1, f(z)
) −Δj−1

(

n + 1, z1, f(z)
)

. (1.7)

Lemma 1.4. With z1 = (n/(n + 1))y and v ≥ 0 any integer,

Δj

(

n + v, z1, zf
′(z)
)

=
j
∑

m=0

(

j

m

)

ym(v − (m − 1)n)
(n + 1)m

Δj−m
(

n +m + v, f(z)
)

. (1.8)

Lemmas 1.3 and 1.4 are due to Noonan and Thomas [15].

Lemma 1.5. A function v(z) ∈ Vk[A,B, ρ] if and only if there exist two functions v1(z), v2(z) ∈
S∗[A,B] and v3(z), v4(z) ∈ C[A,B, ρ] such that

v′(z) =
(v1(z)/z)

((k/4)+(1/2))(1−ρ)

(v2(z)/z)
((k/4)−(1/2))(1−ρ) , (1.9)

v′(z) =

(

v′
3(z)
)((k/4)+(1/2))

(

v′
4(z)
)((k/4)−(1/2)) . (1.10)

Using the definition of class Pk[A,B, ρ] and simple calculations yields the above result.

Lemma 1.6. Let f(z) ∈ Vk[A,B, ρ], then

(1 + Br)η1

(1 − Br)η2
, B /= 0,

e−(k/2)(1−ρ)Ar, B = 0,

⎫

⎬

⎭

≤ ∣∣f ′(z)
∣

∣ ≤

⎧

⎪

⎨

⎪

⎩

(1 − Br)η1

(1 + Br)η2
, B /= 0,

e(k/2)(1−ρ)Ar, B = 0,
(1.11)
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with

η1 =
(

1 − A

B

)(

k

4
− 1
2

)

(

1 − ρ
)

, η2 =
(

1 − A

B

)(

k

4
+
1
2

)

(

1 − ρ
)

. (1.12)

This result follows easily by using Lemma 1.5 and a result for the class S∗[A,B] due to
Polatoğlu et al. [12]. This result is best possible.

2. Some Properties of the Class ˜Tk[A,B, α, ρ]

Theorem 2.1. The function f(z) ∈ ˜Tk[A,B, α, ρ] if and only if there exist two functions f1(z),
f2(z) ∈ ˜T2[A,B, α, ρ] such that

f ′(z) =

(

f ′
1(z)
)(k/4)+(1/2)

(

f ′
2(z)
)(k/4)−(1/2) . (2.1)

Proof. From (1.4), we have

f ′(z) = g ′(z)pα(z), (2.2)

where g(z) ∈ Vk[A,B, ρ] and p(z) ∈ P . Using (1.10), we obtain

f ′(z) =

(

g ′
1(z)
)(k/4)+(1/2)

pα(z)
(

g ′
2(z)
)(k/4)−(1/2) =

(

g ′
1(z)p

α(z)
)(k/4)+(1/2)

(

g ′
2(z)p

α(z)
)(k/4)−(1/2) =

(

f ′
1(z)
)(k/4)+(1/2)

(

f ′
2(z)
)(k/4)−(1/2) , (2.3)

with g1(z), g2(z) ∈ S∗[A,B] and f1(z), f2(z) ∈ ˜T2[A,B, α, ρ], which completes the required
result.

Theorem 2.2. Let f(z) ∈ ˜Tk[A,B, α, ρ] then f(z) ∈ C for |z| < r0, where r0 is the root of

1 − (A1 + 2α)r − (1 + B1)r2 + (A1 + 2αB)r3 + B1r
4 = 0, (2.4)

with A1 = (k/2)(1 − ρ)(A − B) and B1 = ρB2 + (1 − ρ)AB.

Proof. From (1.4), we have

f ′(z) = g ′(z)pα(z), g(z) ∈ Vk

[

A,B, ρ
]

, p(z) ∈ P. (2.5)

Since g(z) ∈ Vk[A,B, ρ], therefore using (1.9), we have

f ′(z) =

[

(s1(z)/z)
((k/4)+(1/2))

(s2(z)/z)
((k/4)−(1/2))

](1−ρ)
pα(z). (2.6)
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Differentiating logarithmically (2.6)with respect to z, we obtain

(

zf ′(z)
)′

f ′(z)
= ρ +

(

1 − ρ
)

{

(

k

4
+
1
2

)

zs′1(z)
s1(z)

−
(

k

4
− 1
2

)

zs′2(z)
s2(z)

}

+ α
zp′(z)
p(z)

. (2.7)

Using the well-known results for the classes P and S∗[A,B], we have

Re

(

zf ′(z)
)′

f ′(z)
> ρ +

(

1 − ρ
)

{(

k

4
+
1
2

)

1 −Ar

1 − Br
−
(

k

4
− 1
2

)

1 +Ar

1 + Br

}

− 2αr
1 − r2

=
1 − (A1 + 2α)r − (1 + B1)r2 +

(

A1 + 2αB2)r3 + B1r
4

(1 − B2r2)(1 − r2)
, B /= 0,

(2.8)

where A1 = (k/2)(1 − ρ)(A − B) and B1 = ρB2 + (1 − ρ)AB. Let

P(r) = 1 − (A1 + 2α)r − (1 + B1)r2 +
(

A1 + 2αB2
)

r3 + B1r
4, (2.9)

then P(0) = 1 > 0 and P(1) = −2α(1 − B2) < 0 for −1 < B < 1 and therefore, there exists a root
r0 ∈ (0, 1). This completes the proofs.

Theorem 2.3. Let f(z) ∈ ˜Tk[A,B, α, ρ], then for −1 ≤ B < 0, −1 < A ≤ 1, and (1−(A/B))((k/4)+
(1/2))(1 − ρ) + α > 1,

Lrf(z) = C
(

α, ρ, k,A, B
)

(

1
1 − r

)(1−(A/B))((k/4)+(1/2))(1−ρ)+α−1
, (2.10)

where C(α, ρ, k,A, B) is a constant depending upon α, ρ, k,A, and B only.

Proof. With z = reiθ,

L
(

r, f(z)
)

=
∫2π

0

∣

∣zf ′(z)
∣

∣dθ

=
∫2π

0

∣

∣zg ′(z)pα(z)
∣

∣dθ, g(z) ∈ Vk

[

A,B, ρ
]

, p(z) ∈ P.

(2.11)

Since g(z) ∈ Vk[A,B, ρ], therefore by using (1.9)with s1(z), s2(z) ∈ S∗[A,B], we have

L
(

r, f(z)
) ≤
∫2π

0

∣

∣

∣

∣

∣

zρ(s1(z))
((k/4)+(1/2))(1−ρ)(p(z)

)α

(s2(z))
((k/4)−(1/2))(1−ρ)

∣

∣

∣

∣

∣

dθ

≤ rρ−((k/4)−(1/2))(1−ρ)(1 − B)(1−(A/B))((k/4)−(1/2))(1−ρ)

×
∫2π

0
|s1(z)|((k/4)+(1/2))(1−ρ)

∣

∣p(z)
∣

∣

α
dθ, B /= 0.

(2.12)

Using the well-known Holder’s inequality, with m1 = 2/(2 − α) and m2 = 2/α such that
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(1/m1) + (1/m2) = 1 and 0 < α < 2, we can write

Lr

(

f(z)
) ≤ 2πrρ−((k/4)−(1/2))(1−ρ)(1 − B)(1−(A/B))((k/4)−(1/2))(1−ρ)

×
(

1
2π

∫2π

0

∣

∣p(z)
∣

∣

2
dθ

)α/2(
1
2π

∫2π

0
|s1(z)|((k/2)+1)(1−ρ)/(2−α)dθ

)(2−α)/2
.

(2.13)

Also, it is known [13] that, for p(z) ∈ P, z ∈ E,

1
2π

∫2π

0

∣

∣p(z)
∣

∣

2
dθ ≤ 1 + 3r2

1 − r2
. (2.14)

Therefore,

Lr

(

f(z)
) ≤ 2πrρ−((k/4)−(1/2))(1−ρ)(1 − B)(1−(A/B))((k/4)−(1/2))(1−ρ)

×
(

1 + 3r2

1 − r2

)α/2(
1
2π

∫2π

0
|s1(z)|((k/2)+1)(1−ρ)/2−αdθ

)(2−α)/2

≤ πr(1 − B)(1−(A/B))((k/4)−(1/2))(1−ρ)21+(α/2)

(1 − r)α/2

×

⎛

⎜

⎝

1
2π

∫2π

0

1
∣

∣

∣1 + Breiθ
∣

∣

∣

(1−(A/B))((k/2)+1)(1−ρ)/(2−α)dθ

⎞

⎟

⎠

(2−α)/2

≤ πr(1 − B)(1−(A/B))((k/4)−(1/2))(1−ρ)21+(α/2)

(1 − r)α/2

×

⎛

⎜

⎝

1
2π

∫2π

0

1
(

1 −
∣

∣

∣Breiθ
∣

∣

∣

)(1−(A/B))((k/2)+1)(1−ρ)/(2−α)dθ

⎞

⎟

⎠

(2−α)/2

.

(2.15)

Therefore, we have

Lr

(

f(z)
) ≤ C

(

α, ρ, k,A, B
)

(

1
1 − r

)α/2
(

(

1
1 − |B|r

)((1−(A/B))((k/2)+1)(1−ρ)/(2−α))−1)(2−α)/2
.

(2.16)

Since 1/(1 − |B|r) ≤ 1/(1 − r), for −1 ≤ B < 0, therefore

Lr

(

f(z)
) ≤ C

(

α, ρ, k,A, B
)

(

1
1 − r

)(1−(A/B))((k/4)+(1/2))(1−ρ)+α−1
, (2.17)

which is the required result.
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Theorem 2.4. Let f(z) ∈ ˜Tk[A,B, α, ρ], then for −1 ≤ B < 0, −1 < A ≤ 1, and (1−(A/B))((k/4)+
(1/2))(1 − ρ) + α > 1,

|an| ≤ C1
(

α, ρ, k,A, B
)

n(1−(A/B))((k/4)+(1/2))(1−ρ)+α−2. (2.18)

Proof. By Cauchy’s theorem, we have

n|an| ≤ 1
2πrn

∫2π

0

∣

∣zf ′(z)
∣

∣dθ

=
1

2πrn
Lr

(

f(z)
)

≤ 1
2πrn

C
(

α, ρ, k,A, B
)

(

1
1 − r

)(1−(A/B))((k/4)+(1/2))(1−ρ)+α−1
.

(2.19)

Now putting r = 1 − (1/n), we have

|an| = C1
(

α, ρ, k,A, B
)

n(1−(A/B))((k/4)+(1/2))(1−ρ)+α−2, (2.20)

which is required.

Theorem 2.5. Let f(z) ∈ ˜Tk[A,B, α, ρ], then

(1 + Br)(1−(A/B))((k/4)−(1/2))(1−ρ)

(1 − Br)(1−(A/B))((k/4)+(1/2))(1−ρ)

(

1 − r

1 + r

)α

, B /= 0,

e−(k/2)(1−ρ)Ar

(

1 − r

1 + r

)α

, B = 0,

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

≤ ∣∣f ′(z)
∣

∣

≤

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

(1 − Br)(1−(A/B))((k/4)−(1/2))(1−ρ)

(1 + Br)(1−(A/B))((k/4)+(1/2))(1−ρ)

(

1 + r

1 − r

)α

, B /= 0,

e(k/2)(1−ρ)Ar

(

1 + r

1 − r

)α

, B = 0.

(2.21)

Proof. Since f(z) ∈ ˜Tk[A,B, α, ρ], therefore

f ′(z) = g ′(z)pα(z), g(z) ∈ Vk

[

A,B, ρ
]

, p(z) ∈ P. (2.22)

Using Lemma 1.5 and the well-known distortion result of class P, we obtain the required
result.

Theorem 2.6. Let f(z) ∈ ˜Tk[A,B, α, ρ], then for −1 ≤ B < 0, −1 < A ≤ 1, and (1−(A/B))((k/4)+
(1/2))(1 − ρ) + α > 1,

Hq(n) = O(1)

⎧

⎨

⎩

n(1−(A/B))((k/2)+1)(1−ρ)+α−2, q = 1,

n{((k/2)+1)(1−ρ)+α−1}q−q2 , q ≥ 2,
k ≥ 8

(

q − 1
)

(1 − (A/B))
(

1 − ρ
) − 2, (2.23)

where k > (2/(1−ρ))((B(2−α)/(B−A))+2j)−2, andO(1) is a constant depending on k, α, β, ρ, γ ,
and j only.
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Proof. From (1.4), we have

zf ′(z) = z
(

g ′(z)
)

pα(z), (2.24)

where g(z) ∈ Vk[A,B, ρ], p(z) ∈ P . It follows easily from Alexander type relation that

zf ′(z) = g1(z)pα(z), g(z) ∈ Rk

[

A,B, ρ
]

. (2.25)

Using (1.9) with s1(z), s2(z) ∈ S∗[A,B], we have

g(z) =

[

(s1(z))((k/4)+(1/2))

(s2(z))((k/4)−(1/2))

](1−ρ)
. (2.26)

Therefore,

zf ′(z) =

[

(s1(z))
((k/4)+(1/2))

(s2(z))((k/4)−(1/2))

](1−ρ)
pα(z). (2.27)

Let F(z) = zf ′(z), then for j ≥ 1, z1 any nonzero complex and z = reiθ, consider Δj(n, z1,
F(z)) as defined by (1.7). Then,

∣

∣Δj(n, z1, F(z))
∣

∣ =
1

2πrn+j

∣

∣

∣

∣

∣

∫2π

0
(z − z1)jF(z)ei(n+j)θdθ

∣

∣

∣

∣

∣

, (2.28)

and by using (2.27), we have

∣

∣Δj(n, z1, F(z))
∣

∣ ≤ 1
2πrn+j

∫2π

0
(|z − z1|s1(z))j |s1(z)|

((k/4)+(1/2))(1−ρ)−j

|s2(z)|((k/4)−(1/2))(1−ρ)
∣

∣p(z)
∣

∣

α
dθ

≤ 2j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr((k/4)−(1/2))(1−ρ)n−j

(

1
1 − r

)j

×
∫2π

0
|(s1(z))|((k/4)+(1/2))(1−ρ)−j

∣

∣p(z)
∣

∣

α
dθ,

(2.29)

where we have used the result proved in [25]. The well-known Holder’s inequality will give
us

∣

∣Δj(n, z1, F(z))
∣

∣ ≤ 2j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr((k/4)−(1/2))(1−ρ)n−j

(

1
1 − r

)j
(

1
2π

∫2π

0

∣

∣p(z)
∣

∣

2
dθ

)α/2

×
(

1
2π

∫2π

0
|(s1(z))|((k/2)+1)(1−ρ)−2j/2−αdθ

)(2−α)/2
.

(2.30)
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Using (2.14) in (2.30), we obtain

∣

∣Δj(n, z1, F(z))
∣

∣ ≤ 2j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr((k/4)−(1/2))(1−ρ)n−j

(

1
1 − r

)j

×
(

1 + 3r2

1 − r2

)α/2(
1
2π

∫2π

0
|(s1(z))|((k/2)+1)(1−ρ)−2j/(2−α)dθ

)(2−α)/2
.

(2.31)

Therefore, we can write

∣

∣Δj(n, z1, F(z))
∣

∣

≤ 2α+j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr1−ρ+n

(

1
1 − r

)j+(α/2)

×

⎛

⎜

⎝

1
2π

∫2π

0

1
(

1 −
∣

∣

∣Breiθ
∣

∣

∣

)(1−(A/B))((k/2)+1)(1−ρ)−2(1−(A/B))j/(2−α)dθ

⎞

⎟

⎠

(2−α)/2

.

(2.32)

Now, using a subordination result for starlike functions, we have

∣

∣Δj(n, z1, F(z))
∣

∣ ≤ 2α+j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr1−ρ+n

(

1
1 − r

)j+(α/2)

×
[

(

1
1 − r

)((1−(A/B))((k/2)+1)(1−ρ)−2(1−(A/B))j/(2−α))−1](2−α)/2

=
2α+j(1 − B)((B−A)/B)((k/4)−(1/2))(1−ρ)

2πr1−ρ+n

(

1
1 − r

)(1−(A/B))((k/4)+(1/2))(1−ρ)+α−1+(A/B)j

,

(2.33)

where c2 is a constant depending on k, α, β, ρ, γ, and j only and ((1 − (A/B))[((k/2) + 1)
(1−ρ)−2j])/(2−α) > 1. Applying Lemma 1.4 and putting z1 = (n/(n+1))eiθn , (n → ∞), r =
1 − (1/n), we have for k ≥ (2/(1 − ρ))((B(2 − α)/(B −A)) + 2j) − 2,

∣

∣

∣Δj

(

n, eiθn , f(z)
)∣

∣

∣ = O(1)n(1−(A/B))((k/4)+(1/2))(1−ρ)+α+(A/B)j−2, (2.34)

whereO(1) is a constant depending on k, α, β, ρ, γ , and j only. We now estimate the rate of
growth of Hq(n). For q = 1, Hq(n) = an = Δ0(n) and

H1(n) = an = O(1)n(1−(A/B))((k/2)+1)(1−ρ)+α−2. (2.35)
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For q ≥ 2, we use similar argument due to Noonan and Thomas [15] together with Lemma 1.3
to have

Hq(n) = O(1)n[(1−(A/B))((k/4)+(1/2))(1−ρ)+α−1]q−q2 , k ≥ 8
(

q − 1
)

(1 − (A/B))
(

1 − ρ
) − 2, (2.36)

and O(1) depends only on k, α, β, ρ, γ , and j.
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