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The dilogarithm integral Li(xs) and its associated functions Li+(xs) and Li−(xs) are defined as
locally summable functions on the real line. Some convolutions and neutrix convolutions of these
functions and other functions are then found.

1. Introduction

The dilogarithm integral Li(x) is defined by

Li(x) = −
∫x

0

ln|1 − t|
t

dt (1.1)

(see [1]). More generally, we have

Li(xs) = −
∫xs

0

ln|1 − t|
t

dt = −s
∫x

0

ln|1 − ts|
t

dt (1.2)

for s = 1, 2, . . . .
The associated functions Li+(xs) and Li−(xs) are defined by

Li+(xs) = H(x)Li(xs), Li−(xs) = H(−x)Li(xs) = Li(xs) − Li+(xs), (1.3)

where H(x) denotes Heaviside’s function.
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Next, we define the distribution ln |1 − xs|x−1 by

ln |1 − xs|x−1 = −s−1[Li(xs)]′, (1.4)

and its associated distributions ln |1 − xs|x−1
+ and ln |1 − xs|x−1

− are defined by

ln|1 − xs|x−1
+ = H(x) ln|1 − xs|x−1 = −s−1[Li+(xs)]′,

ln|1 − xs|x−1
− = H(−x) ln|1 − xs|x−1 = −s−1[Li−(x)]′ .

(1.5)

The classical definition of the convolution product of two functions f and g is as
follows.

Definition 1.1. Let f and g be functions. Then the convolution f ∗ g is defined by

(
f ∗ g)(x) =

∫∞

−∞
f(t)g(x − t)dt (1.6)

for all points x for which the integral exist.

It follows easily from the definition that if f ∗ g exists then g ∗ f exists and

f ∗ g = g ∗ f, (1.7)

and if (f ∗ g)′ and f ∗ g ′(or f ′ ∗ g) exists, then

(
f ∗ g)′ = f ∗ g ′ (

or f ′ ∗ g). (1.8)

Definition 1.1 can be extended to define the convolution f ∗ g of two distributions f and g in
D′ with the following definition; see Gel’fand and Shilov [2].

Definition 1.2. Let f and g be distributions in D′. Then the convolution f ∗ g is defined by the
equation

〈(
f ∗ g)(x), ϕ〉 = 〈f(y), 〈g(x), ϕ(x + y

)〉〉
(1.9)

for arbitrary ϕ in D, provided f and g satisfy either of the following conditions:

(a) either f or g has bounded support,

(b) the supports of f and g are bounded on the same side.

It follows that if the convolution f ∗ g exists by this definition then (1.7) and (1.8) are
satisfied.
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In order to extend Definition 1.2 to distributions which do not satisfy conditions (a) or
(b), let τ be a function in D, see [3], satisfying the conditions:

(i) τ(x) = τ(−x),
(ii) 0 ≤ τ(x) ≤ 1,
(iii) τ(x) = 1 for |x| ≤ 1/2,
(iv) τ(x) = 0 for |x| ≥ 1.
The function τn is then defined by

τn(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, |x| ≤ n,

τ
(
nnx − nn+1), x > n,

τ
(
nnx + nn+1), x < −n,

(1.10)

for n = 1, 2, . . . .
The following definition of the noncommutative neutrix convolution was given in [4].

Definition 1.3. Let f and g be distributions in D′, and let fn = fτn for n = 1, 2, . . . . Then the
noncommutative neutrix convolution f � g is defined as the neutrix limit of the sequence {fn ∗ g},
provided the limit h exists in the sense that

N − lim
n→∞

〈
fn ∗ g, ϕ

〉
=
〈
h, ϕ
〉

(1.11)

for all ϕ inD, whereN is the neutrix, see van der Corput [5], having domainN ′ the positive reals and
range N ′′ the real numbers, with negligible functions finite linear sums of the functions

nλlnr−1n, lnrn : λ > 0, r = 1, 2, . . . (1.12)

and all functions which converge to zero in the normal sense as n tends to infinity.
In particular, if

lim
n→∞

〈
fn ∗ g, ϕ

〉
=
〈
h, ϕ
〉

(1.13)

exists, we say that the non-commutative convolution f � g exists.

It is easily seen that any results proved with the original definition of the convolution
hold with the new definition of the neutrix convolution. Note also that because of the lack of
symmetry in the definition of f � g the neutrix convolution is in general non-commutative.

The following results proved in [4] hold, first showing that the neutrix convolution is
a generalization of the convolution.

Theorem 1.4. Let f and g be distributions in D′, satisfying either condition (a) or condition (b) of
Gel’fand and Shilov’s definition. Then the neutrix convolution f � g exists and

f � g = f ∗ g. (1.14)
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Theorem 1.5. Let f and g be distributions in D′ and suppose that the neutrix convolution f � g
exists. Then the neutrix convolution f � g ′ exists and

(
f � g

)′ = f � g ′. (1.15)

Note however that (f � g)′ is not necessarily equal to f ′ � g but we do have the
following theorem.

Theorem 1.6. Let f and g be distributions in D′ and suppose that the neutrix convolution f � g
exists. IfN − limn→∞〈(fτ ′n) ∗ g, ϕ〉 exists and equals 〈h, ϕ〉 for all ϕ in D, then f ′ � g exists and

(
f � g

)′ = f ′ � g + h. (1.16)

2. Main Result

We define the function Is,r(x) by

Is,r(x) =
∫x

0
ur ln|1 − us| du (2.1)

for r = 0, 1, 2, . . . and s = 1, 2, . . . . In particular, we define the function Ir(x) by

Ir(x) = I1,r(x) (2.2)

for r = 0, 1, 2, . . . .
The following theorem was proved in [6].

Theorem 2.1. The convolutions Li+(x) ∗ xr
+ and ln |1 − x|x−1

+ ∗ xr
+ exist and

Li+(x) ∗ xr
+ =

1
r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−iIr−i(x)xi

+ +
1

r + 1
xr+1
+ Li+(x) (2.3)

for r = 0, 1, 2, . . . and

ln|1 − x|x−1
+ ∗ xr

+ =
r−1∑
i=0

(
r

i

)
(−1)r−iIr−i−1(x)xi

+ − Li+(x)xr
+ (2.4)

for r = 1, 2, . . . .

We now prove the following generalization of Theorem 2.1.

Theorem 2.2. The convolutions Li+(xs) ∗ xr
+ and ln|1 − xs|x−1

+ ∗ xr
+ exist and

Li+(xs) ∗ xr
+ =

s
r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−iIs,r−i(x)xi

+ +
1

r + 1
Li+(xs)xr+1

+ (2.5)
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for r = 0, 1, 2, . . . , s = 1, 2, . . . and

ln|1 − xs|x−1
+ ∗ xr

+ =
r−1∑
i=0

(
r

i

)
(−1)r−iIs,r−i−1(x)xi

+ −
1
s
Li+(xs)xr

+ (2.6)

for r, s = 1, 2, . . . .

Proof. It is obvious that Li+(xs) ∗ xr
+ = 0 if x < 0.

When x > 0, we have

Li+(xs) ∗ xr
+ = −s

∫x

0
(x − t)r

∫ t

0
u−1 ln|1 − us|du dt

= −s
∫x

0
u−1 ln|1 − us|

∫x

u

(x − t)rdt du

=
s

r + 1

r+1∑
i=0

(−1)r−ixi

(
r + 1

i

)∫x

0
ur−i ln|1 − us|du

=
s

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−ixiIs,r−i(x) +

1
r + 1

xr+1Li(xs)

(2.7)

proving (2.5).
Next, using (1.8) and (2.5), we have

−s ln|1 − xs|x−1
+ ∗ xr

+ = rLi+(xs) ∗ xr−1
+

= s
r−1∑
i=0

(
r

i

)
(−1)r−i−1Is,r−i−1(x)xi

+ + Li+(xs)xr,
(2.8)

and (2.6) follows.

Corollary 2.3. The convolutions Li−(xs) ∗ xr
− and ln|1 − xs|x−1

− ∗ xr
− exist and

Li−(xs) ∗ xr
− =

s

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−i+1Is,r−i(x)xi

− +
1

r + 1
Li−(xs)xr+1

− (2.9)

for r = 0, 1, 2, . . . , s = 1, 2, . . . and

ln|1 − xs|x−1
− ∗ xr

− =
r−1∑
i=0

(
r

i

)
(−1)r−i+1Is,r−i−1(x)xi

− −
1
s
Li−(xs)xr

− (2.10)

for r, s = 1, 2, . . . .
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Proof. Equations (2.9) and (2.10) are obtained applying a similar procedure as used in
obtaining (2.5) and (2.6).

The next two theorems were proved in [6] and to prove it, our set of negligible
functions was extended to include finite linear sums of the functions nsLi(nr) for s = 0, 1, 2, . . .
and r = 1, 2, . . . .

Theorem 2.4. The convolution Li+(x) � xr exists and

Li+(x) � xr =
1

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−i

(r − i + 1)2
xi (2.11)

for r = 0, 1, 2, . . . .

Theorem 2.5. The convolution ln|1 − x|x−1
+ � xr exists and

ln|1 − x|x−1
+ � xr =

r−1∑
i=0

(
r

i

)
(−1)r−i+1
(r − i)2

xi (2.12)

for r = 1, 2, . . . .

Before proving some further results, we need the following lemma.

Lemma 2.6. If r + 1/s ∈ N for r, s = 1, 2, . . . , then

N − lim
n→∞

Is,r(n) = − s

(r + 1)2
. (2.13)

Proof. Because

Is,r(n) =
1

r + 1

(
nr+1 − 1

)
ln|1 − ns| − 1

r + 1

∫ns

0

1 − t(r+1)/s

1 − t
dt (2.14)

when r + 1/s ∈ N, we have

Is,r(n) =
1

r + 1

(
nr+1 − 1

)
ln|1 − ns| − 1

r + 1

(r+1)/s−1∑
i=0

nsi+s

i + 1

=
1

r + 1

(
nr+1 − 1

)(
s lnn + ln

∣∣1 − n−s∣∣) − 1
r + 1

(r+1)/s−1∑
i=0

nsi+s

i + 1
,

(2.15)

and (2.13) follows.

We now prove the following generalization of Theorems 2.4 and 2.5.
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Theorem 2.7. The neutrix convolution Li+(xs) � xr exists when r + 1/s ∈ N and

Li+(xs) � xr =
s2

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−i

(r − i + 1)2
xi
+ (2.16)

for r, s = 1, 2, . . . .

Proof. We put [Li+(xs)]n = Li+(xs)τn(x). Then the convolution [Li+(xs)]n ∗ xr exists by
Definition 1.1 and

[Li+(xs)]n ∗ xr =
∫n

0
Li(ts)(x − t)r dt +

∫n+n−n

n

τn(t)Li(ts)(x − t)rdt

= I1 + I2,

(2.17)

where

I1 =
∫n

0
Li(ts)(x − t)rdt

= −s
∫n

0
(x − t)r

∫ t

0

ln|1 − us|
u

du dt

= −s
∫n

0

ln|1 − us|
u

∫n

u

(x − t)rdt du

=
s

r + 1

r+1∑
i=0

(−1)r−ixi

(
r + 1

i

)∫n

0
u−1 ln|1 − us|

{
ur−i+1 − nr−i+1

}
du

=
s

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−ixiIs,r−i(n) +

1
r + 1

xr+1Li(ns)

+
1

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−ixiLi(ns)nr−i+1.

(2.18)

Thus, using Lemma 2.6, we have

N − lim
n→∞

I1 =
s2

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−i+1
(r − i + 1)2

xi. (2.19)

Further, it is easily seen that

lim
n→∞

∫n+n−n

n

τn(t)Li(ts)(x − t)rdt = 0, (2.20)

and (2.16) follows from (2.17), (2.19), and (2.20), proving the theorem.
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Theorem 2.8. The neutrix convolution ln|1 − xs|x−1
+ � xr exists when r + 1/s ∈ N and

ln|1 − xs|x−1
+ � xr = s

r−1∑
i=0

(
r

i

)
(−1)r−i
(r − i)2

xi
+ (2.21)

for r, s = 1, 2, . . . .

Proof. Using Theorems 1.5 and 1.6, we have

−s ln|1 − xs|x−1
+ � xr = rLi+(xs) � xr−1 +N − lim

n→∞
[
Li+(xs)τ ′n(x)

] ∗ xr, (2.22)

where, on integration by parts, we have

[
Li+(xs)τ ′n(x)

] ∗ xr =
∫n+n−n

n

τ ′n(t)Li(t
s)(x − t)rdt

= −Li(ns)(x − n)r − s

∫n+n−n

n

ln|1 − ts|t−1(x − t)rτn(t)dt

+ r

∫n+n−n

n

Li(ts)(x − t)r−1τn(t)dt.

(2.23)

It is clear that

lim
n→∞

∫n+n−n

n

ln|1 − ts|t−1(x − t)rτn(t)dt = 0

lim
n→∞

∫n+n−n

n Li(ts)(x − t)r−1τn(t)dt = 0 .

(2.24)

It now follows from (2.23) and (2.24) that

N − lim
n→∞

[
Li+(xs)τ ′n(x)

] ∗ xr = 0. (2.25)

Equation (2.21) now follows directly from (2.16) and (2.22), proving the theorem.

Corollary 2.9. The neutrix convolutions Li−(xs)�xr and ln |1−xs|x−1
− �xr exist when r+1/s ∈ N

and

Li−(xs) � xr =
s2

r + 1

r∑
i=0

(
r + 1

i

)
(−1)r−i+1
(r − i + 1)2

xi
−,

ln|1 − xs|x−1
− � xr = s

r−1∑
i=0

(
r

i

)
(−1)r−i+1
(r − i)2

xi
−

(2.26)

for r, s = 1, 2, . . .
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Proof. Equations (2.26) are obtained applying a similar procedure as used in obtaining (2.16)
and (2.21).

Corollary 2.10. The neutrix convolutions Li+(xs) � xr
− and Li−(xs) � xr

+ exist when r + 1/s ∈ N
and

Li+(xs) � xr
− =

s

r + 1

r∑
i=0

(
r + 1

i

)
(−1)i

(r − i + 1)2
[
s − (r − i + 1)2Is,r−i(x)

]
xi
+

+
(−1)r+1
r + 1

Li+(xs)xr+1,

Li−(xs) � xr
+ =

s

r + 1

r∑
i=0

(
r + 1

i

)
(−1)i+1

(r − i + 1)2
[
s − (r − i + 1)2Is,r−i(x)

]
xi
−

+
(−1)r+1
r + 1

Li−(xs)xr+1

(2.27)

for r, s = 1, 2, . . . .

Proof. Since the neutrix convolution product is distributive with respect to addition, we have

Li+(xs) � xr = Li+(xs) ∗ xr
+ + (−1)rLi+(xs) � xr

−, (2.28)

and (2.27) follows from (2.16) and (2.5). Equation (27) is obtained applying similar procedure
as in the case of (2.27).

Corollary 2.11. The neutrix convolutions ln|1 − xs|x−1
+ � xr

− and ln|1 − xs|x−1
− � xr

+ exist when
r + 1/s ∈ N and

ln|1 − xs|x−1
+ � xr

− =
r−1∑
i=0

(
r

i

)
(−1)i
(r − i)2

[
s − (r − i)2Is,r−i−1(x)

]
xi
+

+
(−1)r
s

Li+(xs)xr,

ln|1 − xs|x−1
− � xr

+ =
r−1∑
i=0

(
r

i

)
(−1)i+1
(r − i)2

[
s − (r − i)2Is,r−i−1(x)

]
xi
−

+
(−1)r
s

Li−(xs)xr

(2.29)

for r, s = 1, 2, . . .

Proof. Equation (2.29) follows from (2.21) and (2.6). Equation (29) is obtained applying
similar procedure as in the case of (2.29).
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