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The transversely isotropic magnetoelectroelastic solids plane problem in rectangular domain
is derived to Hamiltonian system. In symplectic geometry space with the origin variables—
displacements, electric potential, and magnetic potential, as well as their duality variables—
lengthways stress, electric displacement, and magnetic induction, on the basis of the obtained
eigensolutions of zero-eigenvalue, the eigensolutions of nonzero-eigenvalues are also obtained.
The former are the basic solutions of Saint-Venant problem, and the latter are the solutions which
have the local effect, decay drastically with respect to distance, and are covered in the Saint-Venant
principle. So the complete solution of the problem is given out by the symplectic eigensolutions
expansion. Finally, a few examples are selected and their analytical solutions are presented.

1. Introduction

Magnetoelectroelastic solids are a kind of the emerging functional composite material. Due
to possessing mechanical, electric and magnetic field coupling capacity, these materials show
better foreground in many high-tech areas (see [1]). They not only convert energy from one
form to the other (among magnetic, electric, and mechanical energies), but also possess some
new properties of magnetoelectric effect, which are not found in single-phase piezoelectric
or piezomagnetic materials. Over the years, a large amount of studies have been done in
mechanics, materials science, and physics fields (see [2–6]), and it has become a new cross
subject.

Due to multifields coupling, the magnetoelectroelastic solids problem is solved more
difficultly than elasticity one. Zhong et al. (see [7, 8]) introduced a symplectic dual method
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based on the conservative Hamiltonian system to solve the elastic problem which is different
from the traditional semi-inverse solution method. The complete solutions space can be
obtained and a satisfactory solution can be obtained under the boundary conditions (see
[9–11]). The symplectic dual method has been developed for studying piezoelectric effects
(see [12]) and magnetoelectroelastic problems (see [13]).

With the symplectic approach, the plane problem of magnetoelectroelastic solids in
rectangular domain is derived into the Hamiltonian system by means of the generalized
variable principle of the magnetoelectroelastic solids. In symplectic geometry space with
the origin variables—displacements, electric potential, and magnetic potential, as well as
their duality variables—lengthways stress, electric displacement, and magnetic induction,
symplectic dual equations are employed. Yao and Li have obtained all the eigensolutions of
zero-eigenvalue, which have their specific physical interpretation and are the basic solutions
of plane Saint-Venant problem in [13]. This paper gets the eigensolutions of nonzero-
eigenvalues, which are the solutions that have the local effect, decay drastically with respect
to distance, and are covered in the Saint-Venant principle. So the complete solution of the
problem is given out by the symplectic eigensolutions expansion. Finally, a few examples are
selected and their analytical solutions are presented.

2. Functional Equations and Boundary Conditions

The transversely isotropic magnetoelectroelastic solids are studied here, with the z-axis being
the polar direction. If geometry size, load, and so forth, in y direction satisfy the given
condition, the problem can be simplified as a plane problem in the xoz plane. The functional
equations of the plane problem are as follows (see [14]).

(1) Governing equations:

∂σx
∂x

+
∂τxz
∂z

+ fx = 0,
∂τxz
∂x

+
∂σz
∂z

+ fz = 0,
∂Dx

∂x
+
∂Dz

∂z
= ρ,

∂Bx
∂x

+
∂Bz
∂z

= 0.

(2.1)

(2) Gradient equations:

εx =
∂u

∂x
, εz =

∂w

∂z
, γxz =

∂w

∂x
+
∂u

∂z
,

Ex = −∂φ
∂x

, Ez = −∂φ
∂z

, Hx = −∂ψ
∂x

, Hz = −∂ψ
∂z

.

(2.2)

(3) Constitutive equations:

σx = c11εx + c13εz − e31Ez − q31Hz, σz = c13εx + c33εz − e33Ez − q33Hz,

τxz = c44γxz − e15Ex − q15Hx,

Dx = e15γxz + κ11Ex + α11Hx, Dz = e31εx + e33εz + κ33Ez + α33Hz,

Bx = q15γxz + α11Ex + μ11Hx, Bz = q31εx + q33εz + α33Ez + μ33Hz,

(2.3)
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where u, w are displacement components in the x, z direction, respectively;
σx, σz, and τxz are stress components, respectively; Dx, Dz, and φ are electric
displacement components and electric potential, respectively; Bx, Bz, and ψ are
magnetic induction components and magnetic potential, respectively; fx, fz, and ρ
are body force components and density of free charges in region V , respectively.
cij , κij , and μij are elastic modus, dielectric constant, and magnetic constants,
respectively; eij , qij , and αij are piezoelectric, piezomagnetic, and electromagnetic
constants, respectively. Equation (2.3) can also be rewritten as follows:

εx = s11σx + s13σz + d31Dz + b31Bz, εz = s13σx + s33σz + d33Dz + b33Bz,

γxz = s44τxz + d15Dx + b15Bx,

Ex = −d15τxz + λ11Dx + β11Bx, Ez = −d31σx − d33σz + λ33Dz + β33Bz,

Hx = −b15τxz + β11Dx + ν11Bx, Hz = −b31σx − b33σz + β33Dz + ν33Bz.

(2.4)

The rectangle domain as showing in Figure 1 is studied in this paper

V : 0 ≤ z ≤ l, −h ≤ x ≤ h. (2.5)

And the boundary conditions are expressed as (see [15])

σx = Fx1(z), τxz = Fz1(z), Dx = Dx1(z), Bx = Bx1(z) on x = −h,
σx = Fx2(z), τxz = Fz2(z), Dx = Dx2(z), Bx = Bx2(z) on x = h.

(2.6)

In addition, there are body force and density of free charges in region V .
On z = 0, l, the boundary conditions are (see [15])

w = w, u = u, φ = φ, ψ = ψ on z = 0 or l. (2.7)

Or

σz = σz, τxz = τxz, Dz = Dz, Bz = Bz on z = 0 or l. (2.8)

3. Duality Equation in Symplectic Geometry Space and Separation of
Variables (See [13])

Consider rectangle domain as showing in Figure 1. At first, the coordinate z here is employed
to simulate the time variable in the Hamiltonian system, and a symbol “ ˙” in the following
derivation will be used denoting the differential with respect to z, that is, ( ˙ ) = ∂/∂z. For the
sake of simplicity, the notations σ, τ, D, and B are introduced to represent σz, τxz, Dz,
and Bz, respectively. If we omit body forces and density of free charges, a dual equation
with the full state function vector is given as

v̇ = Hv, (3.1)



4 Journal of Applied Mathematics

−h

h

O

x

Dx2 Bx2

Dx1 Bx1
F

Fz2

Fx1

Fx2

z

l

Figure 1: The rectangular domain problems on magnetoelectroelastic solids.

and H is the operator matrix in [13]

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 C10
∂

∂x
0 0 C11 0 C14 C15

− ∂

∂x
0 −C21

∂

∂x
−C22

∂

∂x
0 C17 0 0

0 C18
∂

∂x
0 0 C14 0 −C12 −C16

0 C19
∂

∂x
0 0 C15 0 −C16 −C13

0 0 0 0 0 − ∂

∂x
0 0

0 −C20
∂2

∂x2
0 0 C10

∂

∂x
0 C18

∂

∂x
C19

∂

∂x

0 0 C23
∂2

∂x2
−C24

∂2

∂x2
0 −C21

∂

∂x
0 0

0 0 −C24
∂2

∂x2
C25

∂2

∂x2
0 −C22

∂

∂x
0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (3.2)

where the constants C10 ∼ C25 are listed in the appendix.
Consider the following boundary conditions on two sides in [13]:

1
s11

(
∂u

∂x
− s13σ − d31D − b31B

)
= 0, τ = 0,

1
Δ

(
−ν11

∂φ

∂x
+ β11

∂ψ

∂x
+ C1τ

)
= 0,

1
Δ

(
β11

∂φ

∂x
− λ11

∂ψ

∂x
+ C2τ

)
= 0, on x = ±h,

(3.3)

where constant Δ, C1, and C2 are listed in the appendix. Equation (3.1) can usually be solved
by using the method of partition of variables. Let

v(x, z) = ξ(z)Y(x), (3.4)
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and substitute (3.4) into (3.1); the following equations can be obtained:

HY(x) = μY(x), ξ(z) = eμz, (3.5)

where μ is the eigenvalue and Y(x) is the eigenfunction vector, which satisfies the boundary
condition (3.3) on x = ±h.

The full state vectors v form a symplectic space according to the following definition
of symplectic inner product:

〈
v(1),v(2)

〉
def=
∫h
−h

v(1)
T
Jv(2)dx, J =

[
0 I4

−I4 0

]
. (3.6)

If only v(1) and v(2) meet the requirement of (3.3), the following invariant is obtained
as

〈
v(1),Hv(2)

〉
≡
〈
v(2),Hv(1)

〉
. (3.7)

Therefore, the operator matrix H is the Hamiltonian operator matrix in the symplectic
geometry space. So its eigenvalues have some characteristics, that is, if μ is an eigenvalue,
then −μ must also be one, and the eigenfunction vectors satisfy the symplectic adjoint
orthogonal relationship. After eigenvalues and eigenfunction vectors of H are given, the
origin problem can be solved by the method of eigenfunction expansion (see [7, 8]).

4. Eigenfunction Vectors of Eigenvalue Zero (See [13])

With the free boundary condition at both sides(x = ±h), the magnetoelectroelastic solids
plane problem in rectangular domain exists eigenvalue zero. The eigenvalue zero is a special
eigenvalue of the Hamiltonian operator matrix, which eigenfunction vectors are not only the
fundamental solution with the special physical significance but also a nondecaying solution.
Solve the following eigenequation with conditions (3.3):

HY(x) = 0. (4.1)

After obtaining the fundamental eigensolutions and eigensolutions in Jordan form, the
solutions of (3.1) can be given as

v(0)0f =
(
1 0 0 0 0 0 0 0

)T
, v(0)0s =

(
0 1 0 0 0 0 0 0

)T
,

v(0)0t =
(
0 0 1 0 0 0 0 0

)T
, v(0)0r =

(
0 0 0 1 0 0 0 0

)T
,

v(1)0f =
(
z b1x 0 0 a1 0 a2 a3

)T
, v(1)0s =

(−x z 0 0 0 0 0 0
)T
,

v(1)0t =
(
0 b2x z 0 a2 0 a4 a5

)T
, v(1)0r =

(
0 b3x 0 z a3 0 a5 a6

)T
,

v(2)0s =
(−xz 0.5

(
z2 − b1x2) 0 0 −a1x 0 −a2x −a3x

)T
.

(4.2)
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The component forms of v(3)0s are

w = a8x3 + b5x − 1
2
xz2, u = −1

2
b1x

2z +
1
6
z3, φ = a9

(
x3 − 3h2x

)
,

ψ = a10
(
x3 − 3h2x

)
, σ = −a1xz, τ =

1
2
a1
(
x2 − h2

)
, D = −a2xz, B = −a3xz.

(4.3)

The constants in (4.2)-(4.3) are listed in [13]. The eigensolutions of eigenvalue zero just are
the fundamental solution of Saint Venant problem. But the solutions having the local effect
are constituted by the eigensolutions of eigenvalue nonzero of (3.1), which are obtained in
the next section.

5. Eigenfunction Vectors of Eigenvalue Nonzero

The eigenvalue equation (3.5) is a system of ordinary differential equations with respect to x
which can be solved by first determining the eigenvalue λ̃with respect to the x direction. The
corresponding equation is

det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μ C10λ̃ 0 0 C11 0 C14 C15

−λ̃ −μ −C21λ̃ −C22λ̃ 0 C17 0 0

0 C18λ̃ −μ 0 C14 0 −C12 −C16

0 C19λ̃ 0 −μ C15 0 −C16 −C13

0 0 0 0 −μ −λ̃ 0 0

0 −C20λ̃
2 0 0 C10λ̃ −μ C18λ̃ C19λ̃

0 0 C23λ̃
2 −C24λ̃

2 0 −C21λ̃ −μ 0

0 0 −C24λ̃
2 C25λ̃

2 0 −C22λ̃ 0 −μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 0, (5.1)

where the constants C10 ∼ C25 are listed in the appendix. Expanding the determinant yields
the eigenvalue equation

c1λ̃
8 + c2λ̃6μ2 + c3λ̃4μ4 + c4λ̃2μ6 + μ8 = 0. (5.2)

Apparently, where c1 ∼ c4 constituted by C10 ∼ C25, (5.2) has eight roots

λ̃i = λiμ, λ̃4+i = −λiμ (i = 1, 2, 3, 4). (5.3)
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Only discuss the general case that there are eight different roots λ̃i. Obviously, −λ̃i must
be an eigenvalue if λ̃i is an eigenvalue, so the general solution of (5.2) can be expressed as

ŵ =
4∑
i=1

A1i cosh
(
λiμx
)
+

4∑
i=1

D1i sinh
(
λiμx
)
, û =

4∑
i=1

A2i sinh
(
λiμx
)
+

4∑
i=1

D2i cosh
(
λiμx
)
,

φ̂ =
4∑
i=1

A3i cosh
(
λiμx
)
+

4∑
i=1

D3i sinh
(
λiμx
)
, ψ̂ =

4∑
i=1

A4i cosh
(
λiμx
)
+

4∑
i=1

D4i sinh
(
λiμx
)
,

σ̂ =
4∑
i=1

A5i cosh
(
λiμx
)
+

4∑
i=1

D5i sinh
(
λiμx
)
, τ̂ =

4∑
i=1

A6i sinh
(
λiμx
)
+

4∑
i=1

D6i cosh
(
λiμx
)
,

D̂ =
4∑
i=1

A7i cosh
(
λiμx
)
+

4∑
i=1

D7i sinh
(
λiμx
)
, B̂ =

4∑
i=1

A8i cosh
(
λiμx
)
+

4∑
i=1

D8i sinh
(
λiμx
)
.

(5.4)

It shows that the partial solutions relevant to A are the solutions of symmetric
deformation with the z-axis while the partial solutions relevant to D are the solutions of
antisymmetric deformation with the z-axis.

Firstly discuss the general solution of symmetric deformation

ŵ =
4∑
i=1

A1i cosh
(
λiμx
)
, û =

4∑
i=1

A2i sinh
(
λiμx
)
, φ̂ =

4∑
i=1

A3i cosh
(
λiμx
)
,

ψ̂ =
4∑
i=1

A4i cosh
(
λiμx
)
, σ̂ =

4∑
i=1

A5i cosh
(
λiμx
)
, τ̂ =

4∑
i=1

A6i sinh
(
λiμx
)
,

D̂ =
4∑
i=1

A7i cosh
(
λiμx
)
, B̂ =

4∑
i=1

A8i cosh
(
λiμx
)
,

(5.5)

where constants Aji (j = 1, 2, . . . , 8; i = 1, 2, 3, 4) are not all independent. Substitute (5.5) into
(3.5); Aji can be expressed by the independent constants A6i (i = 1, 2, 3, 4)

Aji =
fNj(λi)
fDj(λi)μ

A6i
(
j = 1, 2, 3, 4

)
, A5i = −λiA6i, Aji =

fNj(λi)
fDj(λi)

A6i
(
j = 7, 8

)
, (5.6)

where fNj(λi) and fDj(λi) are expressions of λi.
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So far, only A6i (i = 1, 2, 3, 4) are unknown constants in the general solution.
Substituting (5.5) and (5.6) into the boundary conditions (3.3) yields

4∑
i=1

(
λi
fN2(λi)
fD2(λi)

+ s13λi − d31
fN7(λi)
fD7(λi)

− b31
fN8(λi)
fD8(λi)

)
cosh
(
λiμh
)
A6i = 0,

4∑
i=1

sinh
(
λiμh
)
A6i = 0,

4∑
i=1

(
C1 − ν11λi

fN3(λi)
fD3(λi)

+ β11λi
fN4(λi)
fD4(λi)

)
sinh
(
λiμh
)
A6i = 0,

4∑
i=1

(
C2 + β11λi

fN3(λi)
fD3(λi)

− λ11λi
fN4(λi)
fD4(λi)

)
sinh
(
λiμh
)
A6i = 0.

(5.7)

For the sake of simplicity, (5.7) is denoted as

{
Bji
}{A6i} = {0} (

i, j = 1, 2, 3, 4
)
. (5.8)

For nontrivial solution to exist, the determinant of coefficient matrix vanishes.

∣∣{Bji
}∣∣ = 0. (5.9)

Equation (5.9) can be solved by numerical methods. If μn (n = 1, 2, . . .) is roots of (5.9), each μn
in reality has its symplectic adjoint eigenvalue −μn and their complex conjugate eigenvalues.
After obtaining A6i (i, j = 1, 2, 3, 4) by substituting μn into (5.8), the corresponding
eigenvector function is

Yn =
(
ŵn ûn φ̂n ψ̂n σ̂n τ̂n D̂n B̂n

)T
, (5.10)

where

ŵn =
4∑
i=1

fN1(λi)
fD1(λi)μ

A6i cosh
(
λiμnx

)
, ûn =

4∑
i=1

fN2(λi)
fD2(λi)μ

A6i sinh
(
λiμnx

)
,

φ̂n =
4∑
i=1

fN3(λi)
fD3(λi)μ

A6i cosh
(
λiμnx

)
, ψ̂n =

4∑
i=1

fN4(λi)
fD4(λi)μ

A6i cosh
(
λiμnx

)
,

σ̂n =
4∑
i=1

−λiA6i cosh
(
λiμnx

)
, τ̂n =

4∑
i=1

A6i sinh
(
λiμnx

)
,

D̂n =
4∑
i=1

fN7(λi)
fD7(λi)

A6i cosh
(
λiμnx

)
, B̂n =

4∑
i=1

fN8(λi)
fD8(λi)

A6i cosh
(
λiμnx

)
.

(5.11)
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The corresponding solution of (3.1) in symmetric deformation is

vn = eμnzYn. (5.12)

Likewise, the corresponding eigenvector function of eigenvalues μ′
n (n = 1, 2, . . .) in

antisymmetric deformation is

Y′
n =
(
ŵ′
n û′n φ̂′

n ψ̂ ′
n σ̂ ′

n τ̂ ′n D̂′
n B̂′

n

)T
, (5.13)

where

ŵ′
n =

4∑
i=1

D1i sinh
(
λiμ

′
nx
)
, û′n =

4∑
i=1

D2i cosh
(
λiμ

′
nx
)
,

φ̂′
n =

4∑
i=1

D3i sinh
(
λiμ

′
nx
)
, ψ̂ ′

n =
4∑
i=1

D4i sinh
(
λiμ

′
nx
)
,

σ̂ ′
n =

4∑
i=1

D5i sinh
(
λiμ

′
nx
)
, τ̂ ′n =

4∑
i=1

D6i cosh
(
λiμ

′
nx
)
,

D̂′
n =

4∑
i=1

D7i sinh
(
λiμ

′
nx
)
, B̂′

n =
4∑
i=1

D8i sinh
(
λiμ

′
nx
)
.

(5.14)

The corresponding solution of (3.1) in antisymmetric deformation is

v′n = eμ
′
nzY′

n. (5.15)

Thus, all eigensolutions of nonzero eigenvalues are obtained. These solutions
are covered in the Saint-Venant principle and decay with distance depending on the
characteristics of eigenvalues (see [7, 8]). Together with the eigensolutions of zero eigenvalue,
they constitute a complete adjoint symplectic orthonormal basis and the expansion theorem is
then applicable. Further discussion concerns solutions of magnetoelectroelastic solids plane
problems in rectangular domain.

6. Solutions of Generalized Plane Problems in Rectangular Domain

The solution of homogeneous (3.1) by the method of separation variables has been discussed
in the previous several sections. The analytical expressions of eigensolutions of zero
eigenvalue and of nonzero eigenvalues have also been presented. Based on expansion
theorems, the general solution of homogeneous equation (3.1) for magnetoelectroelastic
solids plane problems in rectangular domain is

v =
1∑
i=0

(
a
(i)
0fv

(i)
0f + a

(i)
0t v

(i)
0t + a

(i)
0r v

(i)
0r

)
+

3∑
i=0

a
(i)
0sv

(i)
0s +

∞∑
i=1

ãivi +
∞∑
i=1

b̃iv′i, (6.1)
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where a(i)0f , a
(i)
0s , a

(i)
0t , a

(i)
0r , ãi, and b̃i are undetermined constants. Determining these constants

needs the variational equations corresponding to the two-point boundary conditions
obtained by applying the variational principle.

If the end boundary conditions for specified generalized displacements are (2.7), it can
be expressed as

q0 = q0(x) =
[
w0(x) u0(x) φ0(x) ψ0(x)

]T
at z = 0,

ql = ql(x) =
[
wl(x) ul(x) φl(x) ψl(x)

]T
at z = l,

(6.2)

where q0 and ql denote the values of variable q at z = 0 and z = l, respectively.
If the end boundary conditions for specified generalized forces are (2.8), it can be

expressed as

p0 = p0(x) =
[
σ0(x) τ0(x) D0(x) B0(x)

]T
z = 0,

pl = pl(x) =
[
σl(x) τl(x) Dl(x) Bl(x)

]T
z = l,

(6.3)

where p0 and pl denote the values of variable p at z = 0 and z = l, respectively.
The boundary conditions at both ends (z = 0 or l) can also be mixed boundary

conditions.
According to approach derived by Zhong et al. in [7, 8] in the Hamiltonian system, the

process of obtaining the undetermined constants of the general solution is presented here. For
the sake of simplicity, the general solution is given as

v =
n∑
i=1

Aivi, (6.4)

where n is the number of eigensolutions, vi are all solutions that relate to zero eigenvalue
and nonzero eigenvalues, and Ai are constants determined by a linear system of equations
resulted from the Hamiltonian variational principle. If we specify generalized displacement
q0 at z = 0 and generalized force pl at z = l, the variational equation is obtained as

∫h
−h

(
n∑
i=1

δAipT0i

)⎛
⎝

n∑
j=1

Ajq0j − q0

⎞
⎠dx +

∫h
−h

(
n∑
i=1

δAiqTli

)⎛
⎝

n∑
j=1

Ajplj − pl

⎞
⎠dx = 0. (6.5)

Equation (6.5) can be expressed as

n∑
i=1

n∑
j=1

[∫h
−h

[
Aj

(
pT0iq0j + qTliplj

)
− pT0iq0 − qTlipl

]
dx

]
δAi = 0. (6.6)
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Ai can be determined by the following equations:

⎡
⎢⎢⎢⎢⎢⎢⎣

c̃11 c̃12 · · · c̃1n
c̃21 c̃22 · · · c̃2n
...

...
. . .

...

c̃n1 c̃n2 · · · c̃nn

⎤
⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1

A2
...
An

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

d̃1
d̃2
...
d̃n

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
, (6.7)

where

c̃ij =
∫h
−h

(
pT0iq0j + qTliplj

)
dx, d̃i =

∫h
−h

(
pT0iq0 + qTlipl

)
dx

(
i, j = 1, 2, . . . , n

)
. (6.8)

7. Numerical Examples

The Saint-Venant principle is applicable to the problem for l � h in a rectangular domain.
The influence of self-equilibrium forces at both ends (z = 0 or l) is only confined to the
vicinity of the region. It is then appropriate to neglect the solutions of nonzero eigenvalues
and, therefore, to apply only the solutions of zero eigenvalue in the expansion theorem.

Example 7.1. Consider a magnetoelectroelastic rectangle domain, under uniform axial
tension, electrical displacement, or magnetic induction, respectively. Three load cases are
considered and the boundary conditions are given by

z = l:

(a) σz = P0, τxz = Dz = Bz = 0, under the uniform tension;
(b) Dz = D0, σz = τxz = Bz = 0, under the uniform electric displacement;
(c) Bz = B0, σz = τxz = Dz = 0, under the uniform magnetic induction.

z = 0:

τxz = w = φ = ψ = 0; x = ±h: σx = τxz = Dx = Bx = 0.

The problem is treated as a symmetric deformation one. The solution is formed from
(4.2).

For load (a),

v1 =
(
s33v

(1)
0f + d33v

(1)
0t + b33v

(1)
0r

)
P0. (7.1)

For load (b),

v2 =
(
d33v

(1)
0f − λ33v(1)0t − β33v(1)0r

)
D0. (7.2)
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Table 1: The numerical results in the rectangular domain problem under three-load case.

Case u (10−13 m) w (10−12 m) φ (10−3 V) ψ (10−4 A) σz (N/m2) Dz (10−9 C/m2) Bz (10−7 N/Am)

a −9.4998 5.6834 9.4955 2.1391 10.0000 0.0000 0.0000
(−9.4998) (5.6834) (9.4955) (2.1391) (10.0000) (0.0000) (0.0000)

b −2.1079 0.94955 −6.2894 0.25669 0.0000 1.0000 0.0000
(−2.1079) (0.94955) (−6.2894) (0.25669) (0.0000) (1.0000) (0.0000)

c 5.0767 2.1391 2.5669 −7.5213 0.0000 0.0000 1.0000
(5.0767) (2.1391) (2.5669) (−7.5213) (0.0000) (0.0000) (1.0000)

Table 2: The eigenvalues with respect to the x-direction.

i 1 2 3 4
λi 0.58880i 1.0711i 0.60197 + 1.1734i 0.60197 − 1.1734i

For load (c),

v3 =
(
b33v

(1)
0f − β33v(1)0r − ν33v(1)0r

)
B0. (7.3)

For numerical calculation, the composite materials BaTiO3-CoFe2O4 are specified,
which material constants are given in [5]. Take σz = 10N/m2, Dz = 10−9 C/m2, Bz =
10−7 N/Am, h = 0.03m, and l = 0.1m. The numerical results at point (h, l) are given in
Table 1, where the values in the parenthesis are the exact ones which are calculated with the
formulas presented by Ding and Jiang in [5]. The results show that the numerical solutions
by the method have higher accuracy. The eigensolutions of zero eigenvalue correspond to the
solutions of Saint-Venant problems. On the other hand, the solutions of the portion covered
by the Saint-Venant principle correspond to the eigensolutions with nonzero eigenvalues.
Subsequently, a very simple example is presented here.

Example 7.2. Consider a simple tension problem of composite materials BaTiO3-CoFe2O4

semi-infinite strip fixed at z = 0, and take −h ≤ x ≤ h, h = 0.1m. There is only the tension
stress σ∞ for z → ∞, and τzx = Dz = Bz = 0. The stress distribution at the fixed end is
determined here.

Firstly, by utilizing (5.2) and (5.3), λi (i = 1, 2, . . . , 4) are calculated and listed in Table 2
for the composite materials BaTiO3-CoFe2O4.

Secondly, obtain nonzero eigenvalues. With reference to the problem, there is only
the tension stress σ∞ for z → ∞ and the deformation is symmetric with respect to z-axis.
Solve (5.9) by numerical methods. Table 3 lists the first five eigenvalues in the first quadrant.
Each μn in reality has its symplectic adjoint eigenvalue −μn and their complex conjugate
eigenvalue.

Thirdly, the general solution is then formed from the eigensolution of the zero
eigenvalue (4.2) and (4.3) and the eigensolution of the nonzero eigenvalues of the symmetric
deformation (5.12). Consider the deformation is symmetric with respect to z-axis and rigid
body translation, constant electric potential or constant magnetic potential has no effect on
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Table 3: Nonzero eigenvalues for symmetric deformation.

n 1 2 3 4 5
μnh 1.8209 + 1.2193i 2.8349 3.8972 3.9331 + 2.1502i 5.8470

x (m)
0.05 0.1

1

2

3

4

5

6

σ
z
/
σ
∞

Figure 2: Normal stress analysis with fixed end.

stress, only v(1)0f , v
(1)
0t , and v(1)0r are selected in (4.2). Their coefficients are determined by the

boundary conditions at z → ∞. So the general solution can be expressed as

v = σ∞
(
s33v

(1)
0f + d33v

(1)
0t + b33v

(1)
0r

)
+

n∑
i=1

Aivi, (7.4)

where n is the number of the eigensolutions of nonzero eigenvalues of the symmetric
deformation. For the above general solution, only eigensolutions of α-set in (5.12) are
adopted, that is, Re μi < 0. Thus it consistent with the far-end boundary condition at z → ∞.

Finally, Substituting (7.4) into the equation of variation (6.5) and adopting a total of
ten eigensolutions of nonzero eigenvalues in the calculation yield σz/σ∞ at the fixed end
z = 0 as illustrated in Figure 2. The figure shows that there is stress singularity at the edge
corner. Fluctuation of stress observed is common when truncated finite terms are adopted
in the expansion. Such phenomenon has been observed, for instance, when finite terms in a
Fourier series are assumed. Figure 3 shows that the normal stress distribution approximates
uniformity at z = 2h.

8. Conclusions

In this paper, the transversely isotropic magnetoelectroelastic solids plane problem in
rectangular domain is considered from a symplectic approach. The eigensolutions of
nonzero-eigenvalues obtained decay drastically with respect to distance can express the end
effects and corner stresses. There is no requirement of experience in the symplectic approach
for solving the problem since it is a rational, analytical approach to satisfy the boundary
conditions in a straightforward manner.
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Figure 3: Normal stress distribution in the partial region of the left end.

Appendix

Δ = λ11ν11 − β211, C1 = ν11d15 − β11b15, C2 = λ11b15 − β11d15,

C10 =
s13
s11

, C11 =
s11s33 − s213

s11
, C12 =

s11λ33 + d2
31

s11
,

C13 =
s11ν33 + b231

s11
, C14 =

s11d33 − s13d31
s11

, C15 =
s11b33 − s13b31

s11
,

C16 =
s11β33 + b31d31

s11
, C17 = s44 +

(d15C1 + b15C2)
Δ

,

C18 =
d31
s11

, C19 =
b31
s11

, C20 =
1
s11

, C21 =
C1

Δ
,

C22 =
C2

Δ
, C23 =

ν11
Δ
, C24 =

β11
Δ
, C25 =

λ11
Δ
.

(A.1)
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