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Indefinite higher Riesz transforms

Toshiyuki Kobayashi and Andreas Nilsson

Abstract. Stein’s higher Riesz transforms are translation invariant operators on L2(Rn)

built from multipliers whose restrictions to the unit sphere are eigenfunctions of the Laplace–

Beltrami operators. In this article, generalizing Stein’s higher Riesz transforms, we construct

a family of translation invariant operators by using discrete series representations for hyperboloids

associated to the indefinite quadratic form of signature (p, q). We prove that these operators

extend to Lr-bounded operators for 1<r<∞ if the parameter of the discrete series representations

is generic.

1. Introduction and statement of main results

For a measurable bounded function m on Rn, the multiplier operator
Tm : f �!F−1(mFf) defines a continuous, translation invariant operator on L2(Rn),
where F is the Fourier transform.

Classic examples are the Riesz transforms

(Rjf)(x) := lim
ε!0

Γ((n+2)/2)
π(n+2)/2

∫
|y|>ε

yj

|y|n+1
f(x−y) dy, 1≤ j ≤n,

which are associated with the multipliers mj(ξ):=|ξ|−1ξj . One of the important
properties of the Riesz transforms is that Rj extends to a continuous operator on
the Banach space Lr(Rn) for any 1<r<∞. From a group theoretic view point,
the space M2(Rn) of all continuous, translation invariant operators on L2(Rn) is
naturally a representation space of the general linear group GL(n,R) by

M2(Rn)−!M2(Rn), T �−!Lg �T �L−1
g , g∈GL(n,R),
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where (Lgf)(x):=f(g−1x). Then, it is noteworthy that the Riesz transforms Rj ,
1≤j≤n, span the simplest non-trivial representation (an irreducible n-dimensional
representation) of the orthogonal group O(n).

More generally, E. M. Stein introduced a family of bounded translation invari-
ant operators Tm (higher Riesz transforms) associated with multipliers m having
the following two properties:

m is a homogeneous function of degree 0,(1.1)

m |Sn−1∈Hk(Rn).(1.2)

The condition (1.1) is equivalent to the fact that m is constant on rays emanating
from the origin. Thus, m is completely determined by its restriction to the unit
sphere. The condition (1.2) concerns this restriction. Here, Hk(Rn) denotes the
space of spherical harmonics of degree k defined by

Hk(Rn) := {f ∈C∞(Sn−1) : ∆Sn−1f =−k(k+n−2)f},(1.3)

where ∆Sn−1 is the Laplace–Beltrami operator on the unit sphere Sn−1. Then, we
have the following consequence.

Fact 1.1. (See [6, Chapter II, Theorem 3]) Suppose k∈N. Then, for any m

satisfying (1.1) and (1.2), Tm extends to a continuous operator on the Banach space
Lr(Rn) for any 1<r<∞.

We note that Tm corresponds to the identity operator for k=0, and to the Riesz
transforms for k=1. For general k, {Tm :m satisfies (1.1) and (1.2)} forms an irre-
ducible O(n) submodule in M2(Rn).

In the previous paper [4], we analyzed translation invariant operators from
group theoretic view points, and found the following phenomenon: L2-bounded
translation invariant operators with ‘large symmetries’ are mostly unbounded on
Lr(Rn), r �=2, except for the cases when they are built from higher Riesz transforms,
as far as ‘large symmetries’ are defined by finite-dimensional representations of affine
subgroups (see e.g. [4, Theorem 9]).

The aim of this paper is to construct a family of Lr-bounded translation in-
variant operators, 1<r<∞, with ‘large symmetries’ by using infinite-dimensional
representations.

To be more precise, we take a quadratic form

Q(ξ) := ξ2
1+...+ξ2

p−ξ2
p+1−...−ξ2

p+q

of a general signature (p, q), p>1, and work on the hyperboloid

Xp,q := {ξ ∈Rp+q : Q(ξ)= 1},
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which is a (non-singular) submanifold in the open domain Rp,q
+ :={ξ∈Rp+q :

Q(ξ)>0} of Rp+q. We endow Xp,q with the standard pseudo-Riemannian struc-
ture of signature (p−1, q), and introduce a dense subspace of L2-eigenfunctions of
the Laplace–Beltrami operator ∆≡∆Xp,q as

Hk(Rp,q) := {f ∈L2(Xp,q) : ∆f =−k(k+p+q−2)f}K-finite.

See Section 2 for more details. In the case (p, q)=(n, 0), we note Xp,q=Sn−1,
Rp,q

+ =Rn, and Hk(Rp,q)=Hk(Rn).
In our setting for general p and q, we replace (1.2) with

m |Xp,q∈Hk(Rp,q) and supp m⊂Rp,q
+ .(1.4)

Then, the following subspace of M2(Rp+q):

{Tm : m satisfies (1.1) and (1.4)}
forms a dense subspace of an irreducible (infinite-dimensional) unitary representa-
tion of the indefinite orthogonal group O(p, q) if p>1 and q>0. Our Lr-boundedness
theorem is now stated as follows:

Theorem 1. Suppose k>4, if p+q is even, or k>3, if p+q is odd. Then, for
any m satisfying (1.1) and (1.4), the multiplier operator Tm extends to a continuous
operator on Lr(Rp+q) for any 1<r<∞.

Remark 1.2. In place of Xp,q⊂Rp,q
+ , we can also consider the open domain

Rp,q
− :={ξ∈Rp+q :Q(ξ)<0} and L2-eigenfunctions on another hyperboloid X ′

p,q :=
{ξ∈Rp+q :Q(ξ)=−1}. Then, for m supported on Rp,q

− an analogous result also
holds by swapping p and q because X ′

p,q�Xq,p and Rp,q
− �Rp,q

+ .

The operators Tm with m satisfying (1.1) and (1.4) may be regarded as a gen-
eralization of Stein’s higher Riesz transforms in the following sense:

spherical harmonics on Sn−1 =⇒ discrete series for Xp,q,

O(n) =⇒ indefinite orthogonal group O(p, q).

We shall call Tm indefinite Riesz transforms. Then, Theorem 1 for indefinite
Riesz transforms is a generalization of Fact 1.1.

A distinguishing feature of our generalization is that the restriction of the
multiplier m to the unit sphere is no more infinitely differentiable. Our multiplier m

has the following property:

m(ξ)= 0 if ξ2
1 +...+ξ2

p ≤ ξ2
p+1+...+ξ2

p+q.
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Unlike Fefferman’s ball multiplier theorem [2] and its descendants [4] for multi-
plier operators with ‘large symmetries’, the indefinite Riesz transforms Tm remain
Lr-bounded for any r, 1<r<∞.

The crucial point of the proof of Theorem 1 is the asymptotic estimate of the
multiplier m(ξ) together with its differentials as ξ approaches the boundary of Rp,q

+ .
This estimate is carried out by using techniques of infinite-dimensional represen-
tation theory of O(p, q) and non-commutative harmonic analysis (see e.g. [1], [5]
and [7]).

Notation. R+ :={x∈R:x>0}, N={0, 1, 2, ...}, and N+ :={1, 2, ...}.

2. Basic properties of discrete series for Xp,q

In this section, after a quick review of some of the fundamental facts concerning
discrete series representations for hyperboloids Xp,q, we introduce the linear vector
space V∞

k consisting of smooth functions on an open domain Rp,q
+ satisfying a certain

decay condition. This space V∞
k will bridge discrete series for Xp,q and ‘indefinite

higher multipliers’.
In what follows, we shall use the notation

ξ = (ξ′, ξ′′)∈Rp+q,

Q(ξ)= |ξ′|2−|ξ′′|2 = ξ2
1 +...+ξ2

p−ξ2
p+1−...−ξ2

p+q,

|ξ|2 = |ξ′|2+|ξ′′|2 = ξ2
1 +...+ξ2

p+ξ2
p+1+...+ξ2

p+q.

Then, the indefinite orthogonal group

O(p, q) := {g∈GL(p+q;R) : Q(gξ)= Q(ξ) for any ξ ∈Rp+q}
is non-compact if p, q>0. Throughout this paper, we shall write G:=O(p, q), and
denote by g the Lie algebra o(p, q) of G. The group G contains

K :=
{(

A 0
0 B

)
: A∈O(p) and B ∈O(q)

}
� O(p)×O(q)

as a maximal compact subgroup. We note that in the case q=0, G=K is nothing
but the orthogonal group O(p).

We denote by Rp,q the Euclidean space Rp+q equipped with the flat pseudo-
Riemannian structure ds2=dξ2

1+...+dξ2
p−dξ2

p+1−...−dξ2
p+q. Then, ds2 is non-de-

generate when restricted to the submanifold Xp,q, and defines a pseudo-Riemannian
structure gXp,q of signature (p−1, q) on Xp,q. Obviously, the group O(p, q) acts
on Rp,q and Xp,q, respectively, as isometries.
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The action of O(p, q) on Xp,q is transitive, and the isotropy subgroup at
t(1, 0, ..., 0) is identified with O(p−1, q). Thus, Xp,q is realized as a homogeneous
space:

O(p, q)/ O(p−1, q)�Xp,q.

The group G acts on the space of functions on Rp,q, Rp,q
+ and also on Xp,q by

translations:

π(g) : f �−! f(g−1· ).

In particular, G acts unitarily on the Hilbert space L2(Xp,q) consisting of square
integrable functions on Xp,q with respect to the measure induced by gXp,q .

The differential of π, denoted by dπ, is formally defined by

dπ(Y )f :=
d

dt

∣∣∣∣
t=0

f(e−tY · ) for Y ∈ g.

Next, we consider L2-eigenfunctions of the Laplace–Beltrami operator ∆≡
∆Xp,q on Xp,q:

L2
k(Xp,q) := {f ∈L2(Xp,q) : ∆f =−k(k+p+q−2)f}.

Here, the differential equation is interpreted as that of distributions. Then, L2
k(Xp,q)

is a closed subspace of the Hilbert space L2(Xp,q) (possibly, equal to zero). Since
∆ commutes with the G-action, L2

k(Xp,q) is a G-invariant subspace.
Suppose f∈L2

k(Xp,q). We say that f is K-finite if C-span{π(k)f :k∈K} is
finite-dimensional. We set the vector space consisting of K-finite vectors as

Hk(Rp,q) := L2
k(Xp,q)K-finite.(2.1)

We note that any function of Hk(Rp,q) is real-analytic although the differential
operator ∆ is not elliptic. We also note that if q=0 then G=K and Hk(Rp,0)=
L2

k(Sp−1)K-finite=L2
k(S

p−1).
We set

ρ :=
p+q−2

2
and Λ+(p, q) :=

{
{k∈Z:k>−ρ}, q �=0,

{k∈Z:k≥0}, q=0.

We collect below some known results on discrete series representations for hyper-
boloids Xp,q. See [1] and [7] for the pioneering work. See also [5, Fact 5.4] for
a survey on algebraic, geometric, and analytic aspects of these representations from
modern representation theory.
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Fact 2.1. Suppose p>1.
(1) If k∈Λ+(p, q) then L2

k(Xp,q) is non-zero. It is irreducible as a representation
of G. Conversely, any (non-zero) irreducible closed subspace of L2(Xp,q) is of the
form L2

k(Xp,q) for some k∈Λ+(p, q).
(2) Hk(Rp,q) is a K-invariant dense subspace of L2

k(Xp,q). As a representation
of K,

Hk(Rp,q)�

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⊕
a,b∈N

a−b≥k+q
a−b≡k+q mod 2

Ha(Rp)⊗Hb(Rq), q>0,

Hk(Rp), q=0.

(3) Suppose further that q>0. If f∈Hk(Rp,q), then there exists a function
a(ω, η)∈C∞(Sp−1×Sq−1) such that

f(ω cosh t, η sinh t)= a(ω, η)e−(k+2ρ)t(1+e−2t O(t)), as t!∞.

(4) dπ(Y )Hk(Rp,q)⊂Hk(Rp,q) for any Y ∈g.

The irreducible unitary representation of G realized on a closed subspace of
L2(Xp,q) is called a discrete series representation for the hyperboloid Xp,q. Discrete
series representations for Xp,q exist if p>1. By Fact 2.1 (1), Λ+(p, q) is the parameter
space of discrete series representations for Xp,q.

Remark 2.2. (1) In the literature, the normalization of the parameter is often
taken to be

λ := k+ρ

(
= k+

p+q−2
2

)
.

Then, for p>1 and q>0, k∈Λ+(p, q) if and only if

λ> 0 and λ∈Z+
p+q

2
.

(2) If f∈Hk(Rp,q) belongs to the K-type Ha(Rp)⊗Hb(Rq) (see Fact 2.1 (2)),
then we have an explicit formula of f as follows:

f(ω cosh t, η sinh t)= ha(ω)hb(η)(cosh t)a(sinh t)bϕ
(b+q/2−1,a+p/2−1)
iλ (t),(2.2)

for some functions ha∈Ha(Rp) and hb∈Hb(Rq). Here λ=k+ρ, and ϕ
(λ′′,λ′)
iλ (t),

λ′′ �=−1,−2, ..., is the Jacobi function which is the unique solution to the following
differential equation:

(L+(λ′+λ′′+1)2−λ2)ϕ= 0, ϕ(0)= 1,
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if we set L:=d2/dt2+((2λ′+1) tanh t+(2λ′′+1) coth t) d/dt. Equivalently, in terms
of the hypergeometric function 2F1, we have

ϕ
(λ′′,λ′)
iλ (t)= 2F1

(
λ′+λ′′+1−λ

2
,
λ′+λ′′+1+λ

2
; λ′′+1;− sinh2 t

)
.

With these preparations, let us investigate the asymptotic behavior of the
multiplier m near the boundary of Rp,q

+ . For this, we fix �∈R+ and let

V� :=
{

f ∈C∞(Rp,q
+ ) : (1) f is a homogeneous function of degree 0,

(2) sup
ξ∈Rp,q

+

|f(ξ)|
(

Q(ξ)
|ξ|2

)−�
<∞

}
.(2.3)

Remark 2.3. Obviously, V�⊂V�′ if �>�
′.

For any g∈G, we set c:=max(‖g‖, ‖g−1‖), where ‖g‖ denotes the operator
norm of g. This means that

c−1|ξ| ≤ |gξ| ≤ c|ξ|, ξ ∈Rp+q.

Further, Q(gξ)=Q(ξ). Hence, V� is a G-invariant subspace of C∞(Rp,q
+ ). We define

V∞
�

:= {f ∈V� : dπ(X1) � ... � dπ(Xl)f ∈V� for any l = 0, 1, ... and X1, ..., Xl ∈ g}.

Lemma 2.4. Let m be as in Theorem 1. Then m|Rp,q
+

∈V∞
(k/2)+ρ.

Proof. Suppose ξ∈Rp,q
+ . Then, Q(ξ)>0 and Q(ξ)−1/2ξ∈Xp,q. Hence, we can

find ω∈Sp−1, η∈Sq−1 and t∈R such that

Q(ξ)−1/2ξ = (ω cosh t, η sinh t).

This means that

Q(ξ)−1|ξ|2 = cosh2 t+sinh2 t = cosh 2t.

If m satisfies (1.1), then m(ξ)=m(Q(ξ)−1/2ξ)=m(ω cosh t, η sinh t). Therefore, we
have

sup
ξ∈Rp,q

+

( |ξ|2
Q(ξ)

)k/2+ρ

m(ξ)<∞

by Fact 2.1 (3). Hence m|Rp,q
+

∈Vk/2+ρ. Hence, the lemma follows by iterating
Fact 2.1 (4). �
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3. Proof of Lp-boundedness

For an open subset V in Rn, we write Ck(V ) for the space of functions on V

with continuous derivatives up to order k.
We recall from [6, Section IV, Theorem 3] the Hörmander–Mikhlin condition

for Lr-multipliers:

Fact 3.1. Suppose m∈C [n/2]+1(Rn\{0}) satisfies

sup
ξ∈Rn\{0}

|ξ||α|
∣∣∣∣∂

αm(ξ)
∂ξα

∣∣∣∣<∞(3.1)

for all multi-indices α such that |α|≤[n/2]+1. Then, the multiplier operator Tm

extends to a continuous operator on Lr(Rn) for any r, 1<r<∞.

In Section 5, we shall show the following result.

Proposition 3.2. If f∈V∞
�

, then

sup
ξ∈Rp,q

+

|ξ||α|
∣∣∣∣∂

αf

∂ξα

∣∣∣∣ <∞(3.2)

for any multi-index α∈Np+q with |α|≤�.

Proposition 3.3. For f∈V∞
�

let F be the extension by zero of f to all of Rn.
Let N be any non-negative integer such that N <�. Then F ∈CN (Rn\{0}). In
particular, F satisfies (3.1) for any α with |α|<�.

Admitting Propositions 3.2 and 3.3 for a while, let us complete the proof of The-
orem 1.

Proof of Theorem 1. Suppose m is as in Theorem 1. Then m|Rp,q
+

∈V∞
k/2+ρ

by Lemma 2.4. Hence, m satisfies (3.1) for any multi-index α with |α|<k/2+ρ by
Proposition 3.3.

Since the assumption k>4, if p+q is even, or k>3, if p+q is odd, implies that

k

2
+ρ >

[p+q

2

]
+1

the Hörmander–Mikhlin condition for m is fulfilled. Therefore, the operator is
bounded on Lr(Rn) by Fact 3.1. �

4. Differential operators along O(p, q)-orbits

The vector space V∞
�

in which our multiplier lives (see Lemma 2.4) is stable
under the action of the Lie algebra g and the Euler operator E=

∑p+q
i=1 ξi ∂/∂ξi. In
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this section, we shall give a formula for the standard derivatives ∂/∂ξi, 1≤i≤p+q,
by means of dπ(Y ), Y ∈g, and E. The main result of this section is Proposition 4.3,
and we shall study the space H1 of coefficients (or more generally HN ; see (4.11))
in Section 5.

In the polar coordinate for the first p-factor

R+×Sp−1×Rq −!Rp+q, (r, ω, ξ′′) �−! (rω, ξ′′),(4.1)

an easy computation shows that

∂

∂ξi
= ai(ω)

∂

∂r
+

1
r
Yi(ω), 1≤ i≤ p,(4.2)

where ai(ω)∈C∞(Sp−1) and Yi is a smooth vector field on Sp−1.

In order to rewrite (4.2) by using the Lie algebra action dπ, we note that
g=o(p, q) is given by matrices as

g�
{(

A B
tB C

)
: tA=−A, tC =−C and B ∈M(p, q;R)

}

= (o(p)+o(q))+p (Cartan decomposition),

where we set

p :=
{(

0 B
tB 0

)
: B ∈M(p, q;R)

}
.

Let X(Sp−1) be the vector space consisting of smooth vector fields on Sp−1.
Since O(p) acts transitively on Sp−1, the map

C∞(Sp−1)⊗o(p)−!X(Sp−1), (b, X) �−! b dπ(X),

is surjective. Let
{
Kh :1≤h≤ 1

2p(p−1)
}

be a basis of the Lie algebra o(p). Then,
we can find bh

i ∈C∞(Sp−1) such that

Yi(ω)=
∑

h

bh
i (ω) dπ(Kh).(4.3)

Next, we set

Yij := Ei,p+j +Ep+j,i, 1≤ i≤ p, 1≤ j ≤ q.

Here, Eij are matrix units in M(p+q,R). By definition, Yij spans p and dπ(Yij) is
the vector field on Rp+q given as

dπ(Yij)= ξp+j
∂

∂ξi
+ξi

∂

∂ξp+j
.(4.4)
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Lemma 4.1. For 1≤i≤p we have

∂

∂ξi
=

ai(ω)
rQ(ξ)

(
r2E−

p∑
k=1

q∑
j=1

ξkξp+j dπ(Ykj)
)

+
1
r

∑
h

bh
i (ω) dπ(Kh),(4.5)

and for 1≤j≤q

∂

∂ξp+j
=

1
r2

( p∑
i=1

ξi dπ(Yij)− ξp+j

Q(ξ)

(
r2E−

p∑
i=1

q∑
k=1

ξiξp+k dπ(Yik)
))

.(4.6)

Proof. By multiplying (4.4) by ξi and summing over i, 1≤i≤p, we get

∂

∂ξp+j
=

1
r2

( p∑
i=1

ξi dπ(Yij)−ξp+jr
∂

∂r

)
,(4.7)

where we have used that r ∂/∂r=
∑p

i=1 ξi ∂/∂ξi.
Next, we multiply (4.7) by ξp+j and sum over j, 1≤j≤q, we obtain the identity

for the Euler operator Eξ′′ =
∑q

j=1 ξp+j ∂/∂ξp+j:

Eξ′′ =
1
r2

p∑
i=1

q∑
j=1

ξiξp+j dπ(Yij)− |ξ′′|2
r2

r
∂

∂r
.

Combining with the identity

Eξ′′ +r
∂

∂r
= E

we get

r
∂

∂r
=

1
Q(ξ)

(
r2E−

p∑
i=1

q∑
j=1

ξiξp+j dπ(Yij)
)

.(4.8)

By (4.7), this proves (4.6).
To prove (4.5) we insert into (4.2) the expressions for Yi(ω) and ∂/∂r obtained

in (4.3) and (4.8), respectively. �

To handle the coefficients of (4.5) and (4.6), we introduce the subspace, denoted
by Ha,b,c, of C∞(Rp,q

+ ) for (a, b, c)∈N3 that consists of finite linear combinations of
functions of the form

A(ω)Pa(ξ′′)
rb−cQ(ξ)c

=
A(ω)Pa(ξ′′)

rb−c(r2−|ξ′′|2)c
,(4.9)
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where Pa is a homogeneous polynomial of ξ′′=(ξp+1, ..., ξp+q)∈Rq of degree a and
A∈C∞(Sp−1). If f∈Ha,b,c and g∈Ha′,b′,c′ then fg∈Ha+a′,b+b′,c+c′ , and likewise for
finite linear combinations of such terms. We state this as

Ha,b,cHa′,b′,c′ ⊂Ha+a′,b+b′,c+c′.(4.10)

We also define the space

HN :=
⊕

a,b,c∈N
a≤2N, c≤N
b−a+c=N

Ha,b,c.(4.11)

The following lemma is an immediate consequence of (4.10).

Lemma 4.2. HNHN ′⊂HN+N ′ .

We write HN dπ(g) for the vector space consisting of differential operators
on Rp,q

+ which are of the form
∑

j fj dπ(Xj) (a finite sum) for some fj∈HN and
Xj∈g. The point of the definition of HN is that we have the following result.

Proposition 4.3. On Rp,q
+ ,

∂

∂ξi
∈H1 dπ(g)+C∞(Rp,q

+ )E, 1≤ i≤ p+q.

Proof. In light of the formulas (4.5) and (4.6), it is sufficient to show that the
coefficients

ai(ω)ξlξp+j

rQ(ξ)
,
bh
i (ω)
r

,
ξi

r2
,
ξiξp+jξp+k

r2Q(ξ)
∈H1

for any 1≤i, l≤p and 1≤j, k≤q. In fact, these coefficients belong to

H1,1,1, H0,1,0, H0,1,0, H2,2,1,

respectively, by definition. �

5. Proof of Propositions 3.2 and 3.3

Lemma 5.1. For 1≤i≤p+q,

∂

∂ξi
HN ⊂HN+1.
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Proof. Since Ha,b,c is spanned by functions of the form (4.9), we get

ai(ω)
∂

∂r
(Ha,b,c)⊂Ha,b+1,c⊕Ha,b,c+1,

1
r
Yi(ω)Ha,b,c ⊂Ha,b+1,c.

Thus, by using (4.2) we have

∂

∂ξi
Ha,b,c ⊂Ha,b+1,c⊕Ha,b,c+1, 1≤ i≤ p.

For the variables ξ′′=(ξp+1, ..., ξp+q), we obtain directly

∂

∂ξj+p
Ha,b,c ⊂Ha−1,b,c⊕Ha+1,b+1,c+1, 1≤ j ≤ q.

The lemma now follows from the definition (4.11) of HN . �

We denote by HN ·V∞
�

the subspace of C∞(Rp,q
+ ) consisting of finite linear com-

binations of products of elements from HN and V∞
�

. We then have the following
result.

Lemma 5.2.

∂

∂ξi
V∞
�

⊂H1 ·V∞
�

, 1≤ i≤ p+q.

Proof. Since the Euler operator E acts on V∞
�

by zero and dπ(X)V∞
�
⊂V∞

�
,

X∈g, the lemma follows from Proposition 4.3. �

Proposition 5.3. For any multi-index α∈Np+q,

∂α

∂ξα
V∞
�

⊂H|α| ·V∞
�

.(5.1)

Proof. We have already proved (5.1) for |α|=1 in Lemma 5.2. Suppose we have
proved (5.1) for |α|≤N . Then,

∂

∂ξi

∂α

∂ξα
V∞
�

⊂ ∂

∂ξi
(H|α| ·V∞

�
)

⊂
(

∂

∂ξi
H|α|

)
·V∞

�
+H|α| ·

(
∂

∂ξi
V∞
�

)

⊂H|α|+1 ·V∞
�

+H|α|(H1 ·V∞
�

),

by Lemmas 5.1 and 5.2. Since H|α|H1⊂H|α|+1 by Lemma 4.2, (5.1) holds for
|α|=N +1. Hence, Proposition 5.3 is proved by induction on |α|. �
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Lemma 5.4. Let f∈V� and g∈Ha,b,c. Then

|f(ξ)g(ξ)| ≤ C

|ξ|b−a+c

(
Q(ξ)
|ξ|2

)
�−c

, ξ ∈Rp,q
+ .

In particular, if f∈V� and g∈HN are such that N≤�, then we have

|f(ξ)g(ξ)| ≤C|ξ|−N , ξ ∈Rp,q
+ .

Proof. By the definition (2.3) of V�, f satisfies

|f(ξ)| ≤C1

(
Q(ξ)
|ξ|2

)
�

for ξ ∈Rp,q
+ ,

for some constant C1>0. Hence, in view of (4.9), there exists C′>0 such that

|f(ξ)g(ξ)| ≤C′ 1
rb−c

|ξ′′|a
Q(ξ)c

(
Q(ξ)
|ξ|2

)
�

.(5.2)

We note that for ξ∈Rp,q
+ , we have r>|ξ′′| and therefore |ξ|=(r2+|ξ′′|2)1/2 satisfies

r < |ξ|<
√

2r.

Hence the first factor of (5.2) is bounded by

1
rb−c

≤ C′′

|ξ|b−c
.

The last two factors of (5.2) are estimated as

|ξ′′|a
Q(ξ)c

(
Q(ξ)
|ξ|2

)
�

≤ 1
|ξ|2c−a

(
Q(ξ)
|ξ|2

)
�−c

.

Combining these estimates, we have proved that

|f(ξ)g(ξ)| ≤ C′C′′

|ξ|b−a+c

(
Q(ξ)
|ξ|2

)
�−c

. �

Proof of Proposition 3.2. Suppose f∈V∞
�

. Then ∂αf/∂ξα∈H|α| ·V∞
�

by Prop-
osition 5.3. If |α|≤� then |∂αf/∂ξα|≤C|ξ|−|α| for ξ∈Rp,q

+ by Lemma 5.4. Hence,
Proposition 3.2 is proved. �

Proof of Proposition 3.3. Let f∈V∞
�

. It is sufficient to prove that if |α|<�

then

∂αf

∂ξα
(ξ)! 0
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as ξ∈Rp,q
+ approaches the boundary of Rp,q

+ in Rp+q\{0}, namely, the isotropic
cone {ξ∈Rp+q\{0}:Q(ξ)=0}. This follows again from Lemma 5.4. Hence, Prop-
osition 3.3 is also proved. �

Thus, the proof of Theorem 1 is completed.
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